NO315703B1 - Meta azacyclic aminobenzoic acid compounds and derivatives thereof which are integrin antagonists - Google Patents

Meta azacyclic aminobenzoic acid compounds and derivatives thereof which are integrin antagonists Download PDF

Info

Publication number
NO315703B1
NO315703B1 NO20004316A NO20004316A NO315703B1 NO 315703 B1 NO315703 B1 NO 315703B1 NO 20004316 A NO20004316 A NO 20004316A NO 20004316 A NO20004316 A NO 20004316A NO 315703 B1 NO315703 B1 NO 315703B1
Authority
NO
Norway
Prior art keywords
added
mol
solution
product
give
Prior art date
Application number
NO20004316A
Other languages
Norwegian (no)
Other versions
NO20004316L (en
NO20004316D0 (en
Inventor
Thomas E Rogers
Peter G Ruminski
Original Assignee
Searle & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Searle & Co filed Critical Searle & Co
Publication of NO20004316D0 publication Critical patent/NO20004316D0/en
Publication of NO20004316L publication Critical patent/NO20004316L/en
Publication of NO315703B1 publication Critical patent/NO315703B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/06Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D239/08Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2
    • C07D239/12Nitrogen atoms not forming part of a nitro radical
    • C07D239/14Nitrogen atoms not forming part of a nitro radical with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms

Description

Foreliggende oppfinnelse omhandler farmasøytiske midler (forbindelser) som er anvendbare som OvPa integrine antagonister og som slik er anvendbare i farmasøytiske sammensetninger og i fremgangsmåter for å behandle tilstander formidlet ved OvP3 ved å inhibere eller antagonisere av|33 integriner. The present invention relates to pharmaceutical agents (compounds) which are usable as OvPa integrin antagonists and which are thus usable in pharmaceutical compositions and in methods for treating conditions mediated by OvP3 by inhibiting or antagonizing av|33 integrins.

Oppfinnelsens bakgrunn The background of the invention

Integriner er en gruppe av celleoverflateglukoproteiner som formidler celleaddisjon og derfor er anvendbare formidlere av celleaddisjonsvekselvirkninger som opptrer i løpet av ulike biologiske prosesser. Integriner er heterodimere sam-mensatt av ikke-kovalent bundne a og p polypeptidunderenne-ter. For tiden har 11 ulike a underenheter blitt identifisert og 6 ulike p underenheter har blitt identifisert. De ulike a underenhetene kan kombinere med ulike p underenheter for å danne forskjellige integriner. Integrins are a group of cell surface glycoproteins that mediate cell adhesion and are therefore useful mediators of cell adhesion interactions that occur during various biological processes. Integrins are heterodimers composed of non-covalently bound α and β polypeptide subunits. Currently, 11 different a subunits have been identified and 6 different p subunits have been identified. The different a subunits can combine with different p subunits to form different integrins.

Integrinen identifisert som Ovp3 (også kjent som vitronec-trinreseptoren) har blitt identifisert som en integrin som spiller en rolle i ulike tilstander eller sykdomstilstander inkludert tumormetastase, hard tumorvekst (neoplasi), osteoporose, Pagefs sykdom, humoral hyperkalsemi av ma-lingnansi, angiogenese, inkludert tumor angiogenese, retinopati, inkludert makulær degenerasjon, arteritt, inkludert revmatoid arteritt, tannkjøttsykdom, psoriasis og glatte muskelcellemigrasjon (f.eks. restenose). I tillegg, har det blitt funnet at slike midler ville være anvendbare som antiviraler, antifungaler og antimikrobialer. Derfor, ville forbindelser som selektivt inhiberer eller antagoniserer 0^03 være fordelaktige for å behandle slike tilstander. The integrin identified as Ovp3 (also known as the vitronectrin receptor) has been identified as an integrin that plays a role in various conditions or disease states including tumor metastasis, hard tumor growth (neoplasia), osteoporosis, Pagef's disease, humoral hypercalcemia of ma-lingnancy, angiogenesis, including tumor angiogenesis, retinopathy, including macular degeneration, arteritis, including rheumatoid arteritis, gum disease, psoriasis and smooth muscle cell migration (eg, restenosis). In addition, it has been found that such agents would be useful as antivirals, antifungals and antimicrobials. Therefore, compounds that selectively inhibit or antagonize O 3 O 3 would be beneficial for treating such conditions.

Det har blitt vist av avp3 integrinen og andre Oy inneholdende integriner bindes til et antall av Arg-Gly-Asp(RGD) inneholdende matrix makromolekyler. Forbindelser som inneholder RDG sekvensen etterligner ekstra cellulære matrixli-gander for å binde til celleoverflatereseptorer. Imidlertid er det også kjent av RGD peptider generelt er ikke-selektive for RGD avhengige integriner. Por eksempel, binder de fleste RGT peptidene som til Ovp3, binder til OvPsi ctvPi, og otiibP3. Antagonisme av blodplate anbp3 (også kjent som fibrinogen reseptoren) er kjent for å blokkere blodplateaggregering hos mennesker. For å unngå blødnings-bivirkninger ved behandling av tilstandene eller sykdoms-tilstandene forbundet med integrinen OvP3, ville det være fordelaktig å utvikle forbindelser som er selektive antagonister av otvp3 i motsetning til aiIbp3. It has been shown that the avp3 integrin and other Oy containing integrins bind to a number of Arg-Gly-Asp(RGD) containing matrix macromolecules. Compounds containing the RDG sequence mimic extra cellular matrix ligands to bind to cell surface receptors. However, it is also known that RGD peptides are generally non-selective for RGD-dependent integrins. For example, most RGT peptides bind to Ovp3, bind to OvPsi ctvPi, and otiibP3. Antagonism of platelet anbp3 (also known as the fibrinogen receptor) is known to block platelet aggregation in humans. In order to avoid bleeding side effects when treating the conditions or disease states associated with the integrin OvP3, it would be advantageous to develop compounds that are selective antagonists of otvp3 as opposed to aiIbp3.

Kreftcelleinvasjon skjer ved en tretrinnsprosess: 1) kreft-cellebinding til ekstracellulær matrix; 2) proteolytisk Cancer cell invasion occurs by a three-step process: 1) cancer cell attachment to extracellular matrix; 2) proteolytic

oppløsning av matrixen,- og 3) bevegelse av cellene gjennom den oppløste barrieren. Denne prosessen kan skje flere ganger og kan resultere i metastase ved steder fjernt fra den opprinnelige tumoren. dissolution of the matrix, and 3) movement of the cells through the dissolved barrier. This process can occur several times and can result in metastasis at sites distant from the original tumor.

Seftor et. al. (Proe. Nati. Acad. Sei. USA, Vol. 89 (1992) 1557-1561) har vist at avp3 integrinen har en biologisk funksjon i melonom celleinvasjon. Montgomery et. al. (Proe. Nati. Acad. Sei. USA, Vol. 91 (1994) 8856-60) har vist at integrinen avp3 uttrykt på humane melonome celler fremmer et overleveIsessignal, og beskytter cellene mot apoptose. Formidling av kreftcellens metastatiske bane med veksel-virkning med Ovp3 integrinens celleaddisjonsreseptor for å forhindre tumormetastase ville være fordelaktig. Seftor et. eel. (Proe. Nati. Acad. Sei. USA, Vol. 89 (1992) 1557-1561) have shown that the avp3 integrin has a biological function in melonoma cell invasion. Montgomery et al. eel. (Proe. Nati. Acad. Sei. USA, Vol. 91 (1994) 8856-60) has shown that the integrin avp3 expressed on human melanoma cells promotes a survival signal, and protects the cells against apoptosis. Mediating the cancer cell's metastatic pathway by interacting with the Ovp3 integrin cell adhesion receptor to prevent tumor metastasis would be beneficial.

Brooks et. al., (Cell, Vol. 79 (1994) 1157-1164) har vist at antagonister av avp3 gir en terapeutisk tilnærming for behandling av neoplasi (inhibisjon av hard svulstvekst) siden systemisk administrasjon av ct^^ j antagonister forårsaker dramatisk tilbakegang av ulike histologiske forskjellige humane svulster. Brooks et al. al., (Cell, Vol. 79 (1994) 1157-1164) have shown that antagonists of avp3 provide a therapeutic approach for the treatment of neoplasia (inhibition of hard tumor growth) since systemic administration of ct^^ j antagonists causes dramatic regression of various histologically diverse human tumors.

Addisjonsreseptorintegrinen OvP3 ble identifisert som en merker for angiogene blodkar i kylling og mennesker og derfor spiller en slik reseptor en kritisk rolle i angiogenese eller neovakularisasjon. Angiogenese er karakterisert ved invasjonen, bevegelsen og proliferasjonen av glatte muskel og endotele celler. Antagonister av Ovp3 inhiberer denne prosessen ved å selektivt fremme apoptose av celler i neo-vaskulatur. Veksten av nye blodkar, eller angiogenese, bi-drar også til patologiske betingelser slik som diabetisk retinopati og makulær degenerasjon.(Adonis et. al., Amer. J. Opthal., Vol. 118 (1994) 445-450) og revmatoid artritt (Peacock et. al., J. Exp. Med., Vol. 175 (1992), 1135-1138) . Derfor, ville Ovp3 antagonister være anvendbare terapeutiske mål for å behandle slike tilstander forbundet med neovaskularisering (Brooks et. al., Science, Vol. 264, The addition receptor integrin OvP3 was identified as a marker for angiogenic blood vessels in chicken and humans and therefore such a receptor plays a critical role in angiogenesis or neovacucularization. Angiogenesis is characterized by the invasion, movement and proliferation of smooth muscle and endothelial cells. Antagonists of Ovp3 inhibit this process by selectively promoting apoptosis of cells in the neo-vasculature. The growth of new blood vessels, or angiogenesis, also contributes to pathological conditions such as diabetic retinopathy and macular degeneration. (Adonis et. al., Amer. J. Opthal., Vol. 118 (1994) 445-450) and rheumatoid arthritis (Peacock et. al., J. Exp. Med., Vol. 175 (1992), 1135-1138). Therefore, Ovp3 antagonists would be useful therapeutic targets to treat such conditions associated with neovascularization (Brooks et. al., Science, Vol. 264,

(1994), 569-571). (1994), 569-571).

Det er blitt rapportert at celleoverflatereseptoren OvP3 er hovedintegrinen for osteoklaster ansvarlig for binding til ben. Osteoklaster forårsaker benresorpsjon og når slik ben-resorberingsaktivitet overstiger bendannelsesaktiviteten resulterer det i osteoporose (et tap av bensubstans), som leder til et øket antall av benbrudd, arbeidsudyktighet og øket dødelighet. Antagonister av Ovp3 har blitt vist å være kraftige inhibitorer for osteoklastisk aktivitet både in vitro (Sato et. al., J. Cell. Biol., Vol. 111 (1990) 1713-1723) og in vivo (Fisher et. al., Endocrinology, Vol. 132 It has been reported that the cell surface receptor OvP3 is the main osteoclast integrin responsible for attachment to bone. Osteoclasts cause bone resorption and when such bone resorption activity exceeds bone formation activity it results in osteoporosis (a loss of bone substance), which leads to an increased number of bone fractures, disability and increased mortality. Antagonists of Ovp3 have been shown to be potent inhibitors of osteoclastic activity both in vitro (Sato et. al., J. Cell. Biol., Vol. 111 (1990) 1713-1723) and in vivo (Fisher et. al., Endocrinology, Vol. 132

(1993) 1411-1413). Antagonister av Ovp3 fører til redusert benresorpsjon og gjendanner derfor en normal balanse av bendannelse og "resoround bottoming" aktivitet. Derfor ville det være fordelaktig å gi antagonister av osteoklast otvp3 som er effektive inhibitorer for benresorpsjon og derfor anvendbare i behandlingen eller forebyggelsen av osteoporose . (1993) 1411-1413). Antagonists of Ovp3 lead to reduced bone resorption and therefore restore a normal balance of bone formation and "resoround bottoming" activity. Therefore, it would be advantageous to provide antagonists of osteoclast otvp3 which are effective inhibitors of bone resorption and therefore useful in the treatment or prevention of osteoporosis.

Rollen til OvP3 integrinen i glatt muskelcellemigrasjon la-ger også et terapeutisk mål for forebyggelse eller inhibisjon av neointimal hyperplasi som er en ledende årsak for restenose etter vaskulære prosedyrer (Choi et.al., J.Vasc. Surg. Vol. 19(1) (1994) 125-34). Forebyggelse eller inhibisjon av neointimal hyperplasi ved farmasøytiske midler for å forebygge eller inhibere restenose vil være fordelaktig. The role of the OvP3 integrin in smooth muscle cell migration also creates a therapeutic target for the prevention or inhibition of neointimal hyperplasia which is a leading cause of restenosis after vascular procedures (Choi et.al., J.Vasc. Surg. Vol. 19(1) (1994) 125-34). Prevention or inhibition of neointimal hyperplasia by pharmaceutical agents to prevent or inhibit restenosis would be beneficial.

White (Current Biology, Vol. 3{9) (1993) 596-599) har rapportert at adenovirus anvender Ovp3 for å komme inn i White (Current Biology, Vol. 3(9) (1993) 596-599) has reported that adenoviruses use Ovp3 to enter

vertsceller. Integrinen viser seg å være krevet for endocy-tose av viruspartikkelen og kan være krevet for penetrasjon av det virale genomet inn i vertscellens cytoplasma. Derfor vil forbindelser som inhiberer OvP3 finne anvendbarhet som host cells. The integrin appears to be required for endocytosis of the virus particle and may be required for penetration of the viral genome into the host cell's cytoplasm. Therefore, compounds that inhibit OvP3 will find utility as

antivirale midler. antiviral agents.

WO 97/08145 legger frem meta-guanidin-, urea-, tiourea- og azasyklisk aminobenzosyrederivater med formelen (I) WO 97/08145 discloses meta-guanidine, urea, thiourea and azacyclic aminobenzoic acid derivatives of formula (I)

hvori A er where A is

som er anvendbare som Ovps integrine antagonister. which are useful as Ovps integrin antagonists.

J.Med.Chem. 40. 930 (1997), J.Med.Chem. 40. 920 (1997) og Antiv.Chem.Chemother. 8, 463 (1997) omhandler oppdagelsen av HIV-1 integraseinhibitorer med spesifikke farmakofore undersøkelser. J. Med. Chem. 40. 930 (1997), J. Med. Chem. 40. 920 (1997) and Antiv.Chem.Chemother. 8, 463 (1997) deals with the discovery of HIV-1 integrase inhibitors by specific pharmacophore studies.

Exp.Opin.Ther. patenter 8, 633 (1998) har blitt publisert etter den foreliggende krevde prioriteten og omhandler ut-viklingen at integrine antagonister kunne anvendes for å inhibere metastase. Exp.Opin.Ther. patents 8, 633 (1998) have been published after the present claimed priority and deal with the development that integrin antagonists could be used to inhibit metastasis.

Oppsummering av oppfinnelsen Summary of the invention

Foreliggende oppfinnelse omhandler en forbindelse med føl-gende generelle formel The present invention relates to a compound with the following general formula

hvori X og Y er den samme eller ulik halogruppe og farma-søytisk akseptable salter derav. wherein X and Y are the same or different halo group and pharmaceutically acceptable salts thereof.

Forbindelsene beskrevet over kan eksistere i ulike isomere former og alle slike isomere former er ment å være inkludert. Tautomere former er også inkludert i tillegg til far-masøytisk akseptable salter av slike isomere og tautomere. The compounds described above may exist in various isomeric forms and all such isomeric forms are intended to be included. Tautomeric forms are also included in addition to pharmaceutically acceptable salts of such isomers and tautomers.

Mer spesifikt, omhandler foreliggende oppfinnelse de føl-gende forbindelsene: More specifically, the present invention deals with the following compounds:

hvor R er H eller alkyl; wherein R is H or alkyl;

eller farmasøytisk akseptable salter derav. or pharmaceutically acceptable salts thereof.

Det er en annen hensikt av oppfinnelsen å gi farmasøytiske sammensetninger omfattende forbindelser beskrevet over. Slike forbindelser og sammensetninger er anvendbare i selektiv inhibisjon eller antagonisering av integrinen og derfor omhandler en annen utførelse av foreliggende oppfinnelse en fremgangsmåte for selektiv inhibisjon eller antagonisering av Ovpa integrinen. Oppfinnelsen involverer videre anvendelse av forbindelsen for å fremstille et medikament for behandling eller inhibisjon av patologiske tilstander forbundet derved slik som osteoporose, humoral hyperkalsimi av malignansi, Pagefs sykdom, tumormetastaser, hard tumorvekst (neoplasi), angiogenese, inkludert tumorangiogenese, retinopati inkludert diabetes retionopati og makulær degenerasjon, arteritt, inkludert revmatoid artritt, tannkjøttsykdom, psoriasis, glatt muskelcellemigrasjon og restinose i pattedyr med behov for slik behandling. I tillegg, er slike farmasøytiske midler anvendbare som antivirale midler, og antimikrobial. It is another object of the invention to provide pharmaceutical compositions comprising compounds described above. Such compounds and compositions are useful in selective inhibition or antagonism of the integrin and therefore another embodiment of the present invention deals with a method for selective inhibition or antagonism of the Ovpa integrin. The invention further involves the use of the compound to prepare a drug for the treatment or inhibition of pathological conditions associated therewith such as osteoporosis, humoral hypercalcemia of malignancy, Pagef's disease, tumor metastases, hard tumor growth (neoplasia), angiogenesis, including tumor angiogenesis, retinopathy including diabetic retinopathy and macular degeneration, arteritis, including rheumatoid arthritis, gum disease, psoriasis, smooth muscle cell migration and restinosis in mammals in need of such treatment. In addition, such pharmaceutical agents are useful as antiviral agents and antimicrobial agents.

Detaljert beskrivelse Detailed description

Foreliggende oppfinnelse omhandler en klasse av forbindelser representert ved formelene I-XVI, beskrevet over. The present invention relates to a class of compounds represented by the formulas I-XVI, described above.

Foretrukne utførelser av foreliggende oppfinnelse er forbindelser med følgende formler Preferred embodiments of the present invention are compounds with the following formulas

Oppfinnelsen omhandler videre farmasøytiske sammensetninger inneholdende terapeutisk effektive mengder av forbindelsene beskrevet over. The invention further relates to pharmaceutical compositions containing therapeutically effective amounts of the compounds described above.

Oppfinnelsen omhandler også anvendelse av forbindelsene for å fremstille medikamenter for selektiv inhibisjon eller antagonisering av Ovp3 integrinen, og mer spesifikt omhandler den anvendelse som over for å inhibere benresorpsjon, tannkjøttsykdom, osteoporose, humoral hyperkalsimi ved malignansi, Pagefs sykdom, tumormetastaser, hard tumorvekst (neoplasi), angiogenese, inkludert tumorangiogenese, retinopati inkludert diabetes retionopati og makulær degenerasjon, artritt, inkludert revmatoid artritt, glatt muskelcellemigrasjon og restenose ved administrering av en terapeutisk effektiv mengde av en forbindelse beskrevet over for å oppnå slik inhibisjon sammen med en farma-søytisk akseptabel bærer. The invention also relates to the use of the compounds to produce drugs for selective inhibition or antagonism of the Ovp3 integrin, and more specifically relates to the above application for inhibiting bone resorption, gum disease, osteoporosis, humoral hypercalcemia in malignancy, Pagef's disease, tumor metastases, hard tumor growth (neoplasia ), angiogenesis, including tumor angiogenesis, retinopathy including diabetic retinopathy and macular degeneration, arthritis, including rheumatoid arthritis, smooth muscle cell migration and restenosis by administering a therapeutically effective amount of a compound described above to achieve such inhibition together with a pharmaceutically acceptable carrier .

Følgende er en liste av definisjoner av ulike betegnelser anvendt heri: Som anvendt heri, refererer betegnelsen "alkyl" eller "la-vere alkyl" til en lineær eller forgrenet hydrokarbonkjede-radikal som har 1-10 karbonatomer, og mer foretrukket 1-6 karbonatomer. Eksempler på slike alkylradikaler er metyl, etyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, neopentyl, heksyl, isoheksyl, og lignende. The following is a list of definitions of various terms used herein: As used herein, the term "alkyl" or "lower alkyl" refers to a linear or branched hydrocarbon chain radical having 1-10 carbon atoms, and more preferably 1-6 carbon atoms . Examples of such alkyl radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, neopentyl, hexyl, isohexyl, and the like.

Som anvendt heri refererer betegnelsen "halo" eller "halo-gen" til brom, klor, eller jod. As used herein, the term "halo" or "halogen" refers to bromine, chlorine, or iodine.

Som anvendt heri refererer betegnelsen "haloalkyl" til al-kylgrupper som definert over substituert med en eller flere av den samme eller ulike halogrupper ved ett eller flere karbonatomer. Eksempler på haloalkylgrupper inkluderer trifluormetyl, dikloretyl, fluorpropyl, og lignende. As used herein, the term "haloalkyl" refers to alkyl groups as defined above substituted with one or more of the same or different halo groups at one or more carbon atoms. Examples of haloalkyl groups include trifluoromethyl, dichloroethyl, fluoropropyl, and the like.

Betegnelsen "sammensetning" som anvendt heri betyr et produkt som resulterer fra blandingen eller kombinasjonen av flere enn ett element eller ingrediens. The term "composition" as used herein means a product resulting from the mixture or combination of more than one element or ingredient.

Betegnelsen "farmasøytisk akseptabel bærer", som anvendt heri, betyr et farmasøytisk akseptabelt materiale, sammensetning eller vehikkel, slik som en flytende eller fast fyller, fortynner, eksipient, løsningsmiddel eller innkaps-ling smat er iale, involvert i bæring eller transport av et kjemisk middel. The term "pharmaceutically acceptable carrier", as used herein, means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating agent, involved in carrying or transporting a chemical medium.

Betegnelsen "terapeutisk effektiv mengde" skal bety mengden av legemiddel eller farmasøytisk middel som vil utløse den biologiske eller medisinske responsen i et vev, system eller dyr som blir søkt ved en forsker eller kliniker. The term "therapeutically effective amount" shall mean the amount of drug or pharmaceutical agent that will elicit the biological or medical response in a tissue, system or animal sought by a researcher or clinician.

Følgende er en liste av forkortelser og tilsvarende betyd-ninger som anvendt om hverandre heri: The following is a list of abbreviations and corresponding meanings used interchangeably herein:

<L>H-NMR = proton nukleær magnetisk resonans <L>H-NMR = proton nuclear magnetic resonance

AcOH = eddiksyre AcOH = acetic acid

Ar = argon Ar = argon

CH3CN = acetonitril CH3CN = acetonitrile

CHN analyse = karbon/hydrogen/nitrogen elementanalyse CHNC1 analyse = karbon/hydrogen/nitrogen/klor elementanalyse CHN analysis = carbon/hydrogen/nitrogen elemental analysis CHNC1 analysis = carbon/hydrogen/nitrogen/chlorine elemental analysis

CHNS analyse = karbon/hydrogen/nitrogen/svovel elementanalyse CHNS analysis = carbon/hydrogen/nitrogen/sulfur elemental analysis

DI vann = avionisert vann DI water = deionized water

DMA = N. N dimetylacetamid DMA = N. N dimethylacetamide

DMAP = 4-( N, N dimetylamino)pyridin DMAP = 4-( N,N dimethylamino)pyridine

DMF = N, N dimetylformamid DMF = N,N dimethylformamide

EDC1 = 1-(3-dimetylaminopropyl)-3-etylkarbodiimid hydroklorid EDC1 = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride

EtOAc = etylacetat EtOAc = ethyl acetate

EtOH = etanol EtOH = ethanol

FAB MS = hurtig atombombardementmassespektroskopi FAB MS = fast atomic bombardment mass spectroscopy

g = gram g = grams

HOBT = 1-hydroksybenzotriazolhydrat HOBT = 1-hydroxybenzotriazole hydrate

HPLC = høy virkningsgrads væskekromatografi HPLC = high performance liquid chromatography

IBCF = isobutylkloroformat IBCF = isobutyl chloroformate

KSCN = kaliumtiocyanat KSCN = potassium thiocyanate

1 = liter 1 = liters

LiOH = litiumhydroksid LiOH = lithium hydroxide

MEM = metoksyetoksyrnetyl MEM = methoxyethoxymethyl

MEMC1 = metoksyetoksymetylklorid MEMC1 = methoxyethoxymethyl chloride

MeOH = metanol MeOH = methanol

mg = milligram mg = milligrams

MgS04 = magnesiumsulfat MgS04 = magnesium sulfate

ml = milliliter ml = milliliters

MS = massespektroskopi MS = mass spectroscopy

MTBE = metyl tert-butyleter MTBE = methyl tert-butyl ether

N2 = nitrogen N2 = nitrogen

NaHC03 = natriumbikarbonat NaHCO3 = sodium bicarbonate

NaOH = natriumhydroksid NaOH = sodium hydroxide

NaaS04 = natriumsulfat NaaS04 = sodium sulfate

NMM = N-metylmorfolin NMM = N-methylmorpholine

NMP = N-metylpyrrolidinon NMP = N-methylpyrrolidinone

NMR = nukleær magnetisk resonans NMR = nuclear magnetic resonance

P205 = fosforpentoksid P205 = phosphorus pentoxide

PTSA = para-toluensulfonsyre PTSA = para-toluenesulfonic acid

RPHPLC = omvendt fase høy virkningsgrads væskekromatografi RT = romtemperatur RPHPLC = reversed phase high performance liquid chromatography RT = room temperature

TFA = trifluoreddiksyre TFA = trifluoroacetic acid

THF = tetrahydrofuran THF = tetrahydrofuran

TMS = trimetylsilyl TMS = trimethylsilyl

A = oppvarming av reaksjonsblandingen A = heating of the reaction mixture

Forbindelsene beskrevet over kan eksistere i ulike isomere former og alle slike isomere former er ment å være inkludert. Tautomere former er også inkludert i tillegg til far-masøytisk akseptable salter av slike isomere og tautomere. The compounds described above may exist in various isomeric forms and all such isomeric forms are intended to be included. Tautomeric forms are also included in addition to pharmaceutically acceptable salts of such isomers and tautomers.

I strukturene og formlene heri, kan en binding trukket på tvers av en binding eller en ring være til ethvert tilgjengelig atom på ringen. In the structures and formulas herein, a bond drawn across a bond or a ring may be to any available atom on the ring.

Betegnelsen "farmasøytisk akseptabelt salt" refererer til et salt fremstilt ved å kontakte en forbindelse beskrevet over med en syre hvis anion generelt er betraktet som passende for humant konsum. Eksempler på farmakologisk akseptable salter inkluderer hydroklorid, hydrobromid, hydrojodid, sulfat, fosfat, acetat, propionat, laktat, maleat, malat, succinat, tartrat saltene og lignende. Alle de farmakologisk akseptable saltene kan fremstilles ved vanlige metoder. (Se Berge et. al., J. Pharm. Sei.,66(1), 1-19 The term "pharmaceutically acceptable salt" refers to a salt prepared by contacting a compound described above with an acid whose anion is generally considered suitable for human consumption. Examples of pharmacologically acceptable salts include the hydrochloride, hydrobromide, hydroiodide, sulfate, phosphate, acetate, propionate, lactate, maleate, malate, succinate, tartrate salts and the like. All the pharmacologically acceptable salts can be prepared by conventional methods. (See Berge et. al., J. Pharm. Sei., 66(1), 1-19

(1977) for ytterligere eksempler på farmasøytisk akseptable salter.) (1977) for additional examples of pharmaceutically acceptable salts.)

For den selektive inhibisjonen eller antagonismen av otvp3 integriner, kan forbindelser i foreliggende oppfinnelse ad-ministreres oralt, parenteralt, eller ved inhalasjonsspray, eller topiske enhetsdoseringsformuleringer inneholdende vanlige farmasøytisk akseptable bærer, hjelpestoffer og ve-hikler. Betegnelsen parenteral som anvendt heri inkluderer, for eksempel, subkutan, intravenøst, intramuskulært, in-trasternalt, infusjonsteknikker eller intraperitonealt. For the selective inhibition or antagonism of otvp3 integrins, compounds of the present invention can be administered orally, parenterally, or by inhalation spray, or topical unit dosage formulations containing common pharmaceutically acceptable carriers, excipients and vehicles. The term parenteral as used herein includes, for example, subcutaneous, intravenous, intramuscular, intrasternal, infusion techniques, or intraperitoneal.

Forbindelsene i foreliggende oppfinnelse blir administrert på enhver passende måte i form av farmasøytiske sammensetninger tilpasset en slik måte, og i en dose effektiv for den tenkte behandlingen. Terapeutisk effektive doser av forbindelsene krevet for å forebygge eller bremse utviklin-gen av, eller behandle den medisinske tilstanden, er lett å skaffe kjennskap til for fagmannen ved å anvende prekli-niske og kliniske fremgangsmåter kjent innen de medisinske fagene. The compounds of the present invention are administered in any suitable manner in the form of pharmaceutical compositions adapted to such manner, and in a dose effective for the intended treatment. Therapeutically effective doses of the compounds required to prevent or slow the development of, or treat, the medical condition are readily available to those skilled in the art by using preclinical and clinical methods known in the medical arts.

I henhold til dette gir foreliggende oppfinnelse anvendelse av forbindelsene for fremstilling av et medikament for å behandle tilstander formidlet ved selektivt å inhibere eller antagonisere OvP3 celleoverflatereseptoren. Behandlingen omfatter administrering av en terapeutisk effektiv mengde av en forbindelse valgt fra klassen av forbindelser beskrevet over, hvori en eller flere forbindelser blir administrert sammen med en eller flere ikke-giftige, farmasøytisk akseptable bærere og/eller fortynnere og/eller hjelpestoffer (kollektivt referert til heri som "bærer" materialer) og hvis ønsket andre aktive ingredien-ser. Mer spesifikt hemmes OvP3 celleoverflatereseptoren. Mest foretrukket anvendes forbindelsene av oppfinnelsen for fremstilling av medikamenter for å inhibere benresorpsjon, behandle osteoporose, inhibere humoral hyperkalsemi ved malignansi, behandle Paget"s sykdom, inhibere tumormetastase, inhibere neoplasi {hard tumorvekst), inhibere angiogenese inkludert tumorangiogenese, behandle diabetisk retinopati og makulær degenerasjon, inhibere artritt, psoriasis og tannkjøttsykdommer (periodontal disease), og inhibere glatte muskelcellemigrasjon inkludert restinose. Accordingly, the present invention provides use of the compounds for the manufacture of a medicament for treating conditions mediated by selectively inhibiting or antagonizing the OvP3 cell surface receptor. The treatment comprises the administration of a therapeutically effective amount of a compound selected from the class of compounds described above, wherein one or more compounds are administered together with one or more non-toxic, pharmaceutically acceptable carriers and/or diluents and/or excipients (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. More specifically, the OvP3 cell surface receptor is inhibited. Most preferably, the compounds of the invention are used for the production of drugs to inhibit bone resorption, treat osteoporosis, inhibit humoral hypercalcemia in malignancy, treat Paget's disease, inhibit tumor metastasis, inhibit neoplasia (hard tumor growth), inhibit angiogenesis including tumor angiogenesis, treat diabetic retinopathy and macular degeneration, inhibit arthritis, psoriasis and periodontal disease, and inhibit smooth muscle cell migration including restinosis.

Basert på standard laboratorieforsøksteknikker og fremgangsmåter velkjent og anerkjent av fagmannen, i tillegg til sammenligninger med forbindelser med kjent anvendbarhet, kan forbindelsene beskrevet over anvendes i behandlingen av pasienter som lider fra de ovennevnte patologiske tilstander. Fagmannen vil gjenkjenne at utvalget av den mest passende forbindelsen i oppfinnelsen er innen evnen til en med ordinær kjennskap i faget og vil avhenge av mange faktorer inkludert vurdering av resultater oppnådd i standard analyser og dyremodeller. Based on standard laboratory testing techniques and methods well known and recognized by those skilled in the art, in addition to comparisons with compounds of known utility, the compounds described above can be used in the treatment of patients suffering from the above pathological conditions. The person skilled in the art will recognize that the selection of the most suitable compound of the invention is within the ability of one of ordinary skill in the art and will depend on many factors including consideration of results obtained in standard assays and animal models.

Behandling av en pasient plaget med en av de patologiske tilstandene omfatter administrasjon til en slik pasient av en mengde av forbindelse beskrevet over som er terapeutisk effektiv til å kontrollere tilstanden eller forlenge overlevelsen til pasienten ut over det forventet i fravær av slik behandling. Som anvendt heri, refererer betegnelsen "inhibisjon" av tilstanden til å forsinke, avbryte, bremse eller stoppe tilstanden og indikerer ikke nødvendigvis en total eliminasjon av tilstanden. Det antas at forlengelse av overlevelsen til en pasient, ut over å være en vesentlig fordelaktig effekt i og av seg selv, også indikerer at tilstanden blir fordelaktig kontrollert i noe utstrekning. Som uttalt tidligere, kan forbindelsene i oppfinnelsen anvendes i mange forskjellige biologiske profylaktiske eller terapeutiske områder. Det forventes at disse forbindelsene er anvendbare i forhindring eller behandling av enhver syk-domstilstand eller tilstand hvori OvP3 integrinen spiller en rolle. Treatment of a patient afflicted with one of the pathological conditions comprises administering to such patient an amount of a compound described above that is therapeutically effective to control the condition or prolong the survival of the patient beyond that expected in the absence of such treatment. As used herein, the term "inhibition" of the condition refers to delaying, interrupting, slowing or stopping the condition and does not necessarily indicate a total elimination of the condition. It is believed that extending the survival of a patient, in addition to being a substantially beneficial effect in and of itself, also indicates that the condition is beneficially controlled to some extent. As stated earlier, the compounds of the invention can be used in many different biological prophylactic or therapeutic areas. It is expected that these compounds are useful in the prevention or treatment of any disease state or condition in which the OvP3 integrin plays a role.

Doseringsregimet for forbindelsene og/eller sammensetningene inneholdende forbindelsene er basert på flere faktorer, inkludert typen, alder, vekt, kjønn og medisinsk tilstand for pasienten; alvorligheten av tilstanden; administrasjonsmåten; og aktiviteten til den spesielle forbindelsen anvendt. Derfor kan doseringsregimet variere vidt. Dose-ringsnivåer i størrelsesorden fra 0,01 mg - 1000 mg per kg kroppsvekt per døgn er anvendbare i behandlingen av de oven indikerte tilstander, og mer foretrukket 0,01 mg - 100 mg per kg kroppsvekt per døgn. The dosage regimen for the compounds and/or compositions containing the compounds is based on several factors, including the type, age, weight, gender and medical condition of the patient; the severity of the condition; the mode of administration; and the activity of the particular compound used. Therefore, the dosage regimen can vary widely. Dosage levels in the order of magnitude from 0.01 mg - 1000 mg per kg of body weight per day are applicable in the treatment of the conditions indicated above, and more preferably 0.01 mg - 100 mg per kg of body weight per day.

Den aktive ingrediensen administrert ved injeksjon blir formulert som en sammensetning hvori, for eksempel, salt, dekstrose eller vann kan anvendes som en passende bærer. En passende daglig dose ville typisk være 0,01 - 10 mg/kg kroppsvekt injisert per døgn i multiple doser avhengig av faktorene listet over. The active ingredient administered by injection is formulated as a composition in which, for example, salt, dextrose or water can be used as a suitable carrier. A suitable daily dose would typically be 0.01 - 10 mg/kg body weight injected per day in multiple doses depending on the factors listed above.

For administrasjon til pattedyr med behov for slik behandling, blir forbindelsene i en terapeutisk effektiv mengde vanligvis kombinert med ett eller flere hjelpestoffer passende til den indikerte administrasjonsmåten. Forbindelsen kan blandes sammen med laktose, sukrose, stivelsespulver, celluloseestere av alkansyrer, cellulosealkylestere, tal-kum, stearinsyre, magnesiumstearat, magnesiumoksid, natrium og kalsiumsalter av fosfor og svovelsyrer, gelatin, akasie, natriumalginat, polyvinylpyrrolidin, og/eller polyvinylal-kohol, og tabletterte eller innkapslede for bekvemmelig administrasjon. Alternativt, kan forbindelsene være løst i vann, polyetylenglukol, propylenglukol, etanol, maisolje, bomullsfrøolje, peanøttolje, sesamolje, benzylalkohol, natriumklorid, og/eller ulike buffere. Andre hjelpestoffer og måter for administrasjon er velkjent i det farmasøytiske faget. For administration to mammals in need of such treatment, the compounds in a therapeutically effective amount are usually combined with one or more excipients appropriate to the indicated mode of administration. The compound can be mixed together with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphorus and sulfuric acids, gelatin, acacia, sodium alginate, polyvinylpyrrolidine, and/or polyvinyl alcohol, and tableted or encapsulated for convenient administration. Alternatively, the compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other excipients and modes of administration are well known in the pharmaceutical art.

De farmasøytiske sammensetningene anvendbare i foreliggende oppfinnelse kan utsettes for vanlige farmasøytiske opera-sjoner slik som sterilisering og/eller kan inneholdende vanlige farmasøytiske hjelpestoffer slik som konserverings-middel, stabilisatorer, fuktemidler, emulgatorer, buffere, etc. The pharmaceutical compositions usable in the present invention may be subjected to normal pharmaceutical operations such as sterilization and/or may contain normal pharmaceutical auxiliaries such as preservatives, stabilizers, wetting agents, emulsifiers, buffers, etc.

De generelle syntetiske sekvensene for å fremstille forbindelsene anvendbare i foreliggende oppfinnelse blir illus-trert i figurene I - III. Både en forklaring og den fak-tiske fremgangsmåten for de ulike utførelsene av foreliggende oppfinnelse er beskrevet hvor passende. De følgende figurer og eksempler er tenkt å være utelukkende illustra-tive for foreliggende oppfinnelse, og ikke begrensende derav, verken i omfang eller ånd. De med kjennskap i faget . vil lett forstå at kjente variasjoner av tilstandene og fremgangsmåtene beskrevet i figurene og eksemplene kan anvendes for å syntetisere forbindelsen i foreliggende oppfinnelse . The general synthetic sequences for preparing the compounds useful in the present invention are illustrated in Figures I-III. Both an explanation and the actual method for the various embodiments of the present invention are described where appropriate. The following figures and examples are intended to be exclusively illustrative of the present invention, and not limiting thereof, either in scope or spirit. Those with knowledge of the subject. will readily understand that known variations of the conditions and methods described in the figures and examples can be used to synthesize the compound in the present invention.

Såfremt annet ikke er indikert var alle utgangsmaterialene og alt utstyret anvendt kommersielt tilgjengelig. Reaksjonsskjema l illustrerer metodikk anvendbar for å fremstille tetrahydropyrimidinbenzosyredelen av foreliggende oppfinnelse som kan kobles til en gly-p-aminosyreester. Kort, i reaksjonsskjerna I, blir 3,5-dihydroksybenzosyre omdannet til 3-amino-5-hydroksy-benzosyre ved anvendelse av fremgangsmåten beskrevet i Austr. J. Chem., 34(6), 1319-24 (1981). Produktet reageres med ammoniumtiocyanat i varm, fortynnet saltsyre for å gi 3-tiourea-5-hydroksybenzosyre etter normal opparbeiding. Dette tiourea-mellomproduktet blir omdannet til S-metylderivater ved reaksjon med metyljodid i etanol ved refluks. 1,3-diamino-2-hydroksypropan blir reagert med dette resulterende mellomproduktet i varm DMA. Ved kjøling utfelles former og det zwitterioniske produktet blir isolert ved filtrering. HCl-saltet kan oppnås ved lyofilisering fra fortynnet saltsyre. Alternativt kan produktet isoleres fra den opprinnelige reaksjonsblandingen ved å fjerne flyktige stoffer og konsentrere. Det resulterende produktet blir først tatt opp i vann og pH justert til 5-7 hvor zwitterionprodukt feller ut og blir isolert ved filtrering. HCl-saltet kan oppnås som tidligere uttalt eller ganske enkelt ved oppløsning i fortynnet saltsyre og konsentrasjon til et faststoff og tørking. Unless otherwise indicated, all starting materials and all equipment used were commercially available. Reaction scheme 1 illustrates methodology applicable to prepare the tetrahydropyrimidinebenzoic acid moiety of the present invention which can be coupled to a gly-p-amino acid ester. Briefly, in reaction core I, 3,5-dihydroxybenzoic acid is converted to 3-amino-5-hydroxy-benzoic acid using the method described in Austr. J. Chem., 34(6), 1319-24 (1981). The product is reacted with ammonium thiocyanate in warm, dilute hydrochloric acid to give 3-thiourea-5-hydroxybenzoic acid after normal work-up. This thiourea intermediate is converted to S-methyl derivatives by reaction with methyl iodide in ethanol at reflux. 1,3-diamino-2-hydroxypropane is reacted with this resulting intermediate in hot DMA. Upon cooling, forms are precipitated and the zwitterionic product is isolated by filtration. The HCl salt can be obtained by lyophilization from dilute hydrochloric acid. Alternatively, the product can be isolated from the original reaction mixture by removing volatiles and concentrating. The resulting product is first taken up in water and pH adjusted to 5-7 where the zwitterionic product precipitates and is isolated by filtration. The HCl salt can be obtained as previously stated or simply by dissolving in dilute hydrochloric acid and concentrating to a solid and drying.

Reaksjonsskjema IA illustrerer metodikk anvendbar for å fremstille tetrahydropyrimidinbenzosyredelen av foreliggende oppfinnelse som kan kobles til en gly-p-aminosyreester. Kort, i reaksjonsskjerna IA blir l,3-diamino-2-hyd-roksypropan reagert med karbondisulfid i et passende løs-ningsmiddel slik som etanol-vann, reflukset, kjølt, tilsatt saltsyre, reflukset igjen, kjølt, og produktet, 5-hydroksy-tetrahydropyrimidin-2-tion høstet ved filtrering og tørket. Dette sykliske tiourea-mellomproduktet blir omdannet til S-metylderivatet ved reaksjon av tion og metyljodid i etanol ved refluks. Det ønskede 2-metyltioeter-5-hydroksypyrimidin hydrojodid blir lett isolert ved å fjerne flyktige stoffer ved redusert trykk. Derfor blir, 2-metyltioeter-5-hydroksy-pyrimidinhydroid i metylenklorid: DMA (omkring 10:1) og en ekvivalent av trietylamin kjølt til omkring isbadtemperatur og ekvivalent av di-tert-butyldikarbonat (BOC anhydrid) tilsatt. Vanlig opparbeiding gir BOC-2-metyltioeter-5-hyd-roksypyrimidin som en olje. Reaction Scheme IA illustrates methodology applicable to prepare the tetrahydropyrimidinebenzoic acid moiety of the present invention which can be coupled to a gly-p-amino acid ester. Briefly, in reaction core IA, 1,3-diamino-2-hydroxypropane is reacted with carbon disulfide in a suitable solvent such as ethanol-water, refluxed, cooled, hydrochloric acid added, refluxed again, cooled, and the product, 5-hydroxy -tetrahydropyrimidine-2-thione harvested by filtration and dried. This cyclic thiourea intermediate is converted to the S-methyl derivative by reaction of thione and methyl iodide in ethanol at reflux. The desired 2-methylthioether-5-hydroxypyrimidine hydroiodide is easily isolated by removing volatiles at reduced pressure. Therefore, 2-methylthioether-5-hydroxy-pyrimidine anhydride in methylene chloride: DMA (about 10:1) and an equivalent of triethylamine are cooled to about ice bath temperature and an equivalent of di-tert-butyl dicarbonate (BOC anhydride) is added. Usual work-up gives BOC-2-methylthioether-5-hydroxypyrimidine as an oil.

3,5-dihydroksybenzosyre blir konvertert til 3-amino-5-hyd-roksybenzosyre med anvendelse av fremgangsmåten til Aust.J.Chem., 34(6), 1319-24 (1981). 3,5-Dihydroxybenzoic acid is converted to 3-amino-5-hydroxybenzoic acid using the method of Aust.J.Chem., 34(6), 1319-24 (1981).

Det ønskede sluttproduktet, 3-hydroksy-5-[(5-hydroksy-1,4,5,6-tetrahydro-2-pyrimidinyl)amino]benzosyre hydroklo-ridsalt blir fremstilt ved å reagere BOC-2-metyltioeter-5-hydroksypyrimidin i varm DMA. Ved kjøling dannes et bunnfall og zwitterionprodukt isoleres ved filtrering. HCl-saltet kan oppnås ved lyofilisering fra fortynnet saltsyre, for eksempel. The desired end product, 3-hydroxy-5-[(5-hydroxy-1,4,5,6-tetrahydro-2-pyrimidinyl)amino]benzoic acid hydrochloride salt is prepared by reacting BOC-2-methylthioether-5-hydroxypyrimidine in warm DMA. On cooling, a precipitate forms and the zwitterion product is isolated by filtration. The HCl salt can be obtained by lyophilization from dilute hydrochloric acid, for example.

Y og X er halogrupper Y and X are halo groups

Reaksjonsskjema II illustrerer en metodikk anvendbar for å fremstille etyl N-gly-amino-3-(3,5-dihalo-2-hydroksy)fenyl-propionat delen av foreliggende oppfinnelse som kan kobles med tetrahydropyrimidinobenzosyregruppen. Kort, kan 3,5-halosubstituerte salicylaldehyder fremstilles ved direkte halogenering som, for eksempel, ville være tilfellet hvor 5-bromsalicylaldehyd blir oppslemmet i eddiksyre og en ekvivalent eller flere av klor blir tilsatt for å gi 3-klor-5-brom-2-hydroksybenzaldehyd. Noen produkter faller ut og kan gjenvinnes ved filtrering. Resten kan gjenvinnes ved fortynning av filtratet med vann og isolering av bunnfallet. Kombinasjon av faststoffene og tørking gir 3-klor-5-brom-2-hydroksybenzaldehyd. 3-jod-5-klorsalisylaldehyd kan fremstilles ved å reagere 5-klorsalicylaldehyd med N-jodsuccinimid i DMF og utsette reaksjonsblandingen for vanlig opparbeidingsbetingelser. 3-jod-5-bromsalicylaldehyd kan fremstilles ved å reagere 5-bromsalisylaldehyd i acetonitril med kaliumjodid og kloramin T. Opparbeiding gir et material som når behandlet med heksan gir det ønskede 3-j od-5-klorsalicylaldehyd. Reaction scheme II illustrates a methodology applicable to prepare the ethyl N-gly-amino-3-(3,5-dihalo-2-hydroxy)phenyl-propionate portion of the present invention which can be coupled with the tetrahydropyrimidinobenzoic acid group. Briefly, 3,5-halosubstituted salicylaldehydes can be prepared by direct halogenation as, for example, would be the case where 5-bromosalicylaldehyde is slurried in acetic acid and one or more equivalents of chlorine is added to give 3-chloro-5-bromo-2 -hydroxybenzaldehyde. Some products precipitate out and can be recovered by filtration. The rest can be recovered by diluting the filtrate with water and isolating the precipitate. Combination of the solids and drying gives 3-chloro-5-bromo-2-hydroxybenzaldehyde. 3-Iodo-5-chlorosalicylaldehyde can be prepared by reacting 5-chlorosalicylaldehyde with N-iodosuccinimide in DMF and subjecting the reaction mixture to normal work-up conditions. 3-Iodo-5-bromosalicylaldehyde can be prepared by reacting 5-bromosalicylaldehyde in acetonitrile with potassium iodide and chloramine T. Workup gives a material which when treated with hexane gives the desired 3-iodo-5-chlorosalicylaldehyde.

Kumariner blir lett fremstilt fra salicylaldehyder ved anvendelse av en modifisert Perkin reaksjon (e.g., Vogel^ s Textbook og Practical Organic Chemistry, 5th Ed., 1989, s. 1040) . De halosubstituerte kumarinene blir konvertert til 3-aminohydrokumariner (se J.G.Rico, Tett.Let., 1994, 35, 6599-6602) som lett åpnes i sur alkohol for å gi 3-amino-3-(3,5-halo-2-hydroksy)fenyl propansyreestere. Coumarins are readily prepared from salicylaldehydes using a modified Perkin reaction (e.g., Vogel's Textbook and Practical Organic Chemistry, 5th Ed., 1989, p. 1040). The halo-substituted coumarins are converted to 3-aminohydrocoumarins (see J.G.Rico, Tett.Let., 1994, 35, 6599-6602) which are readily opened in acidic alcohol to give 3-amino-3-(3,5-halo-2 -hydroxy)phenyl propanoic acid esters.

3-amino-3-(3,5-halo-2-hydroksy)fenyl propansyreestere blir konvertert til N-gly-3-amino-3-(3,5-halo-2-hydroksy)fenyl propansyreestere ved reaksjon av Boc-N-gly-N-hydroksy-suc-cinimid for å gi Boc-N-gly-3-amino-3-(3,5-halo-2-hydroksy)fenyl propansyreestere som blir konvertert til HX salter av N-gly-3-amino-3-(3,5-halo-2-hydroksy)fenyl propansyreestere (hvor X er en halogruppe) for eksempel, ved fjerning av den BOC-beskyttende gruppen anvendende HC1 i etanol. 3-amino-3-(3,5-halo-2-hydroxy)phenyl propanoic acid esters are converted to N-gly-3-amino-3-(3,5-halo-2-hydroxy)phenyl propanoic acid esters by reaction of Boc- N-gly-N-hydroxy-succinimide to give Boc-N-gly-3-amino-3-(3,5-halo-2-hydroxy)phenyl propanoic acid esters which are converted to HX salts of N-gly- 3-amino-3-(3,5-halo-2-hydroxy)phenyl propanoic acid esters (where X is a halo group) for example, by removal of the BOC protecting group using HCl in ethanol.

Aminosyreforbindelsene anvendt for å fremstille forbindelsene i foreliggende oppfinnelse kan fremstilles i henhold til fremgangsmåtene fremlagt heri og under og i henhold til metodikken beskrevet og krevet i svevende USSN Attorney . Docket 3076. The amino acid compounds used to prepare the compounds in the present invention can be prepared according to the methods presented herein and below and according to the methodology described and required in the floating USSN Attorney. Docket 3076.

Y og X er halogrupper Y and X are halo groups

Reaksjonsskjema III er illustrativt for metodikken anvendbar for å fremstille ulike forbindelser i foreliggende oppfinnelse. 3-hydroksy-5-[(1,4,5,6-tetrahydro-5-hydroksy-2-pyrimidinyl)amino]benzosyre blir aktivert for kopling ved anvendelse av kjente fremgangsmåter. Derfor, etter oppløs-ning i et passende løsningsmiddel slik som DMA blir en ekvivalent av NMM tilsatt. Reaksjonsblandingen blir kjølt til isbadtemperatur og IBCF blir tilsatt. Til det blandede anhydridproduktet blir intermediat gly-p-aminosyreester og NMM tilsatt. Ved fullførelse av reaksjonen blir produktet renset ved prep HPLC og estere hydrolysert til syren ved å behandle med en base slik som LiOH i et passende løsnings-middel (dioksan/vann eller acetonitril/vann). Alternativt kan en passende syre, slik som TFA, anvendes. Produktet blir isolert ved prep hplc eller ved isolering av zwitter-ionet ved pH 5-7 og omdanning til det ønskede saltet ved s t anda rd f remgang småt e r. Reaction scheme III is illustrative of the methodology applicable to prepare various compounds in the present invention. 3-Hydroxy-5-[(1,4,5,6-tetrahydro-5-hydroxy-2-pyrimidinyl)amino]benzoic acid is activated for coupling using known methods. Therefore, after dissolution in a suitable solvent such as DMA, an equivalent of NMM is added. The reaction mixture is cooled to ice bath temperature and IBCF is added. To the mixed anhydride product, intermediate gly-p-amino acid ester and NMM are added. Upon completion of the reaction, the product is purified by prep HPLC and esters hydrolyzed to the acid by treatment with a base such as LiOH in a suitable solvent (dioxane/water or acetonitrile/water). Alternatively, a suitable acid, such as TFA, can be used. The product is isolated by prep hplc or by isolation of the zwitter ion at pH 5-7 and conversion to the desired salt by standard steps.

Eksempel A Example A

Fremstilling av Manufacture of

Trinn 1 Fremstilling av Step 1 Preparation of

Til en 2 1 rundkolbe utstyrt med en mekanisk rører og kjøler ble 3,5-diklorsalicylaldehyd (200 g, 1,05 mol, 1 ekviv.) eddiksyreanhydrid (356 g, 3,49 mol) og trimetylamin (95,0 g, 0,94 mol, 0,90 ekviv.) tilsatt. Reaksjonsløsningen ble varmet ved refluks over natten. Den mørkebrune reak-sjonsblåndingen ble kjølt til 50°C og vann (1 1) ble tilsatt ved røring. Etter en time ble blandingen filtrert og filtratet kombinert med EtOH (1 1). Denne blandingen ble varmet til 45°C i en time, kjølt til romtemperatur, filtrert og faststoffet (fraksjon A) vasket med EtOH (0,5 1). De kombinerte EtOH-løsningene ble konsentrert ved rota-sjonsfordampning til en olje (fraksjon B). Faststoffet fra fraksjon A ble oppløst i metylenklorid (1,5 1) og den resulterende løsningen ført gjennom et sjikt av silikagel (1300 ml volum). Den resulterende mørkebrune løsningen ble konsentrert til en olje som ble triturert med heksaner (1,3 1) for å gi et faststoff som ble isolert ved filtrering og vasket (heksaner) for å gi i alt vesentlig ren 6,8-diklorkumarin (163 g). Ytterligere 31 g produkt ble oppnådd ved å behandle oljen, fraksjon B, på lignende måte; oljen ble oppløst i metylenklorid (0,5 1) ført gjennom en et silika-sjikt (0,5 1 volum) og triturert med heksaner. Det totale isolerte utbyttet var 194 g eller 86% utbytte av det brune faststoffet. To a 2 L round bottom flask equipped with a mechanical stirrer and condenser were added 3,5-dichlorosalicylaldehyde (200 g, 1.05 mol, 1 equiv.) acetic anhydride (356 g, 3.49 mol) and trimethylamine (95.0 g, 0 .94 mol, 0.90 equiv.) added. The reaction solution was heated at reflux overnight. The dark brown reaction mixture was cooled to 50°C and water (1 L) was added with stirring. After one hour, the mixture was filtered and the filtrate combined with EtOH (1 L). This mixture was heated to 45°C for one hour, cooled to room temperature, filtered and the solid (fraction A) washed with EtOH (0.5 L). The combined EtOH solutions were concentrated by rotary evaporation to an oil (fraction B). The solid from fraction A was dissolved in methylene chloride (1.5 L) and the resulting solution passed through a bed of silica gel (1300 ml volume). The resulting dark brown solution was concentrated to an oil which was triturated with hexanes (1.3 L) to give a solid which was isolated by filtration and washed (hexanes) to give essentially pure 6,8-dichlorocoumarin (163 g ). A further 31 g of product was obtained by treating the oil, fraction B, in a similar manner; the oil was dissolved in methylene chloride (0.5 L) passed through a pad of silica (0.5 L by volume) and triturated with hexanes. The total isolated yield was 194 g or 86% yield of the brown solid.

MS og NMR var konsistent med den ønskede strukturen. MS and NMR were consistent with the desired structure.

Trinn 2 Step 2

Fremstilling av Manufacture of

Til en 3-halset 2 1 rundkolbe utstyrt med en mekanisk rører ble 6,8-diklorkumarin (160 g, 0,74 mol) (fremstilt i trinn 1) og tørr THF (375 ml, Aldrich Sure Seal) tilsatt. Den resulterende blandingen ble kjølt til -40°C (tørris/ acetonbad) og litium bis(trimetylsilyl)amid (0,80 mol, 800 ml IM THF) ble tilsatt mens temperaturen ble opprettholdt under -40°C. Etter fullførelsen av tilsettingen ble kjøle-badet fjernet. Etter 0,5 time ble blandingen varmet til - 5°C. Reaksjonen ble stoppet ved tilsetning av en løsning av HC1 (0,5 1 4M dioksan) i EtOH (1,25 1). Temperaturen ble opprettholdt under 0°C over natten. Reaksjonsblandingen ble konsentrert til rundt halvparten av originalvolumet og delt mellom EtOAc (3 1) og vann (2 1). Den organiske fasen ble vasket med vandig HC1 {3 x 1 1 0,5 N HC1). pH i de kombinerte vandige sjiktene ble justert til ca. 7 ved tilsetting av 10 % vandig NaOH og ekstrahert med metylenklorid (3x2 1). De kombinerte organiske fasene ble tørket (MgSOj , filtrert og 4M HC1 i dioksan (210 ml) tilsatt ved røring. Ved fullførelse av utfellingen ble faststoffet fjernet ved filtrering. Filtratet ble konsentrert til et lite volum og metyl t-butyleter ble tilsatt. Faststoffet oppnådd ble kombinert med det opprinnelige dannede faststoffet og det kombinerte produktet ble vasket med metyl t-butyl, isolert ved filtrering og tørket (vakuumovn over en weekend) for å To a 3-necked 2 L round bottom flask equipped with a mechanical stirrer was added 6,8-dichlorocoumarin (160 g, 0.74 mol) (prepared in step 1) and dry THF (375 mL, Aldrich Sure Seal). The resulting mixture was cooled to -40°C (dry ice/acetone bath) and lithium bis(trimethylsilyl)amide (0.80 mol, 800 mL 1M THF) was added while maintaining the temperature below -40°C. After completion of the addition, the cooling bath was removed. After 0.5 hour the mixture was warmed to -5°C. The reaction was quenched by the addition of a solution of HCl (0.5 L 4M dioxane) in EtOH (1.25 L). The temperature was maintained below 0°C overnight. The reaction mixture was concentrated to about half the original volume and partitioned between EtOAc (3 L) and water (2 L). The organic phase was washed with aqueous HCl (3 x 1 1 0.5 N HCl). The pH in the combined aqueous layers was adjusted to approx. 7 by adding 10% aqueous NaOH and extracting with methylene chloride (3x2 1). The combined organic phases were dried (MgSO 4 , filtered and 4M HCl in dioxane (210 mL) added with stirring. Upon completion of the precipitation, the solid was removed by filtration. The filtrate was concentrated to a small volume and methyl t-butyl ether was added. The solid obtained was combined with the original solid formed and the combined product was washed with methyl t-butyl, isolated by filtration and dried (vacuum oven over a weekend) to

oppnå det ønskede produktet (172 g, 74 % utbytte). obtain the desired product (172 g, 74% yield).

MS og NMR var konsistente med den ønskede strukturen. MS and NMR were consistent with the desired structure.

Trinn 3 Step 3

Fremstilling av Manufacture of

Til en flammetørket rundkolbe (0,5 1) utstyrt med magnetisk rørestav ble tilsatt N-t-Boc-glycin N-hydroksysuccinimidester (Sigma 15,0 g, 0,055 mol), tørr DMF (Aldrich Sure Seal, 200 ml) og produktet fra trinn 2 (21,67 g, 0,055 mol) under en inert atmosfære (Ar). Reaksjonsblandingen ble kjølt til ca. 0°C (salt-isbad) og N-metylmorfolin (5,58 g, 0,056 mol) og en katalytisk mengde av DMAP ble tilsatt og reaksjonen tillatt å foregå over natten. Reaksjonsblandingen ble konsentrert til en "slush", og delt mellom EtOAc (0,41) og vandig base (2 x 0,2 1, vandig mettet NaHC03) . Den organiske fasen ble vasket etterfølgende med vandig sitronsyre (2 x 0,2 1, 10% vekt/vol), igjen med vandig natriumbikarbonat (2 x 0,2 1), saltløsning og tørket (Na2S04) . Flyktige stoffer ble fjernet under vakuum ved 55°C for å gi en olje (22,5 g, 92% utbytte) som størknet ved stillstand. To a flame-dried round bottom flask (0.5 L) fitted with a magnetic stir bar was added N-t-Boc-glycine N-hydroxysuccinimide ester (Sigma 15.0 g, 0.055 mol), dry DMF (Aldrich Sure Seal, 200 mL) and the product from step 2 (21.67 g, 0.055 mol) under an inert atmosphere (Ar). The reaction mixture was cooled to approx. 0°C (salt-ice bath) and N-methylmorpholine (5.58 g, 0.056 mol) and a catalytic amount of DMAP were added and the reaction allowed to proceed overnight. The reaction mixture was concentrated to a "slush" and partitioned between EtOAc (0.41) and aqueous base (2 x 0.2 L, aq. saturated NaHCO 3 ). The organic phase was subsequently washed with aqueous citric acid (2 x 0.2 1, 10% w/v), again with aqueous sodium bicarbonate (2 x 0.2 1), brine and dried (Na 2 SO 4 ). Volatiles were removed under vacuum at 55°C to give an oil (22.5 g, 92% yield) which solidified on standing.

MS og MNR var konsistente med den ønskede strukturen. MS and MNR were consistent with the desired structure.

Trinn 4 Step 4

Fremstilling av Manufacture of

Produktet oppnådd i trinn 3 ble avbeskyttet for å gi amin-hydrokloridsaltet ved anvendelse av følgende fremgangsmåte. Til produktet fra trinn 3 (14,0 g, 0,032 mol) i en flamme-tørket rundkolbe (0,1 1) med rørestav ble tørr dioksan (40 ml) tilsatt. Til dette ble 4,0 N HC1 i dioksan (2 ekviv., 6,32 ml) tilsatt ved 0°C og reaksjonen tillatt å foregå inntil gassutviklingen opphørte og reaksjonen var fullført. Flyktige stoffer ble fjernet under vakuum og resten trituert med dietyleter (50'ml). Faststoff ble samlet ved filtrering og vasket med eter og tørket for å gi det ønskede produkt (12,5 g). The product obtained in step 3 was deprotected to give the amine hydrochloride salt using the following procedure. To the product from step 3 (14.0 g, 0.032 mol) in a flame-dried round bottom flask (0.1 L) with a stir bar was added dry dioxane (40 mL). To this was added 4.0 N HCl in dioxane (2 equiv., 6.32 mL) at 0°C and the reaction allowed to proceed until gas evolution ceased and the reaction was complete. Volatiles were removed under vacuum and the residue triturated with diethyl ether (50ml). Solid was collected by filtration and washed with ether and dried to give the desired product (12.5 g).

MS og MNR var konsistente med den ønskede struktur. MS and MNR were consistent with the desired structure.

Eksempel B Example B

Fremstilling av Manufacture of

Trinn 1 Fremstilling av Step 1 Preparation of

Til en suspensjon av 3-brom-5-klorsalicylaldehyd (175,0 g, 743,2 mmol) i eddiksyreanhydrid (280,5 ml, 3,0 mol) ble trietylamin (103,6 ml, 743,2 mmol) tilsatt. Reaksjonsløs-ningen ble blandet ved refluks i 4,5 timer. Løsningen ble avkjølt og konsentrert in vacuo. Absolutt etanol (73 0 ml) ble tilsatt til den brune resten. Blandingen ble lagret ved 0°C i 14 timer. Det brune faststoffet ble samlet ved filtrering og vasket med kald etanol. Faststoffet ble tørket in vacuo for å gi det ønskede produkt (123,0 g, 64% utbytte). To a suspension of 3-bromo-5-chlorosalicylaldehyde (175.0 g, 743.2 mmol) in acetic anhydride (280.5 mL, 3.0 mol) was added triethylamine (103.6 mL, 743.2 mmol). The reaction solution was mixed at reflux for 4.5 hours. The solution was cooled and concentrated in vacuo. Absolute ethanol (730 mL) was added to the brown residue. The mixture was stored at 0°C for 14 hours. The brown solid was collected by filtration and washed with cold ethanol. The solid was dried in vacuo to give the desired product (123.0 g, 64% yield).

<X>H NMR var konsistent med den foreslåtte strukturen. <X>H NMR was consistent with the proposed structure.

Trinn 2 Step 2

Fremstilling av Manufacture of

Til en suspensjon av kumarinen (40,0 g, 154,1 mmol) i THF (400 ml) ved -76°C ble litium bis(trimetylsilyl)-amid (154,1 ml IM løsning i THF) tilsatt, dråpevis med røring. Tilsetningen ble fullført på 10 minutter. Reaksjonsblandingen ble så rørt i 5 minutter, varmet opp til -20°C og rørt i 15 minutter. Til denne løsningen ble eddiksyre (9,25 g, 154,1 mmol) i THF (28 ml) tilsatt over 5 minutter. Blandingen ble varmet til romtemperatur og flyktige stoffer ble fjernet in vacuo. Resten ble oppløst i eter (850 ml), vasket med mettet vandig NaHC03 (2 x 100 ml) , saltløsning (2 x 4 0 ml), og tørket (MgSO«) . Eterløsningen ble konsentrert til ca. 160 ml og kjølt til 0°C. Til denne løsningen ble 4M HC1 i dioksan (56,3 ml, 225 mmol) tilsatt og blandingen ble rørt ved 0°C i 30 minutter. Suspensjonen ble filtrert og filterkaken vasket med eter. Faststoffet ble tørket in vacuo for å gi det ønskede produkt som HCl-salt, dioksan-oppløsning, (45,0 g). To a suspension of the coumarin (40.0 g, 154.1 mmol) in THF (400 mL) at -76 °C, lithium bis(trimethylsilyl)amide (154.1 mL 1M solution in THF) was added dropwise with stirring . The addition was completed in 10 minutes. The reaction mixture was then stirred for 5 minutes, warmed to -20°C and stirred for 15 minutes. To this solution was added acetic acid (9.25 g, 154.1 mmol) in THF (28 mL) over 5 minutes. The mixture was warmed to room temperature and volatiles were removed in vacuo. The residue was dissolved in ether (850 mL), washed with saturated aqueous NaHCO 3 (2 x 100 mL), brine (2 x 40 mL), and dried (MgSO 4 ). The ether solution was concentrated to approx. 160 ml and cooled to 0°C. To this solution was added 4M HCl in dioxane (56.3 mL, 225 mmol) and the mixture was stirred at 0°C for 30 minutes. The suspension was filtered and the filter cake washed with ether. The solid was dried in vacuo to give the desired product as HCl salt, dioxane solution, (45.0 g).

<*>H NMR var konsistent med den ønskede strukturen. <*>H NMR was consistent with the desired structure.

Trinn 3 Step 3

Fremstilling av Manufacture of

Til en suspensjon av laktonet (142,2 g, 354,5 mmol) i absolutt etanol (533 ml) ble 4M HC1 i dioksan (157,8 ml, 631,1 mmol) tilsatt i løpet av 10 minutter. Reaksjonsblandingen ble rørt ved romtemperatur i 2,5 timer. Flyktige komponen-ter ble fjernet in vacuo. Bunnfallet ble oppløst i etylacetat (450 ml) og løsningen holdt ved 0°C i 15 timer. Det lærfargede bunnfallet ble samlet ved filtrering og vasket med kald etylacetat. Faststoffet ble tørket in vacuo for å gi det ønskede produktet som hydrokloridsaltet (100,4 g, 79% utbytte). To a suspension of the lactone (142.2 g, 354.5 mmol) in absolute ethanol (533 mL) was added 4M HCl in dioxane (157.8 mL, 631.1 mmol) over 10 min. The reaction mixture was stirred at room temperature for 2.5 hours. Volatile components were removed in vacuo. The precipitate was dissolved in ethyl acetate (450 ml) and the solution kept at 0°C for 15 hours. The leather colored precipitate was collected by filtration and washed with cold ethyl acetate. The solid was dried in vacuo to give the desired product as the hydrochloride salt (100.4 g, 79% yield).

<X>H NMR var konsistent med den foreslåtte strukturen. <X>H NMR was consistent with the proposed structure.

Trinn 4 Step 4

Fremstilling av Manufacture of

Til en flammetørket rundkolbe (0,1 1) utstyrt med magnetisk rørestav ble N-t-Boc-glysin N-hydroksysuccinimidester (Sigma, 2,72 g, 0,010 mol), tørr THF (Aldrich Sure Seal, 50 ml) og produktet fra trinn 3 (3,10 g, 0,01 mol, vakuum-tørket over natten over P205) tilsatt linder en inert atmosfære (Ar). Reaksjonsblandingen ble kjølt til ca. 0°C (salt-isbad) og trietylamin (1,01 g, 0,010 mol) ble tilsatt. Reaksjonen ble tillatt å foregå over natten. Reaksjonsblandingen ble konsentrert til et halvfast stoff og opparbeidet på en måte lignende til eksempel A, trinn 3. Flyktige stoffer ble fjernet fra den organiske fasen under vakuum ved 55°C for å gi en olje (4 g, 83 % utbytte), som størknet ved stillstand. To a flame-dried round-bottom flask (0.1 L) fitted with a magnetic stir bar was added N-t-Boc-glycine N-hydroxysuccinimide ester (Sigma, 2.72 g, 0.010 mol), dry THF (Aldrich Sure Seal, 50 mL) and the product from Step 3 (3.10 g, 0.01 mol, vacuum-dried overnight over P2O5) added under an inert atmosphere (Ar). The reaction mixture was cooled to approx. 0°C (salt-ice bath) and triethylamine (1.01 g, 0.010 mol) was added. The reaction was allowed to proceed overnight. The reaction mixture was concentrated to a semi-solid and worked up in a manner similar to Example A, Step 3. Volatiles were removed from the organic phase under vacuum at 55°C to give an oil (4 g, 83% yield), which solidified at standstill.

MS og MNR var konsistente med den ønskede strukturen. MS and MNR were consistent with the desired structure.

Trinn 5 Step 5

Fremstilling av Manufacture of

Produktet oppnådd i trinn 4 ble avbeskyttet for å gi amin-hydrokloridsaltet ved anvendelse av følgende fremgangsmåte. Til produktet fra trinn 4 (4,0 g, 0,0084 mol) i en flamme-tørket rundkolbe (0,1 1) med rørestav ble tørr dioksan (20 ml) tilsatt. Til denne ble 4,0 N HCl i dioksan (20 ml) tilsatt og reaksjonen ble tillatt å foregå inntil gassutviklingen stanset og reaksjonen var fullstendig (ca. l time). Flyktige stoffer ble fjernet under vakuum og bunnfallet trituert med dietyleter (50 ml). Faststoff ble samlet ved filtrering og vasket med eter og tørket for å gi et lett brunt faststoff (2,7 g, 78% utbytte). The product obtained in step 4 was deprotected to give the amine hydrochloride salt using the following procedure. To the product from step 4 (4.0 g, 0.0084 mol) in a flame-dried round bottom flask (0.1 L) with a stir bar was added dry dioxane (20 mL). To this 4.0 N HCl in dioxane (20 ml) was added and the reaction was allowed to proceed until gas evolution stopped and the reaction was complete (approx. 1 hour). Volatiles were removed under vacuum and the precipitate triturated with diethyl ether (50 mL). Solid was collected by filtration and washed with ether and dried to give a light brown solid (2.7 g, 78% yield).

MS og NMR var konsistente med den ønskede strukturen. MS and NMR were consistent with the desired structure.

Eksempel C Example C

Fremstilling av Manufacture of

Trinn l Step l

Til en suspensjon av 3,5-dibromsalisylaldehyd (100 g, 357 mmol) i eddiksyre (164,8 ml, 1,8 mol) ble trietylamin (45 ml, 375 mmol) tilsatt. Reaksjonsløsningen ble varmet over natten ved refluks under argon. Løsningen ble kjølt til romtemperatur og en fast masse dannet. Den mørkebrune reaksjonsblandingen ble vasket med varme heksaner (3 x 300 ml) og vandig, mettet bikarbonat. Det resulterende faststoffet ble oppløst i EtOAc (2 1) og vasket med vann. Den organiske fasen ble tørket (natriumsulfat) og konsentrert for å gi et brunt faststoff som ble samlet ved filtrering. Faststoffet ble tørket in vacuo for å gi i alt vesentlig ren 6,8-dibromkumarin (94,2 g, 87 utbytte). To a suspension of 3,5-dibromosalicylaldehyde (100 g, 357 mmol) in acetic acid (164.8 mL, 1.8 mol) was added triethylamine (45 mL, 375 mmol). The reaction solution was heated overnight at reflux under argon. The solution was cooled to room temperature and a solid mass formed. The dark brown reaction mixture was washed with hot hexanes (3 x 300 mL) and aqueous saturated bicarbonate. The resulting solid was dissolved in EtOAc (2 L) and washed with water. The organic phase was dried (sodium sulfate) and concentrated to give a brown solid which was collected by filtration. The solid was dried in vacuo to give essentially pure 6,8-dibromocoumarin (94.2 g, 87 yield).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 2 Step 2

Til 6,8-dibromkumarin (20,0 g, 0,066 mol)(fremstilt i trinn l) i THF (100 ml) ved -78°C ble litium bis (trimetyl-silyDamid (66 ml IM løsning i THF) tilsatt dråpevis ved røring. Tilsetningen ble fullført på 10 minutter. Reaksjonsblandingen ble så rørt i fem minutter, varmet til 0°C og rørt i 15 minutter. Til denne løsningen ble eddiksyre To 6,8-dibromocoumarin (20.0 g, 0.066 mol) (prepared in step 1) in THF (100 mL) at -78°C was added lithium bis(trimethylsilyDamide (66 mL 1M solution in THF) dropwise at stirring. The addition was completed in 10 minutes. The reaction mixture was then stirred for five minutes, warmed to 0°C, and stirred for 15 minutes. To this solution, acetic acid was added

(3,95 g) tilsatt i løpet av 1 minutt. Blandingen ble varmet til romtemperatur og flyktige stoffer ble fjernet in vacuo. Bunnfallet ble oppløst i heksaner (500 ml), vasket med mettet, vandig NaHC03 (2 x 100 ml) og tørket (Na2S04) . Den organiske løsningen ble konsentrert til å gi en olje som umiddelbart ble tatt opp i etyleter (400 ml) og 4M HC1 i dioksan (30 ml) ble tilsatt ved røring ved 0°C i 30 minutter. Overskytende HCl ble fjernet in vacuo, suspensjonen filtrert og filterkaken vasket med eter. Faststoffet ble (3.95 g) added over 1 minute. The mixture was warmed to room temperature and volatiles were removed in vacuo. The precipitate was dissolved in hexanes (500 mL), washed with saturated aqueous NaHCO 3 (2 x 100 mL) and dried (Na 2 SO 4 ). The organic solution was concentrated to give an oil which was immediately taken up in ethyl ether (400 ml) and 4M HCl in dioxane (30 ml) was added with stirring at 0°C for 30 minutes. Excess HCl was removed in vacuo, the suspension filtered and the filter cake washed with ether. The solid became

tørket in vacuo for å gi det ønskede produktet som HCl saltet, dioksansolvat (19,9 g). dried in vacuo to give the desired product as the HCl salt, dioxane solvate (19.9 g).

MS og AH NMR var konsistente med den ønskede strukturen. MS and AH NMR were consistent with the desired structure.

Trinn 3 Step 3

Laktonet fremstilt i trinn 2 over (15 g) ble oppløst i absolutt etanol (400 ml) og vannfri HCl-gass ble ført gjennom i ett minutt. Reaksjonsblandingen ble rørt ved romtemperatur i 2,5 timer. RPHPLC viste fullstendig reaksjon. De flyktige stoffene ble fjernet in vacuo for å gi en mørk rest. Resten ble triturert med dietyleter (500 ml) og blandingen rørt over natten. Det lærfargede bunnfallet ble samlet ved filtrering og vasket med dietyleter. Faststoffet ble tørket in vacuo for å gi det ønskede produktet som hydrokloridsaltet (15,2 g). The lactone prepared in step 2 above (15 g) was dissolved in absolute ethanol (400 mL) and anhydrous HCl gas was passed through for one minute. The reaction mixture was stirred at room temperature for 2.5 hours. RPHPLC showed complete reaction. The volatiles were removed in vacuo to give a dark residue. The residue was triturated with diethyl ether (500 mL) and the mixture stirred overnight. The leather colored precipitate was collected by filtration and washed with diethyl ether. The solid was dried in vacuo to give the desired product as the hydrochloride salt (15.2 g).

MS og ^ NMR var konsistente med den ønskede strukturen. MS and ^NMR were consistent with the desired structure.

Trinn 4 Step 4

Til en flammetørket rundkolbe (0,2 1) utstyrt med magnetisk rørestav ble tilsatt N-t-Boc-glysin N-hydroksysuccinimidester (Sigma, 8,1 g, 0,030 mol), tørr DMF (Aldrich Sure Seal, 50 ml) og produktet fra trinn 3 (12 g, 0,03 mol, vakuumtørket over natten over P205)under en inert atmosfære To a flame-dried round bottom flask (0.2 L) equipped with a magnetic stir bar was added N-t-Boc-glycine N-hydroxysuccinimide ester (Sigma, 8.1 g, 0.030 mol), dry DMF (Aldrich Sure Seal, 50 mL) and the product from step 3 (12 g, 0.03 mol, vacuum dried overnight over P2O5) under an inert atmosphere

(Ar). Reaksjonsblandingen ble kjølt til ca. 0°C (salt-isbad) og N-metyl morfolin (3,03 g, 0,030 mol) og katalytisk DMAP ble tilsatt. Reaksjonen ble tillatt å foregå over natten oppvarmende til romtemperatur. Reaksjonsblandingen ble konsentrert til et halv-fast stoff og opparbeidet på en måte lignende eksempel A, trinn 3. Flyktige stoffer ble fjernet fra den organiske fasen under vakuum ved 55°C for å gi en olje (15,7 g, 93% utbytte) som størknet ved stillstand. (Year). The reaction mixture was cooled to approx. 0°C (salt-ice bath) and N-methyl morpholine (3.03 g, 0.030 mol) and catalytic DMAP were added. The reaction was allowed to proceed overnight warming to room temperature. The reaction mixture was concentrated to a semi-solid and worked up in a manner similar to Example A, Step 3. Volatiles were removed from the organic phase under vacuum at 55°C to give an oil (15.7 g, 93% yield) which solidified at standstill.

MS og NMR var konsistente med den ønskede strukturen. MS and NMR were consistent with the desired structure.

Trinn 5 Step 5

Produktet oppnådd i trinn 4 ble avbeskyttet for å gi amin-hydrokloridsaltet anvendende følgende fremgangsmåte. Til produktet fra trinn 4 (13,0 g, 0,0084 mol) i en flammetør-ket rundkolbe (0,1 1) med rørestav ble tilsatt tørr dioksan (4 0 ml). Til dette ble tilsatt 4,0 N HC1 i dioksan (30 ml) og reaksjonen tillatt å foregå inntil gassutviklingen stoppet og reaksjonen var fullført (ca. en time). De flyktige stoffene ble fjernet under vakuum og bunnfallet trituert med dietyleter (50 ml). Faststoff ble samlet ved filtrering og vasket med eter og tørket for å gi et faststoff (10,6 g, 93% utbytte). The product obtained in step 4 was deprotected to give the amine hydrochloride salt using the following procedure. Dry dioxane (40 ml) was added to the product from step 4 (13.0 g, 0.0084 mol) in a flame-dried round bottom flask (0.1 L) with a stirring rod. To this was added 4.0 N HCl in dioxane (30 ml) and the reaction allowed to proceed until gas evolution stopped and the reaction was complete (about one hour). The volatiles were removed under vacuum and the precipitate triturated with diethyl ether (50 ml). Solid was collected by filtration and washed with ether and dried to give a solid (10.6 g, 93% yield).

MS og NMR var konsistente med den ønskede strukturen. MS and NMR were consistent with the desired structure.

Eksempel D Example D

Fremstilling av Manufacture of

Trinn l Step l

Fremstilling av 3-klor-5-bromsalisylaldehyd Preparation of 3-chloro-5-bromosalicylaldehyde

Til en 5 1 rundkolbe utstyrt med en mekanisk rører og gasstilførselsrør ble 5-bromsalisylaldehyd (495 g, 2,46 mol) og eddiksyre tilsatt ved romtemperatur for å danne en slurry. Til denne blandingen ble klorgass tilsatt ved en moderat hastighet inntil et lett molart overskudd av klor (183 g, 1,05 mol) var oppløst. Etter tilsettingen ble stoppet ble reaksjonen tillatt å foregå over natten. Det dannede faststoffet ble gjenvunnet ved filtrering og filtratet fortynnet i vann (2,5 1). Blandingen ble rørt kraftig i 20 minutter, produktet samlet ved filtrering og vasket med vann. De kombinerte faststoffene ble vakuumtørket for å gi det ønskede 3-klor-5-bromsalisylaldehyd (475 g, 82% utbytte) . To a 5 L round bottom flask equipped with a mechanical stirrer and gas supply tube, 5-bromosalicylaldehyde (495 g, 2.46 mol) and acetic acid were added at room temperature to form a slurry. To this mixture chlorine gas was added at a moderate rate until a slight molar excess of chlorine (183 g, 1.05 mol) had dissolved. After the addition was stopped, the reaction was allowed to proceed overnight. The solid formed was recovered by filtration and the filtrate diluted in water (2.5 L). The mixture was stirred vigorously for 20 minutes, the product collected by filtration and washed with water. The combined solids were vacuum dried to give the desired 3-chloro-5-bromosalicylaldehyde (475 g, 82% yield).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 2 Step 2

Fremstilling av 6-brom-8-klorkumarin Preparation of 6-bromo-8-chlorocoumarin

Til en 5 1 rundkolbe utstyrt med en mekanisk rører og kjøler ble 3-klor-5-bromsalisylaldehyd {554,1 g, 2,35 mol, 1 ekviv.), eddiksyre {1203 g, 11,8 mol, 5 ekviv.) og trietylamin {237,4 g, 2,35 mol, 1 ekviv.) tilsatt Reaksjons-løsningen ble varmet ved refluks (131-141°C) over natten. Den mørkebrune reaksjonsblandingen ble kjølt til 50°C og is {2 1) tilsatt (isbadkjøling) ved røring. Etter en time ble blandingen filtrert og filtratet kombinert med EtOH {11). Til denne blandingen ble EtOH (300 ml) tilsatt og reaksjonsblandingen rørt i en time. Bunnfallet som ble dannet ble samlet ved filtrering og vasket med vann: EtOH (3 x 1,3 1), vakuum og tørket, så tørket på en svevesjikt-tørker. Det totale isolerte utbytte er 563 g eller 92%. To a 5 L round bottom flask equipped with a mechanical stirrer and condenser was added 3-chloro-5-bromosalicylaldehyde {554.1 g, 2.35 mol, 1 equiv.), acetic acid {1203 g, 11.8 mol, 5 equiv.) and triethylamine (237.4 g, 2.35 mol, 1 equiv) added The reaction solution was heated at reflux (131-141°C) overnight. The dark brown reaction mixture was cooled to 50°C and ice {2 1) added (ice bath cooling) with stirring. After one hour the mixture was filtered and the filtrate combined with EtOH (11). To this mixture EtOH (300 mL) was added and the reaction mixture was stirred for one hour. The precipitate that formed was collected by filtration and washed with water:EtOH (3 x 1.3 L), vacuum and dried, then dried on a fluid bed dryer. The total isolated yield is 563 g or 92%.

MS og <1>H NMR var konsistente med den ønskede strukturen. MS and <1>H NMR were consistent with the desired structure.

Trinn 3 Step 3

Fremstilling av 3-amino-3-(2-hydroksy-3-klor-5-brom)fenylpropansyre-etylester Preparation of 3-amino-3-(2-hydroxy-3-chloro-5-bromo)phenylpropanoic acid ethyl ester

Til en 3-halset 5 1 rundkolbe utstyrt med en mekanisk rører ble 6-brom-8-klorkumarin (300 g, 1,16 mol){fremstilt i trinn 2) og tørr THF (900 ml, Aldrich Sure Seal) tilsatt. To a 3-necked 5 L round bottom flask equipped with a mechanical stirrer was added 6-bromo-8-chlorocoumarin (300 g, 1.16 mol) {prepared in step 2) and dry THF (900 mL, Aldrich Sure Seal).

Den resulterende blandingen ble kjølt til mindre enn -45°C (tørris/acetonbad) og litium bis(trimetylsilyl)amid (0,80 mol, 800 ml IM i THF og 0,6 1 i heksaner, 1,2 ekvivalenter) tilsatt mens opprettholdende en temperatur under -45°C i 0,5 time. I en separat 5 1 flaske ble EtOH (2,5 1) og HC1 (4 N HCl i dioksan, 1 1) kombinert ved -15°C. Kumarinreak-sjonen ble stoppet ved tilsetting av den kjølte HCl/EtOH løsningen. Etter 0,5 timer var den resulterende reaksjons-blandingstemperaturen -8,3°C. Reaksjonsblandingen ble opp-holdt ved 0°C over natten, konsentrert til ca. 2,5 1 og delt mellom EtOAc (3 1) og vann (4 1). Den organiske fasen ble vasket med vandig HCl (4 x 1,2 1, 0,5 N HCl). pH til de kombinerte vandige sjiktene ble justert til ca. 8 ved tilsetning av 10% vandig NaOH og ekstrahert med metylenklorid (1 x 7 1 og 3 x 2 1). De kombinerte organiske fasene ble tørket (MgS04, 900 g) , filtrert og 4M HCl i dioksan (400 ml) tilsatt ved røring. Ved fullførelse av utfellingen ble faststoffet fjernet ved filtrering. Blandingen ble konsentrert til 2,5 1, heksaner tilsatt (2,5 1) og bunnfallet isolert ved filtrering. Filterkaken ble vasket med metylenklorid/heksaner (1:2), sugetørket og vakuumovnstørket ved 40°C for å oppnå det ønskede produktet (251 g, 60% utbytte) . The resulting mixture was cooled to less than -45°C (dry ice/acetone bath) and lithium bis(trimethylsilyl)amide (0.80 mol, 800 mL IM in THF and 0.6 L in hexanes, 1.2 equiv) added while maintaining a temperature below -45°C for 0.5 hour. In a separate 5 L bottle, EtOH (2.5 L) and HCl (4 N HCl in dioxane, 1 L) were combined at -15°C. The coumarin reaction was stopped by adding the cooled HCl/EtOH solution. After 0.5 hours, the resulting reaction mixture temperature was -8.3°C. The reaction mixture was kept at 0°C overnight, concentrated to approx. 2.5 L and partitioned between EtOAc (3 L) and water (4 L). The organic phase was washed with aqueous HCl (4 x 1.2 L, 0.5 N HCl). The pH of the combined aqueous layers was adjusted to approx. 8 by adding 10% aqueous NaOH and extracting with methylene chloride (1 x 7 1 and 3 x 2 1). The combined organic phases were dried (MgSO 4 , 900 g), filtered and 4M HCl in dioxane (400 mL) added with stirring. On completion of the precipitation, the solid was removed by filtration. The mixture was concentrated to 2.5 L, hexanes added (2.5 L) and the precipitate isolated by filtration. The filter cake was washed with methylene chloride/hexanes (1:2), suction dried and vacuum oven dried at 40°C to obtain the desired product (251 g, 60% yield).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 5 Step 5

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt ved anvendelse av grunnleggende den samme fremgangsmåte og relative mengder som spesifisert for dens isomere i eksempel B, trinn 4. The above compound was prepared using essentially the same procedure and relative amounts as specified for its isomers in Example B, Step 4.

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 6 Step 6

Fremstilling av Manufacture of

Denne forbindelsen ble fremstilt ved anvendelse av grunnleggende samme fremgangsmåte og relative mengder som spesifisert for dens isomer i eksempel B, trinn 5. This compound was prepared using essentially the same procedure and relative amounts as specified for its isomer in Example B, Step 5.

MS og ^ NMR var konsistente med den ønskede strukturen. MS and ^NMR were consistent with the desired structure.

Eksempel E Example E

Fremstilling av Manufacture of

Trinn 1 Step 1

Fremstilling av 3-jod-5-klorsalisylaldehyd Preparation of 3-iodo-5-chlorosalicylaldehyde

N-jodsuccinimid {144,0 g, 0,641 mol) ble tilsatt til en løsning av 5-klorsalisylaldehyd (100 g, 0,638 mol) i dimetylformamid (400 ml). Reaksjonsblandingen ble rørt i to døgn ved romtemperatur. Ytterligere N-jodsuccinimid (20,0 N-Iodosuccinimide {144.0 g, 0.641 mol) was added to a solution of 5-chlorosalicylaldehyde (100 g, 0.638 mol) in dimethylformamide (400 mL). The reaction mixture was stirred for two days at room temperature. Additional N-iodosuccinimide (20.0

g) ble tilsatt og røringen ble fortsatt i ytterligere to døgn. Reaksjonsblandingen ble fortynnet med etylacetat g) was added and the stirring was continued for a further two days. The reaction mixture was diluted with ethyl acetate

(1 1) vasket med saltsyre {300 ml, 0,1 N) vann (300 ml), natriumtiosulfat (5%, 300 ml), saltløsning (300 ml), tørket (MgS04) og konsentrert til tørrhet for å gi det ønskede aldehyd (162 g, 90% utbytte) som et blekt gult faststoff. (1 1) washed with hydrochloric acid {300 mL, 0.1 N) water (300 mL), sodium thiosulfate (5%, 300 mL), brine (300 mL), dried (MgSO 4 ) and concentrated to dryness to give the desired aldehyde (162 g, 90% yield) as a pale yellow solid.

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Trinn 2 Step 2

Fremstilling av 6-klor-8-jodkumarin Preparation of 6-chloro-8-iodocoumarin

En blanding av 3-jod-5-klorsalicylaldehyd (100 g, 0,354 mol) eddiksyreanhydrid (300 ml)og trietylamin (54 ml) ble varmet til refluks i 18 timer. Ved kjøling, falt det ønskede kumarin ut som et mørkt brunt krystallinsk materiale. Det ble filtrert, vasket med heksan/etylacetat (4:1, 200 ml), og lufttørket. Utbytte: 60 g (55%). A mixture of 3-iodo-5-chlorosalicylaldehyde (100 g, 0.354 mol), acetic anhydride (300 mL) and triethylamine (54 mL) was heated to reflux for 18 hours. On cooling, the desired coumarin precipitated as a dark brown crystalline material. It was filtered, washed with hexane/ethyl acetate (4:1, 200 mL), and air dried. Yield: 60 g (55%).

MS og Hl NMR var konsistente med den ønskede strukturen. MS and H1 NMR were consistent with the desired structure.

Trinn 3 Step 3

Fremstilling av (R,S)-4-amino-3,4-dihydro-6-klor-8-jodkuma-rinhydroklorid Preparation of (R,S)-4-amino-3,4-dihydro-6-chloro-8-iodocoumarin hydrochloride

Litium heksametyldisilazan {21,62 ml, IM, 21,62 mmol) ble tilsatt til en løsning av 6-klor-8-jodkumarin (6,63 g, 21,62 mmol) i tetrahydrofuran (100 ml) ved -78°C. Reaksjonsblandingen ble rørt ved denne temperaturen i 30 minutter, så ved 0°C i en time. Eddiksyre (1,3 g, 21,62 mmol) ble tilsatt til reaksjonsblandingen. Reaksjonsblandingen ble tømt i etylacetat (300 ml) og mettet natriumkarbonat (2 00 ml) løsning. De organiske fasene ble separert, vasket med saltløsning (200 ml) , tørket (MgS04) og ble konsentrert for å gi en rest. Resten ble tilsatt til vannfri eter (200 ml) fulgt av dioksin/HCl (4N, 30 ml) ved 0°C. Reaksjonsblandingen ble rørt i en time ved romtemperatur, filtrert og ble tørket in vacuo for å gi det ønskede produktet {4,6 g, 59% utbytte) som et pulver. (RPHPLC: Rf 6,8 minutter; Gradient 10% acetonitril -90% acetonitril over 15 minutter så til 100% acetonitril over de neste 6 minutter. Både vann og acetonitril inneholder 0,1% TFA. Vydac C18 proteinpeptidkolonnene, 2 ml/minutt strømningsrate, overvå-ket ved 254 nm). Lithium hexamethyldisilazane {21.62 mL, 1M, 21.62 mmol) was added to a solution of 6-chloro-8-iodocoumarin (6.63 g, 21.62 mmol) in tetrahydrofuran (100 mL) at -78°C . The reaction mixture was stirred at this temperature for 30 minutes, then at 0°C for one hour. Acetic acid (1.3 g, 21.62 mmol) was added to the reaction mixture. The reaction mixture was poured into ethyl acetate (300 mL) and saturated sodium carbonate (200 mL) solution. The organic phases were separated, washed with brine (200 mL), dried (MgSO 4 ) and concentrated to give a residue. The residue was added to anhydrous ether (200 mL) followed by dioxin/HCl (4N, 30 mL) at 0°C. The reaction mixture was stirred for one hour at room temperature, filtered and was dried in vacuo to give the desired product {4.6 g, 59% yield) as a powder. (RPHPLC: Rf 6.8 minutes; Gradient 10% acetonitrile -90% acetonitrile over 15 minutes then to 100% acetonitrile over the next 6 minutes. Both water and acetonitrile contain 0.1% TFA. Vydac C18 protein peptide columns, 2 ml/minute flow rate, monitored at 254 nm).

MS og <l>H NMR var konsistente med den ønskede strukturen. MS and <1>H NMR were consistent with the desired structure.

Trinn 4 Step 4

Fremstilling av (R,S)-etyl 3-amino-3-(5-klor-2-hydroksy-3-jod)fenylpropionat-hydroklorid. Preparation of (R,S)-ethyl 3-amino-3-(5-chloro-2-hydroxy-3-iodo)phenylpropionate hydrochloride.

Saltsyregass ble boblet inn i en løsning av 4-amino-3,4-di-hydro-6-klor-8-jodkumarinhydroklorid (22,0 g, 61,09 mmol) i etanol (250 ml) opprettholdende reaksjonsblandingen ved 0-10°C til metning. Etter 6 timer ved refluks, ble det meste av løsningsmiddelet fjernet ved destillasjon. Den avkjølte resten ble tilsatt til vannfri eter og ble rørt i to timer. Den opprinnelige gummien forandret seg til et krystallinsk materiale. Det krystallinske produktet ble filtrert og tørket for å gi det ønskede produktet (20 g, 81% utbytte) som et offwhite krystallinsk pulver. (Rf 7,52 minutter, betingelser som trinn 3). Hydrochloric acid gas was bubbled into a solution of 4-amino-3,4-dihydro-6-chloro-8-iodocoumarin hydrochloride (22.0 g, 61.09 mmol) in ethanol (250 mL) maintaining the reaction mixture at 0-10 °C to saturation. After 6 hours at reflux, most of the solvent was removed by distillation. The cooled residue was added to anhydrous ether and stirred for two hours. The original rubber changed into a crystalline material. The crystalline product was filtered and dried to give the desired product (20 g, 81% yield) as an off-white crystalline powder. (Rf 7.52 minutes, conditions as step 3).

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Trinn 5 Step 5

Fremstilling av (R,S)-etyl 3-(N-BOC-gly)amino-3-(5-klor-2-hydroksy-3-jod)fenylpropionat. Preparation of (R,S)-ethyl 3-(N-BOC-gly)amino-3-(5-chloro-2-hydroxy-3-iodo)phenylpropionate.

En blanding av BOC-gly (2,16 g, 12,31 mmol), HOBT (1,67 g, 12,31 mmol), EDC1 (2,36 g, 12,31 mmol) og DMF (50 ml) ble rørt ved 0°C i 1 time. Etyl 3-amino-3-(5-klor-2-hydroksy-3-jod)propionathydroklorid (5,0 g, 12,31 mmol) ble tilsatt til reaksjonsblandingen fulgt av trietylamin (3,5 ml). Reaksjonsblandingen ble rørt i 18 timer ved romtemperatur. DMF ble fjernet in vacuo og resten ble delt mellom etylacetat {300 ml) og natriumbikarbonat (200 ml). Den organiske fasen ble vasket med saltsyre (1 N, 100 ml), saltløsning (200 ml) , tørket (MgS04) og konsentrert for å gi det ønskede produktet som et faststoff (6 g, 93% utbytte). A mixture of BOC-gly (2.16 g, 12.31 mmol), HOBT (1.67 g, 12.31 mmol), EDC1 (2.36 g, 12.31 mmol) and DMF (50 mL) was stirred at 0°C for 1 hour. Ethyl 3-amino-3-(5-chloro-2-hydroxy-3-iodo)propionate hydrochloride (5.0 g, 12.31 mmol) was added to the reaction mixture followed by triethylamine (3.5 mL). The reaction mixture was stirred for 18 hours at room temperature. The DMF was removed in vacuo and the residue was partitioned between ethyl acetate (300 mL) and sodium bicarbonate (200 mL). The organic phase was washed with hydrochloric acid (1 N, 100 mL), brine (200 mL), dried (MgSO 4 ) and concentrated to give the desired product as a solid (6 g, 93% yield).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 6 Step 6

Fremstilling av (R,S)-etyl 3-(N-gly)-amino-3-(5-klor-2-hydroksy-3-j od)fenylpropionathydroklorid. Preparation of (R,S)-ethyl 3-(N-gly)-amino-3-(5-chloro-2-hydroxy-3-iod)phenylpropionate hydrochloride.

Dioksan/HCl (4N, 20 ml) ble tilsatt til etyl 3-(N-BOC-gly)-amino-3-(5-klor-2-hydroksy-3-jod)propionat (6,0 g, 11,39 mmol) ved 0°C og ble rørt ved romtemperatur i tre timer. Reaksjonsblandingen ble konsentrert og konsentrert en gang til etter tilsetning av toluen (100 ml). Den oppnådde resten ble suspendert i eter og filtrert og tørket for å gi det ønskede produktet som et krystallinsk pulver (5,0 g, 95% utbytte). (RPHPLC: Rf 8,3 minutter, betingelser som i trinn 3). Dioxane/HCl (4N, 20 mL) was added to ethyl 3-(N-BOC-gly)-amino-3-(5-chloro-2-hydroxy-3-iodo)propionate (6.0 g, 11.39 mmol) at 0°C and was stirred at room temperature for three hours. The reaction mixture was concentrated and concentrated once more after addition of toluene (100 mL). The obtained residue was suspended in ether and filtered and dried to give the desired product as a crystalline powder (5.0 g, 95% yield). (RPHPLC: Rf 8.3 minutes, conditions as in step 3).

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Eksempel F Example F

Fremstilling av Manufacture of

Trinn 1 Step 1

Fremstilling av 3-jod-5-bromsalisylaldehyd. Preparation of 3-iodo-5-bromosalicylaldehyde.

Til en løsning av 5-bromsalisylaldehyd {20,0 g, 0,1 mol) og kaliumjodid {17 g, 0,1 mol) i acetonitril (150 ml) og vann (50 ml) i en 500 ml rundkolbe med magnetisk rører ble kloramin T (23 g, 0,1 mol) tilsatt. Blandingen ble tillatt å reagere i en time. Reaksjonsblandingen ble delt mellom saltsyre (10%, 2 00 ml) og etylacetat. Den organiske fasen ble tørket (Na2S04), filtrert og konsentrert in vacuo. Til resten ble heksaner tilsatt og reaksjonsblandingen varmet til 50°C i 15 minutter. Det uoppløste materialet ble fjernet ved filtrering. Filtratet ble konsentrert in vacuo for å etterlate kanarigul 3-jod-5-bromsalicylaldehyd (26 g). To a solution of 5-bromosalicylaldehyde {20.0 g, 0.1 mol) and potassium iodide {17 g, 0.1 mol) in acetonitrile (150 mL) and water (50 mL) in a 500 mL round-bottom flask with a magnetic stirrer was added chloramine T (23 g, 0.1 mol) added. The mixture was allowed to react for one hour. The reaction mixture was partitioned between hydrochloric acid (10%, 200 mL) and ethyl acetate. The organic phase was dried (Na 2 SO 4 ), filtered and concentrated in vacuo. To the residue, hexanes were added and the reaction mixture heated to 50°C for 15 minutes. The undissolved material was removed by filtration. The filtrate was concentrated in vacuo to leave canary yellow 3-iodo-5-bromosalicylaldehyde (26 g).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 2 Step 2

Ovennevnte forbindelse ble fremstilt ved anvendelse av grunnleggende de samme fremgangsmåter som eksempel E, trin-nene 2-6 hvor i trinn 2, en ekvivalent mengde av produkt fra trinn 1, 3-jod-5-brom-salisylaldehyd, ble substituert med 3-jod-5-klorsalisylaldehyd. The above compound was prepared using essentially the same procedures as Example E, steps 2-6 where in step 2, an equivalent amount of product from step 1, 3-iodo-5-bromo-salicylaldehyde, was substituted with 3- iodo-5-chlorosalicylaldehyde.

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Eksempel H Example H

Fremstilling av Manufacture of

Trinn 1 Step 1

Etanol (375 ml) og deionisert vann (375 ml) ble tilsatt til en 2 1 3-halset rundkolbe utstyrt med en mekanisk rører, Claisen adapter, tilsetningstrakt, reflukskjøler og termokopling. 1,3-diamino-2-hydroksypropan (125,04 g, 1,39 mol) (Aldrich) ble tilsatt til reaksjonskolben og rørt for å løse opp. Karbondisulfid (84 ml, 1,39 mol) ble tilsatt på dråpevis måte via tilsetningstrakt ved 25-33°C over en 35 minutters periode for å gi en melkehvit blanding. Temperaturen ble opprettholdt med et isbad. Reaksjonsblandingen ble reflukset ved 73,4°C i to timer for å gi en gul løsning. Reaksjonsblandingen ble kjølt med et isbad til 25°C og konsentrert HCl (84 ml) ble tilsatt på dråpevis måte mens temperaturen ble opprettholdt ved 25-26°C. Reaksjonsblandingen ble reflukset i 21 timer ved 78,4°C. Reak-sjonsløsningen ble kjølt til 2°C og produktet samlet via vakuumfiltrering. Det hvite faststoffet ble vasket tre ganger med isbadkjølt etanol: vann (1:1)(50 ml) og tørket in vacuo ved 40°C for å gi 5-hydroksytetrahydropyrimidin-2-tion (63,75 g, 34,7% utbytte) som et hvitt faststoff. Ethanol (375 mL) and deionized water (375 mL) were added to a 2 1 3-necked round bottom flask equipped with a mechanical stirrer, Claisen adapter, addition funnel, reflux condenser, and thermocouple. 1,3-Diamino-2-hydroxypropane (125.04 g, 1.39 mol) (Aldrich) was added to the reaction flask and stirred to dissolve. Carbon disulfide (84 mL, 1.39 mol) was added dropwise via addition funnel at 25-33°C over a 35 minute period to give a milky white mixture. The temperature was maintained with an ice bath. The reaction mixture was refluxed at 73.4°C for two hours to give a yellow solution. The reaction mixture was cooled with an ice bath to 25°C and concentrated HCl (84 mL) was added dropwise while maintaining the temperature at 25-26°C. The reaction mixture was refluxed for 21 hours at 78.4°C. The reaction solution was cooled to 2°C and the product collected via vacuum filtration. The white solid was washed three times with ice-cold ethanol:water (1:1) (50 mL) and dried in vacuo at 40°C to give 5-hydroxytetrahydropyrimidine-2-thione (63.75 g, 34.7% yield ) as a white solid.

MS og NMR var konsistente med den ønskede strukturen. MS and NMR were consistent with the desired structure.

Trinn 2 Step 2

5-hydroksytetrahydropyrimidin-2-tion (95 g, 0,72 mol) fremstilt i trinn 1, absolutt etanol (570 ml), og metyljodid (42 ml, 0,72 mol) ble tilsatt til en 2-1 rundkolbe utstyrt med en mekanisk rører og termokopling. Reaksjonsblandingen ble reflukset ved 78°C i fem timer og så kjølt til romtemperatur. Reaksjonsblandingen ble konsentrert in vacuo for å gi et hvitt faststoff (194,72 g). Det hvite faststoffet ble triturert tre ganger med etyleter (500 ml) og tør-ket in vacuo for å gi 2-metyltioeter-5-hydroksypyrimidin-hydrojodid (188,22 g, 95,4% utbytte) som et hvitt faststoff. 5-Hydroxytetrahydropyrimidine-2-thione (95 g, 0.72 mol) prepared in Step 1, absolute ethanol (570 mL), and methyl iodide (42 mL, 0.72 mol) were added to a 2-1 round bottom flask equipped with a mechanical stirrer and thermocouple. The reaction mixture was refluxed at 78°C for five hours and then cooled to room temperature. The reaction mixture was concentrated in vacuo to give a white solid (194.72 g). The white solid was triturated three times with ethyl ether (500 mL) and dried in vacuo to give 2-methylthioether-5-hydroxypyrimidine hydroiodide (188.22 g, 95.4% yield) as a white solid.

MS og Hl NMR var konsistente med den ønskede strukturen. MS and H1 NMR were consistent with the desired structure.

Trinn 3 Step 3

2- metyl tioeter-5-hydroksypyrimidin-hydrojodid (150,81 g, 0,55 mol) metylenklorid (530 ml), dimetylacetamid (53 ml) og trietylamin (76,7 ml, 0,55 mol) ble tilsatt til en 2 1 3- halset rundkolbe utstyrt med reflukskjøler, mekanisk rører og en statisk atmosfære av nitrogen. Blandingen ble kjølt med et isbad og di-tert-butyl dikarbonat (120,12 g, 0,55 mol) ble tilsatt ved 4°C. Reaksjonsblandingen ble varmet ved 42,5°C i 18 timer for å gi en lett gul løsning. Reaksjonsløsningen ble overført til en 2 1 separasjonstrakt og vasket tre ganger méd DI-vann (200 ml), tørket med MgS04, filtrert og konsentrert in vacuo for å gi Boc-2-metyltioeter-5-hydroksypyrimidin (134,6 g, 99,35% utbytte) som en lett gul viskøs olje. 2-Methyl thioether-5-hydroxypyrimidine hydroiodide (150.81 g, 0.55 mol) methylene chloride (530 mL), dimethylacetamide (53 mL) and triethylamine (76.7 mL, 0.55 mol) were added to a 2 1 3-necked round bottom flask equipped with a reflux condenser, mechanical stirrer and a static atmosphere of nitrogen. The mixture was cooled with an ice bath and di-tert-butyl dicarbonate (120.12 g, 0.55 mol) was added at 4°C. The reaction mixture was heated at 42.5°C for 18 hours to give a light yellow solution. The reaction solution was transferred to a 2 L separatory funnel and washed three times with DI water (200 mL), dried with MgSO 4 , filtered and concentrated in vacuo to give Boc-2-methylthioether-5-hydroxypyrimidine (134.6 g, 99, 35% yield) as a light yellow viscous oil.

MS og Hl NMR var konsistente med den ønskede strukturen. MS and H1 NMR were consistent with the desired structure.

Trinn 4 Step 4

Boc-2-metyltioeter-5-hydroksypyrimidin (50,3 g, 0,204 mol), 3-amino-5-hydroksybenzosyre (Aust. J. Chem. (1981)34(6), 1319-24) (25,0 g, 0,1625 mol) og 50 ml vannfri DMA ble varmet ved 100°C med røring i to døgn. Et slurrybunnfall resulterte. Reaksjonen ble kjølt til romtemperatur og bunnfallet ble filtrert, vasket med CH3CN, så etyleter og tør-ket. Denne løsningen ble oppslemmet i H20, gjort sur med konsentrert HCl resulterende i en løsning. Denne ble fros-set og lyofilisert for å gi det ønskede produktet som et hvitt faststoff (14,4 g). Boc-2-methylthioether-5-hydroxypyrimidine (50.3 g, 0.204 mol), 3-amino-5-hydroxybenzoic acid (Aust. J. Chem. (1981) 34(6), 1319-24) (25.0 g , 0.1625 mol) and 50 ml of anhydrous DMA were heated at 100°C with stirring for two days. A slurry precipitate resulted. The reaction was cooled to room temperature and the precipitate was filtered, washed with CH 3 CN, then ethyl ether and dried. This solution was slurried in H 2 O, acidified with concentrated HCl resulting in a solution. This was frozen and lyophilized to give the desired product as a white solid (14.4 g).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel I Example I

Fremstilling av Manufacture of

Trinn 1 Step 1

Fremstilling av Reformatsky reagens Preparation of Reformatsky reagent

En 4 1 flaske utstyrt med en kjøler, temperaturmåler og mekanisk rører ble fylt med Zn-metali (180,0 g, 2,76 mol -30 A 4 L flask equipped with a cooler, temperature gauge and mechanical stirrer was charged with Zn metal (180.0 g, 2.76 mol -30

-100 mesh) og THF (1,25 1). Under røring, ble 1,2-dibrom-etan (4,47 ml, 0,05 mol)[alternativt, kan TMS Cl (0,1 ekvivalent) ved romtemperatur i en time substitueres]. Etter inert gasskylling (3 N2/vakuumsykler) ble suspensjonen av sink i THF varmet til refluks (65°C) og opprettholdt ved denne temperaturen i en time. Blandingen ble kjølt til 50°C før påfylling av tert-butylbromacetat (488 g, 369 ml, 2,5 mol) via 50 ml sprøyte og sprøytepumpe (satt til å levere 4,1 ml/minutt) i løpet av 1,5 timer. Reaksjonstemperatur på -100 mesh) and THF (1.25 L). With stirring, 1,2-dibromoethane (4.47 mL, 0.05 mol) [alternatively, TMS Cl (0.1 equiv) at room temperature for one hour can be substituted]. After inert gas flushing (3 N 2 /vacuum cycles), the suspension of zinc in THF was heated to reflux (65°C) and maintained at this temperature for one hour. The mixture was cooled to 50 °C before charging tert -butyl bromoacetate (488 g, 369 mL, 2.5 mol) via 50 mL syringe and syringe pump (set to deliver 4.1 mL/min) over 1.5 h . Reaction temperature of

50°C +/-5°C ble opprettholdt gjennom tilsetningen. Reaksjonsblandingen ble tillatt å røres ved 50°C i en time etter at tilsetningen var komplett. Etterfølgende ble blandingen tillatt å kjøle til 25°C og det utfelte produktet tillatt å falle til bunnen. THF-moderluten ble dekantert over i en 2 1 rundkolbe ved anvendelse av en grovt frittet filterplate og delvis vakuumoverføring {20 mm Hg). Dette fjernet ca. 65% av THF fra blandingen, l-metyl-2-pyrrolidon (NMP, 800 ml) ble tilsatt og røring gjenopptatt i fem minutter. Reaksjonsblandingen kan bli filtrert for å fjerne alt gjenværende sink. Analyse indikerte en titervæske av ønsket Reformatsky reagens på 1,57 M med et molart utbytte på 94%. Alternativt, kan den faste reagensen isoleres ved filtrering fra den opprinnelige reaksjonsblandingen. Kaken kan vaskes med THF inntil et hvitt faststoff blir oppnådd og tørket under N2 for å oppnå det ønskede produktet som et mono THF-solvat som kan lagres ved 20°C (tørket) i lengre perioder. Typiske gjenvinningsgrader er 85-90%. 50°C +/-5°C was maintained throughout the addition. The reaction mixture was allowed to stir at 50°C for one hour after the addition was complete. Subsequently, the mixture was allowed to cool to 25°C and the precipitated product was allowed to settle to the bottom. The THF mother liquor was decanted into a 2 L round bottom flask using a coarse fritted filter plate and partial vacuum transfer {20 mm Hg). This removed approx. 65% of THF from the mixture, 1-methyl-2-pyrrolidone (NMP, 800 mL) was added and stirring resumed for five minutes. The reaction mixture can be filtered to remove any remaining zinc. Analysis indicated a titer of the desired Reformatsky reagent of 1.57 M with a molar yield of 94%. Alternatively, the solid reagent can be isolated by filtration from the original reaction mixture. The cake can be washed with THF until a white solid is obtained and dried under N2 to obtain the desired product as a mono THF solvate which can be stored at 20°C (dried) for extended periods. Typical recovery rates are 85-90%.

Trinn 2 Step 2

2A: Fremstilling av 2A: Preparation of

Kaliumkarbonat (pulver, ovnstørket ved 100°C under vakuum, 8,82 g, 60 mmol) ble tilsatt til en løsning av 3,5-diklor-salisyldehyd (11,46 g, 60 mol) i DMF (40 ml) ved romtemperatur i en klar gul slurry. MEMCl (rent, 7,64 g, 61 mmol) ble så tilsatt mens bad-temperaturen opprettholdes ved 20°C. Blandingen ble så rørt ved 22°C i 6 timer og MEMCl (0,3 g, 2,4 mmol) ble tilsatt. Blandingen ble rørt i enda 0,5 timer og reaksjonsblandingen tømt i kaldt vann (200 ml) for å felle ut produktet. Slurryen ble filtrert på et trykkfilter og kaken ble vasket med vann (2 x 50 ml) og ble tørket under N2/vakuum for å gi produktet (14,94 g, 89%) som et offwhite faststoff. <*>H NMR (CDC13 TMS) 3,37 (s, 3H) , 3,54 til 3,56 (m, 2H), 3,91 til 3,93 (m, 2H), 5,30 (s, 2H), 7,63 (d, 1H), 7,73 (d,lH), 7,73 (d, 1H), 10,30 (s, 1H);<13>C NMR (CDC13, TMS) d (ppm): 59,03, 70,11, 99,57, 126,60, 129,57, 130,81, 132,07, 135,36, 154,66, 188,30,. DSC: 48,24°C (endo 90,51 J/g); Potassium carbonate (powder, oven dried at 100°C under vacuum, 8.82 g, 60 mmol) was added to a solution of 3,5-dichlorosalicyaldehyde (11.46 g, 60 mol) in DMF (40 mL) at room temperature in a clear yellow slurry. MEMCl (pure, 7.64 g, 61 mmol) was then added while maintaining the bath temperature at 20°C. The mixture was then stirred at 22°C for 6 h and MEMCl (0.3 g, 2.4 mmol) was added. The mixture was stirred for another 0.5 h and the reaction mixture was poured into cold water (200 mL) to precipitate the product. The slurry was filtered on a pressure filter and the cake was washed with water (2 x 50 mL) and was dried under N 2 /vacuum to give the product (14.94 g, 89%) as an off-white solid. <*>H NMR (CDCl 3 TMS) 3.37 (s, 3H), 3.54 to 3.56 (m, 2H), 3.91 to 3.93 (m, 2H), 5.30 (s, 2H), 7.63 (d, 1H), 7.73 (d, 1H), 7.73 (d, 1H), 10.30 (s, 1H); <13>C NMR (CDCl3 , TMS) d (ppm): 59.03, 70.11, 99.57, 126.60, 129.57, 130.81, 132.07, 135.36, 154.66, 188.30, . DSC: 48.24°C (endo 90.51 J/g);

Mikroanalytisk: beregnet for CnH12Cl204: Microanalytical: calculated for CnH12Cl204:

C:47,33%; H:4,33%; Cl:25,40% C:47.33%; H:4.33%; Cl:25.40%

funnet: C:47,15%, H:4,26%, Cl:25,16% found: C:47.15%, H:4.26%, Cl:25.16%

2B: Fremstilling av 2B: Production of

Produktet fra trinn 2A (35,0 g, 0,125 mol) ble fylt i en The product from step 2A (35.0 g, 0.125 mol) was charged into a

l 1 3-halset rundkolbe utstyrt med en mekanisk rører og en tilførselstrakt fulgt av addisjon av THF (200 ml). Løsningen ble rørt ved 22°C og (S)-fenylglykinol (17,20 g, 0,125 mol) ble så tilsatt i en omgang. Etter 30 minutter ved 22°C ble MgS04 (20 g) tilsatt. Blandingen ble rørt i en time ved 22°C, og filtrert på et grovt frittet filter. Filtratet ble konsentrert under redusert trykk. Ingen videre rensing ble utført og det ubearbeidede iminet ble anvendt direkte i koplingsreaksjonen, trinn 2, C. l 1 3-necked round bottom flask equipped with a mechanical stirrer and an addition funnel followed by the addition of THF (200 mL). The solution was stirred at 22°C and (S)-phenylglyquinol (17.20 g, 0.125 mol) was then added in one portion. After 30 minutes at 22°C, MgSO 4 (20 g) was added. The mixture was stirred for one hour at 22°C, and filtered on a coarse fritted filter. The filtrate was concentrated under reduced pressure. No further purification was performed and the crude imine was used directly in the coupling reaction, step 2, C.

2C: Fremstilling av 2C: Production of

En 1-1 3-halset rundkolbe utstyrt med en mekanisk rører og en tilsetningstrakt ble fylt med den faste reagensen fremstilt i trinn 1 (91,3 g, 0,275 mol) og NMP (200 ml) under nitrogen. Løsningen ble så kjølt til -10°C og rørt ved 350 rpm. En løsning av imin (fremstilt i trinn 2B) i NMP ble fremstilt under nitrogen og så tilsatt over 20 minutter til den ovennevnte reaksjonsblandingen mens temperaturer ble opprettholdt ved -5°C (mantel temperatur -10°C) . Blandingen ble rørt i ytterligere 1,5 timer ved -8°C og l time ved -5°C etter at tilsetningen var fullstendig. Etter kjøling til -10°C ble en blanding av konsentrert HCl/mettet løsning av NH4CI (8,1 ml/200 ml) tilsatt i 10 minutter. MTBE (200 ml) ble tilsatt og blandingen ble rørt i 15 minutter ved 23°C og 200 rpm. Røring ble stoppet og sjiktene separerte. Den vandige fasen ble ekstrahert MTBE (100 ml). De to organiske fasene ble kombinert, vasket suksessivt med mettet løsning av NH4C1 (100 ml) vann (100 ml) og saltløsning (100 ml) . Løsningen ble tørket med MgS04 (30 g), filtrert og konsentrert for å gi en oransje olje (66,3 g) (størkner ved stillstand) inneholdende det ønskede produktet som en enkelt diastereoisomer (bekreftes ved proton og karbon NMR). En prøve ble renset for analyse ved omkrystallisering fra heptan for å gi produktet som var et offwhite faststoff. A 1-1 3-necked round bottom flask equipped with a mechanical stirrer and an addition funnel was charged with the solid reagent prepared in Step 1 (91.3 g, 0.275 mol) and NMP (200 mL) under nitrogen. The solution was then cooled to -10°C and stirred at 350 rpm. A solution of imine (prepared in step 2B) in NMP was prepared under nitrogen and then added over 20 minutes to the above reaction mixture while temperatures were maintained at -5°C (mantle temperature -10°C). The mixture was stirred for an additional 1.5 hours at -8°C and 1 hour at -5°C after the addition was complete. After cooling to -10°C, a mixture of concentrated HCl/saturated solution of NH 4 Cl (8.1 mL/200 mL) was added over 10 minutes. MTBE (200 mL) was added and the mixture was stirred for 15 min at 23°C and 200 rpm. Stirring was stopped and the layers separated. The aqueous phase was extracted with MTBE (100 mL). The two organic phases were combined, washed successively with saturated solution of NH 4 Cl (100 ml), water (100 ml) and brine (100 ml). The solution was dried with MgSO 4 (30 g), filtered and concentrated to give an orange oil (66.3 g) (solidifies on standing) containing the desired product as a single diastereoisomer (confirmed by proton and carbon NMR). A sample was purified for analysis by recrystallization from heptane to give the product as an off-white solid.

Proton og karbon NMR og IR spektra var konsistente med den ønskede strukturen. [a]<D>25 = + 8,7° (c = 1.057, MeOH) . Mikroanalytisk: beregnet for C25H33C12N06: C: 58,77%, H: 6.74%, N: 2,72%, Cl: 13,78% funnet: C: 58,22%, H: 6,54%, N: 2,70%, Cl: 13,66% Proton and carbon NMR and IR spectra were consistent with the desired structure. [α]<D>25 = + 8.7° (c = 1.057, MeOH). Microanalytical: calculated for C25H33C12N06: C: 58.77%, H: 6.74%, N: 2.72%, Cl: 13.78% found: C: 58.22%, H: 6.54%, N: 2 .70%, Cl: 13.66%

Trinn 3 Step 3

Fremstilling av Manufacture of

3A: 3A:

En løsning av den ubehandlede eteren fremstilt i trinn 2 [17,40 g, 0,033 mol (teori)], og EtOH (250 ml) ble fylt i en 1 1 3-halset mantlet reaktor. Løsningen ble kjølt til 0°C og Pb (OAc)4 (14,63 g, 0,033 mol) ble tilsatt i en omgang. Etter to timer ble en 15% løsning av NaOH (3 0 ml) tilsatt og etanol ble fjernet under redusert trykk. En annen del av 15% NaOH (100 ml) ble tilsatt og blandingen ekstrahert med MTBE (2 x 100 ml), vasket med H20 (2 x 100 ml) og saltløsning (50 ml), tørket med Na2S04, filtrert på celit og konsentrert under redusert trykk for å gi en oransje olje (12,46 g). Oljen var homogen ved tynnsjiktkromato-grafi (tic) og ble anvendt uten videre rensing. A solution of the crude ether prepared in step 2 [17.40 g, 0.033 mol (theory)] and EtOH (250 mL) was charged to a 1 1 3-necked jacketed reactor. The solution was cooled to 0°C and Pb(OAc) 4 (14.63 g, 0.033 mol) was added in one portion. After two hours, a 15% solution of NaOH (30 mL) was added and ethanol was removed under reduced pressure. Another portion of 15% NaOH (100 mL) was added and the mixture extracted with MTBE (2 x 100 mL), washed with H 2 O (2 x 100 mL) and brine (50 mL), dried with Na 2 SO 4 , filtered on celite and concentrated under reduced pressure to give an orange oil (12.46 g). The oil was homogeneous by thin-layer chromatography (tic) and was used without further purification.

3B: 3B:

Oljen fra 3A ble fortynnet med EtOH (30 ml) og paratoluen-sulfonsyre (1,3 ekviv., 0,043 mol, 8,18 g) ble tilsatt. Løsningen ble varmet til refluks i 8 timer, kjølt til omgi-velsestemperatur og konsentrert under redusert trykk. Resten ble behandlet med THF (20 ml) og varmet til refluks for å danne en løsning. Løsningen ble kjølt til romtemperatur og forbindelsen krystallisert. Heptan (30 ml) og THF (10 ml) ble tilsatt for å danne en væskeslurry som ble filtrert. Kaken ble vasket med THF/heptan (40 ml, l/l) og vakuumtørket i to timer i et trykkfilter under nitrogen for å gi et hvitt faststoff (7,40 g). The oil from 3A was diluted with EtOH (30 mL) and paratoluenesulfonic acid (1.3 equiv, 0.043 mol, 8.18 g) was added. The solution was heated to reflux for 8 hours, cooled to ambient temperature and concentrated under reduced pressure. The residue was treated with THF (20 mL) and heated to reflux to form a solution. The solution was cooled to room temperature and the compound crystallized. Heptane (30 mL) and THF (10 mL) were added to form a liquid slurry which was filtered. The cake was washed with THF/heptane (40 mL, 1/1) and vacuum dried for two hours in a pressure filter under nitrogen to give a white solid (7.40 g).

Proton og karbon NMR og IR spektra var konsistente med det ønskede produktet som i alt vesentlig av en enkelt enantio- Proton and carbon NMR and IR spectra were consistent with the desired product being essentially a single enantio-

mer. more.

Mikroanalytisk: beregnet for Ci8H2iCl2N06S, 0,25 C4H80: Microanalytical: calculated for Ci8H2iCl2N06S, 0.25 C4H80:

C: 48,73%, H: 4.95%, N: 2,99%, Cl: 15,14% funnet: C: 48,91%, H: 4,95%, N: 2,90%, Cl: 14,95% C: 48.73%, H: 4.95%, N: 2.99%, Cl: 15.14% found: C: 48.91%, H: 4.95%, N: 2.90%, Cl: 14.95%

Trinn 4 Step 4

Fremstilling av: Manufacture of:

Til en 500 ml rundkolbe utstyrt med en magnetisk rørestav og nitrogenbobler ble den frie basen av produktet dannet i trinn 3 (21,7 g, 0,065 mol), N-t-Boc-glysin N-hydroksysuccinimidester (17,7 g, 0,065 mol) og DMF (200 ml). Reaksjonsblandingen ble rørt under nitrogen ved romtemperatur i 3,25 timer og en blek oransje løsning dannet. Reaksjonsblandingen ble tømt i iskald etylacetat (1,2 1). Den organiske løsningen ble vasket med IM HCl (250 ml) og sammensetninger med saltløsning (500 ml), tørket (MgS04) og konsentrert under vakuum til nær tørrhet for å oppnå en olje som deretter ble tørket ved 50°C for å oppnå produktet som en fargeløs olje (28,12 g 99%). Rimkrystaller ble fremstilt fra etylacetat/heksaner. Produktet (ca 28 g) ble oppløst i etylacetat (35 ml) og heksaner (125 ml). Løsningen ble frøsatt med kimkrystallene og bunnfall dannet. Faststoffene ble filtrert og tørket over natten under vakuum ved 55°C for å gi et fargeløst faststoff (27,0 g, 95%). To a 500 mL round bottom flask equipped with a magnetic stir bar and nitrogen bubbles were added the free base of the product formed in step 3 (21.7 g, 0.065 mol), N-t-Boc-glycine N-hydroxysuccinimide ester (17.7 g, 0.065 mol) and DMF (200 mL). The reaction mixture was stirred under nitrogen at room temperature for 3.25 hours and a pale orange solution formed. The reaction mixture was poured into ice-cold ethyl acetate (1.2 L). The organic solution was washed with 1M HCl (250 mL) and brine (500 mL), dried (MgSO 4 ) and concentrated under vacuum to near dryness to afford an oil which was then dried at 50°C to afford the product as a colorless oil (28.12 g 99%). Rim crystals were prepared from ethyl acetate/hexanes. The product (about 28 g) was dissolved in ethyl acetate (35 ml) and hexanes (125 ml). The solution was seeded with the seed crystals and a precipitate formed. The solids were filtered and dried overnight under vacuum at 55°C to give a colorless solid (27.0 g, 95%).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 5 Step 5

Fremstilling av Manufacture of

Det Boe-beskyttede glysinamidet fremstilt i trinn 4 (27,0 g, 0,062 mol) ble tørket over natten over P205 og NaOH pel-lets. Faststoffet ble oppløst i dioksan (40 ml) og løsnin-gen kjølt til 0°C. Et ekvivalent volum av 4N HCl/dioksan (0,062 mol) ble tilsatt og reaksjonen ble kjølt i to timer. Ved dette punktet var omdannelsen 80% ved RPHPLC. Reaksjonsblandingen ble tillatt å varme til romtemperatur i 4 timer. Reaksjonsblandingen ble konsentrert ved 40°C til et skum som ble trituert med eter (200 ml). Det hvite faststoffet som ble dannet ble filtrert og tørket over P205 for å gi det ønskede glysin beta-aminosyreetylester forbindelsen som et HCl salt (20,4 g, 88,5% isolert utbytte). The Boe-protected glycinamide prepared in step 4 (27.0 g, 0.062 mol) was dried overnight over P 2 O 5 and NaOH pellets. The solid was dissolved in dioxane (40 ml) and the solution cooled to 0°C. An equivalent volume of 4N HCl/dioxane (0.062 mol) was added and the reaction was cooled for two hours. At this point the conversion was 80% at RPHPLC. The reaction mixture was allowed to warm to room temperature for 4 hours. The reaction mixture was concentrated at 40°C to a foam which was triturated with ether (200 mL). The white solid that formed was filtered and dried over P 2 O 5 to give the desired glycine beta-amino acid ethyl ester compound as an HCl salt (20.4 g, 88.5% isolated yield).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel J Example J

Fremstilling av Manufacture of

Trinn 1 Fremstilling av Step 1 Preparation of

MEM beskyttet 3-brom-5-klorsalisylaldehyd (129,42 g, 0,4 mol), fremstilt i henhold til fremgangsmåten i eksempel I, trinn 2A. En ekvivalent mengde av 3-brom-5-klorsalisylaldehyd ble substituert for 3,5-klorsalisylaldehyd som ble fylt i en 2 1 3-halset rundkolbe utstyrt med en mekanisk rører, fulgt av tilsetning av THF (640 ml) og (S)-fe-nylglykinol (54,86 g, 0,4 mol). Etter 30 minutter ved 22°C, ble MgS04 (80 g) tilsatt. Blandingen ble rørt i to timer ved 22°C, og filtrert på et grovt frittet filter. Filtratet ble konsentrert under redusert trykk for å gi en blek gul olje (180,0 g) inneholdende det ønskede iminet. Ingen videre rensing ble utført og det ubearbeidede produktet ble anvendt direkte i koplingsreaksjonen, trinn 2. MEM protected 3-bromo-5-chlorosalicylaldehyde (129.42 g, 0.4 mol), prepared according to the procedure of Example I, step 2A. An equivalent amount of 3-bromo-5-chlorosalicylaldehyde was substituted for 3,5-chlorosalicylaldehyde which was charged to a 2 1 3-necked round bottom flask equipped with a mechanical stirrer, followed by the addition of THF (640 mL) and (S)- phenylglyquinol (54.86 g, 0.4 mol). After 30 minutes at 22°C, MgSO 4 (80 g) was added. The mixture was stirred for two hours at 22°C, and filtered on a coarse fritted filter. The filtrate was concentrated under reduced pressure to give a pale yellow oil (180.0 g) containing the desired imine. No further purification was performed and the crude product was used directly in the coupling reaction, step 2.

Mikroanalytisk: beregnet for Ci9H2iBrClN04: Microanalytical: calculated for Ci9H2iBrClN04:

C:51,54%, H:4,78%, N:3,16%, Br:18,04%, Cl:8,00% funnet: C:50,22%, H:4,94%, N:2,93%, Br:17,15%, Cl:7,56% C:51.54%, H:4.78%, N:3.16%, Br:18.04%, Cl:8.00% found: C:50.22%, H:4.94%, N:2.93%, Br:17.15%, Cl:7.56%

Trinn 2 Step 2

Fremstilling av Manufacture of

I en 5 1 3-halset rundkolbe utstyrt med en mekanisk rører, ble reagenset fra eksempel I, trinn 1 (332,0 g, 0,8 mol) tatt opp i NMP (660 ml) under nitrogen. Løsningen ble så avkjølt til -10°C. En løsning av iminet fra trinn 1 i NMP (320 ml) ble fremstilt under nitrogen og så tilsatt i løpet av 3 0 minutter til ovennevnte reaksjonsblanding mens temperaturen ble opprettholdt ved -5°C. Blandingen ble rørt i ytterligere en time ved -8°C og -5°C i to timer etter at tilsettingen var fullstendig og så kjølt til -10°C. En blanding av konsentrert HCl/mettet løsning av NH4C1 (30 ml/720 ml) ble tilsatt i løpet av 10 minutter. MTBE (760 ml) ble tilsatt og blandingen ble rørt i 30 minutter ved 23°C. Røring ble stoppet og sjiktene separerte. Den vandige fasen ble ekstrahert med MTBE (320 ml) de organiske fasene ble kombinert, vasket suksessivt med mettet vandig NH4C1 (32 0 ml), DI-vann (32 0 ml) og saltløsning (320 ml). Løsnin-gen ble tørket med MgS04 (60 g), filtrert og konsentrert for å gi en gul olje (221,0 g) inneholdende det ønskede produktet som en enkelt diastereoisomer som bestemt ved proton NMR. In a 5 L 3-necked round bottom flask equipped with a mechanical stirrer, the reagent from Example I, Step 1 (332.0 g, 0.8 mol) was taken up in NMP (660 mL) under nitrogen. The solution was then cooled to -10°C. A solution of the imine from step 1 in NMP (320 mL) was prepared under nitrogen and then added over 30 minutes to the above reaction mixture while maintaining the temperature at -5°C. The mixture was stirred for an additional hour at -8°C and -5°C for two hours after the addition was complete and then cooled to -10°C. A mixture of concentrated HCl/saturated solution of NH 4 Cl (30 mL/720 mL) was added over 10 minutes. MTBE (760 mL) was added and the mixture was stirred for 30 minutes at 23°C. Stirring was stopped and the layers separated. The aqueous phase was extracted with MTBE (320 mL) the organic phases were combined, washed successively with saturated aqueous NH 4 Cl (320 mL), DI water (320 mL) and brine (320 mL). The solution was dried with MgSO 4 (60 g), filtered and concentrated to give a yellow oil (221.0 g) containing the desired product as a single diastereoisomer as determined by proton NMR.

DSC: 211,80°C (endo. 72,56 J/g) , 228,34°C (98,23 J/g) ; DSC: 211.80°C (endo. 72.56 J/g), 228.34°C (98.23 J/g);

Mikroanalytisk : beregnet for C25H33BrClN06: Microanalytical: calculated for C25H33BrClN06:

C: 53,72%; H:5,95%; N:2,50%; Br:14,29%; Cl:6,33% funnet: C:52,ll%; H:6,09%; N:2,34%; Br: 12,84%; Cl:6,33% C: 53.72%; H:5.95%; N:2.50%; Br:14.29%; Cl:6.33% found: C:52.11%; H:6.09%; N:2.34%; Br: 12.84%; Cl:6.33%

Trinn 3 Step 3

Fremstilling av Manufacture of

En løsning av ubearbeidet ester, fremstilt i trinn 2 (~111 g), i etanol (1500 ml) ble fylt under argon atmosfære i en 3 1 3-halset rundkolbe utstyrt med en mekanisk rører. Reaksjonsblandingen ble kjølt til 0°C og blytetraacetat {88,67 g, 0,2 mol) ble tilsatt i en omgang. Reaksjonsblandingen ble rørt i 3 timer ved 0°C og så ble 15% vandig NaOH (150 ml) tilsatt til reaksjonsblandingen under 5°C. Metanol ble fjernet under redusert trykk på rotasjonsfordamper. Ytterligere 150 ml av 15% vandig NaOH ble tilsatt og reaksjonsblandingen ble ekstrahert med etylacetat (3 x 300 ml) og vasket med DI-vann (2 x 100 ml) og saltløsning (2 x 100 ml) og tørket over vandig MgSO4(30 g) . Det ble så filtrert over celit og konsentrert under redusert trykk for å gi det ønskede produktet (103 g) som en rød olje. A solution of the crude ester, prepared in step 2 (~111 g), in ethanol (1500 mL) was charged under an argon atmosphere into a 3 1 3-necked round bottom flask equipped with a mechanical stirrer. The reaction mixture was cooled to 0°C and lead tetraacetate (88.67 g, 0.2 mol) was added in one portion. The reaction mixture was stirred for 3 hours at 0°C and then 15% aqueous NaOH (150 mL) was added to the reaction mixture below 5°C. Methanol was removed under reduced pressure on a rotary evaporator. An additional 150 mL of 15% aqueous NaOH was added and the reaction mixture was extracted with ethyl acetate (3 x 300 mL) and washed with DI water (2 x 100 mL) and brine (2 x 100 mL) and dried over aqueous MgSO4 (30 g ). It was then filtered over celite and concentrated under reduced pressure to give the desired product (103 g) as a red oil.

Trinn 4 Step 4

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til fremgangsmåten anvendt for eksempel I, trinn 4 og trinn 5 ved å substituere en ekvivalent mengde av produktet fra trinn 3 i eksempel I, trinn 4. The above compound was prepared according to the procedure used for Example I, Step 4 and Step 5 by substituting an equivalent amount of the product from Step 3 into Example I, Step 4.

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Eksempel K Example K

Alternativ fremstillin<g> av forbindelsen i eksempel J Alternative preparation<g> of the compound in Example J

Trinn 1 Step 1

Fremstilling av Manufacture of

Til produktet fra eksempel B, trinn 3, (50,0 g, 139,2 mmol) og NaHC03(33,5 g, 398,3 mmol) ble CH2C12(500 ml) og vann (335 ml) tilsatt. Blandingen ble rørt ved romtemperatur i 10 minutter. En løsning av benzylklorformat (38,0 g, 222,8 mmol) CH2C12 (380 ml) ble tilsatt i løpet av 20 minutter med hurtig røring. Etter 50 minutter ble reaksjonsblandingen tømt inn i en separasjonstrakt og den organiske fasen samlet. Den vandige fasen ble vasket med CH2C12(170 ml). De kombinerte organiske fasene ble tørket (MgS04) og konsentrert in vacuo. Det resulterende gummi faststoffet ble triturert med heksan og samlet ved filtrering. Det lærfargede faststoffet ble tørket in vacuo for å gi den ønskede rase-miske produktet(61,2 g, 96% utbytte). Dette materialet ble utsatt for omvendt fase HPLC ved anvendelse av en kiral kolonne for å gi hver rene enantiomer. Kolonnen anvendt var en Whelk-0 (R,R), 10 um partikkelstørrelse anvendende en 90:10 heptan:etanol mobil fase. Optisk renhet ble bestemt til å være større enn 98% ved anvendelse av analytisk HPLC anvendende lignende kolonne og løsningsmiddelbetingelser. To the product from Example B, Step 3, (50.0 g, 139.2 mmol) and NaHCO 3 (33.5 g, 398.3 mmol) was added CH 2 Cl 2 (500 mL) and water (335 mL). The mixture was stirred at room temperature for 10 minutes. A solution of benzyl chloroformate (38.0 g, 222.8 mmol) in CH 2 Cl 2 (380 mL) was added over 20 min with rapid stirring. After 50 minutes, the reaction mixture was emptied into a separatory funnel and the organic phase collected. The aqueous phase was washed with CH 2 Cl 2 (170 mL). The combined organic phases were dried (MgSO 4 ) and concentrated in vacuo. The resulting gummy solid was triturated with hexane and collected by filtration. The leather-colored solid was dried in vacuo to give the desired racemic product (61.2 g, 96% yield). This material was subjected to reverse phase HPLC using a chiral column to give each pure enantiomer. The column used was a Whelk-0 (R,R), 10 µm particle size using a 90:10 heptane:ethanol mobile phase. Optical purity was determined to be greater than 98% using analytical HPLC using similar column and solvent conditions.

<X>H NMR var konsistent med den ønskede strukturen. <X>H NMR was consistent with the desired structure.

Trinn 2 Step 2

Til en løsning av forbindelsene oppnådd i trinn 1 (48,5 g, 106,2 mmol) i CH2C12(450 ml) ble trimetylsilyljodid tilsatt via en kanyle. Den oransje løsningen ble rørt ved romtemperatur i en time. Metanol (20,6 ml, 509,7 mmol) ble tilsatt dråpevis og løsningen rørt i 5 minutter. Reaksjonsløsningen ble konsentrert in vacuo for å gi en oransje olje. Resten ble oppløst i metyl-t-butyleter (500 ml) og ekstrahert med IN HCl (318 ml) og vann (1 x 200 ml, 1 x 100 ml). De vandige ekstraktene ble tilbakevasket med MTBE (100 ml). Til den vandige løsningen ble fast NaHC03 (40,1 g, 478 mmol) tilsatt i små porsjoner. Den basiske vandige blandingen ble ekstrahert med MTBE (lx 11, 2 x 200 ml). Den kombinerte organiske løsningen ble vasket med saltløsning og konsentrert in vacuo for å gi det ønskede produktet (23,3 g, 68% utbytte). To a solution of the compounds obtained in step 1 (48.5 g, 106.2 mmol) in CH 2 Cl 2 (450 mL) was added trimethylsilyl iodide via cannula. The orange solution was stirred at room temperature for one hour. Methanol (20.6 mL, 509.7 mmol) was added dropwise and the solution stirred for 5 minutes. The reaction solution was concentrated in vacuo to give an orange oil. The residue was dissolved in methyl t-butyl ether (500 mL) and extracted with 1N HCl (318 mL) and water (1 x 200 mL, 1 x 100 mL). The aqueous extracts were backwashed with MTBE (100 mL). To the aqueous solution was added solid NaHCO 3 (40.1 g, 478 mmol) in small portions. The basic aqueous mixture was extracted with MTBE (lx 11, 2 x 200 mL). The combined organic solution was washed with brine and concentrated in vacuo to give the desired product (23.3 g, 68% yield).

<X>H NMR var konsistent med den foreslåtte strukturen. <X>H NMR was consistent with the proposed structure.

Trinn 3 Step 3

Fremstilling av Manufacture of

Til en løsning av produktet fra trinn 2 (23,3 g, 72,1 mmol) i DMF (200 ml) ble N-t-Boc-glysin N-hydroksysuccinimid ester (17,9 g, 65,9 mmol) tilsatt. Reaksjonsblandingen ble rørt ved romtemperatur i 20 timer. Blandingen ble tømt i To a solution of the product from step 2 (23.3 g, 72.1 mmol) in DMF (200 mL) was added N-t-Boc-glycine N-hydroxysuccinimide ester (17.9 g, 65.9 mmol). The reaction mixture was stirred at room temperature for 20 hours. The mixture was poured into

etylacetat {1,2 1) og vasket med IM HCl (2 x 250 ml), mettet vandig NaHC03-løsning (2 x 250 ml) og saltløsning (2 x 250 ml) . Løsningen ble tørket (MgS04) og konsentrert for å gi det ønskede produktet {32,0 g, 100% utbytte). ethyl acetate {1.2 L) and washed with 1M HCl (2 x 250 mL), saturated aqueous NaHCO 3 solution (2 x 250 mL) and brine (2 x 250 mL). The solution was dried (MgSO 4 ) and concentrated to give the desired product {32.0 g, 100% yield).

Anal. beregnet for Ci8H24BrClN206: Anal. calculated for Ci8H24BrClN206:

C, 45,06; H, 5,04; N, 5,84. C, 45.06; H, 5.04; N, 5.84.

Funnet: C, 45,17; H, 5,14; N, 6,12. Found: C, 45.17; H, 5.14; N, 6,12.

<*>H NMR var konsistent med den ønskede strukturen. <*>H NMR was consistent with the desired structure.

Trinn 4 Step 4

Til en løsning av produktet fra trinn 3 {31,9 g, 66,5 mmol), i absolutt etanol (205 ml) ble tilsatt en etanolisk HCl løsning (111 ml av en 3M løsning, 332,4 mmol). Reak-sjonsløsningen ble varmet ved 58°C i 30 minutter. Løsningen ble kjølt og konsentrert in vacuo resten ble oppløst i etylacetat (250 ml) og rørt ved 0°C i to timer. Et hvitt bunnfall ble samlet ved filtrering pg vasket med kald etylacetat. Løsningen ble tørket in vacuo for å gi det ønskede produktet (23,5 g, 85% utbytte). To a solution of the product from Step 3 (31.9 g, 66.5 mmol), in absolute ethanol (205 mL) was added an ethanolic HCl solution (111 mL of a 3M solution, 332.4 mmol). The reaction solution was heated at 58°C for 30 minutes. The solution was cooled and concentrated in vacuo, the residue was dissolved in ethyl acetate (250 ml) and stirred at 0°C for two hours. A white precipitate was collected by filtration and washed with cold ethyl acetate. The solution was dried in vacuo to give the desired product (23.5 g, 85% yield).

Anal. beregnet for C13Hi6BrClN204 + 1,0 HCl: Anal. calculated for C13Hi6BrClN204 + 1.0 HCl:

C, 37,53; H, 4,12; N, 6,73. C, 37.53; H, 4.12; N, 6.73.

Funnet: C, 37,29; H, 4,06; N, 6,68. Found: C, 37.29; H, 4.06; N, 6.68.

<X>H NMR var konsistent med den ønskede strukturen. <X>H NMR was consistent with the desired structure.

Eksempel L Example L

Fremstilling av Manufacture of

Trinn 1 Fremstilling av Step 1 Preparation of

Kaliumkarbonat (pulver, ovnstørket ved 100°C under vakuum, 22,1 g, 0,16 mol) ble tilsatt til en løsning av 3-klor-5-bromsalisylaldehyd (35,0 g, 0,15 mol) i DMF (175 ml) ved romtemperatur for å gi en klar gul slurry. MEMCl (rent, 25,0 g, 0,2 mol) ble så tilsatt mens bad-temperaturen opprettholdes på 20°C. Blandingen ble så rørt ved 22°C i 6 timer og ble tømt i DI vann (1200 ml) for å felle ut produktet. Slurryen ble filtrert på et trykkfilter og kaken ble vasket med DI vann (2 x 400 ml) og så tørket under N2/vakuum for å gi produktet (46,0 g, 95% utbytte) som et offwhite faststoff. <X>H NMR (CDC13, TMS) 3,35 (s,3H), 3,54 til 3,56 (m, 2H), 3,91 til 3,93(m, 2H), 5,30 (s,2H), 7,77 (d, 1H) , 7,85 (d, 1H) , 10,30 (s,lH); 13 C NMR (CDC13, TMS)(ppm): 59,05, 70,11, 71,49, 99,50, 117,93, 129,69, 129,78, 132,37, 138,14, 155,12 188,22. DSC: 48,24°C (endo 90,51 J/g); Potassium carbonate (powder, oven dried at 100°C under vacuum, 22.1 g, 0.16 mol) was added to a solution of 3-chloro-5-bromosalicylaldehyde (35.0 g, 0.15 mol) in DMF (175 ml) at room temperature to give a clear yellow slurry. MEMCl (pure, 25.0 g, 0.2 mol) was then added while maintaining the bath temperature at 20°C. The mixture was then stirred at 22°C for 6 hours and was poured into DI water (1200 mL) to precipitate the product. The slurry was filtered on a pressure filter and the cake was washed with DI water (2 x 400 mL) and then dried under N 2 /vacuum to give the product (46.0 g, 95% yield) as an off-white solid. <X>H NMR (CDCl 3 , TMS) 3.35 (s, 3H), 3.54 to 3.56 (m, 2H), 3.91 to 3.93 (m, 2H), 5.30 (s , 2H), 7.77 (d, 1H), 7.85 (d, 1H), 10.30 (s, 1H); 13 C NMR (CDCl 3 , TMS)(ppm): 59.05, 70.11, 71.49, 99.50, 117.93, 129.69, 129.78, 132.37, 138.14, 155, 12,188.22. DSC: 48.24°C (endo 90.51 J/g);

Mikroanalytisk : beregnet for CuHuBrClNO*: Microanalytical : calculated for CuHuBrClNO*:

C: 40,82%; H:3,74%; Cl:10,95% Br:24,69%; funnet: C:40,64%; H:3,48%; Cl:10,99% Br:24,67%. Trinn 2 Fremstilling av C: 40.82%; H:3.74%; Cl:10.95% Br:24.69%; found: C:40.64%; H:3.48%; Cl:10.99% Br:24.67%. Step 2 Preparation of

Produktet fra trinn 1 (32,35 g, 0,1 mol) ble fylt i en 500 ml 3-halset rundkolbe utstyrt med en mekanisk rører, fulgt av tilsetning av THF(190 ml) og (S)-fenylglykinol (13,71 g, 0,1 mol) . Etter 30 minutter ved 22°C ble MgSO4(20 g) tilsatt. Blandingen ble rørt i en time ved 22°C og filtrert på et grovt frittet filter. Filtratet ble konsentrert under redusert trykk for å gi en blek-gul olje (48,0 g) inneholdende det ønskede iminet. Ingen videre rensing ble utført og det ubearbeidede produktet ble anvendt direkte i det neste reaksjonstrinnet. The product from step 1 (32.35 g, 0.1 mol) was charged to a 500 mL 3-necked round bottom flask equipped with a mechanical stirrer, followed by the addition of THF (190 mL) and (S)-phenylglyquinol (13.71 g, 0.1 mol). After 30 minutes at 22°C, MgSO4 (20 g) was added. The mixture was stirred for one hour at 22°C and filtered on a coarse fritted filter. The filtrate was concentrated under reduced pressure to give a pale yellow oil (48.0 g) containing the desired imine. No further purification was carried out and the crude product was used directly in the next reaction step.

Mikroanalytisk : beregnet for Ci9H2iBrClN04: Microanalytical: calculated for Ci9H2iBrClN04:

C: 51,54%; H:4,78%; N:3,16%; Br:18,04%; Cl:8,00% funnet: C:51,52%; H:5,02%; N:2,82%; Br:16,31%; Cl:7,61%. C: 51.54%; H:4.78%; N:3.16%; Br:18.04%; Cl:8.00% found: C:51.52%; H:5.02%; N:2.82%; Br:16.31%; Cl: 7.61%.

Trinn 3 Step 3

Fremstilling av Manufacture of

I en 5 1 3-halset rundkolbe utstyrt med en mekanisk rører, ble reagens fra eksempel I, trinn 1, (332 g, 0,8 mol) tatt opp i NMP (660 ml) under nitrogen. Løsningen ble så kjølt til -10 °C. En løsning av imin fremstilt i trinn 2, i NMP (320 ml) ble fremstilt under nitrogen og så tilsatt i løpet av 30 minutter til den ovennevnte reaksjonsblandingen mens temperaturen ble opprettholdt ved -5 °C. Blandingen ble rørt i ytterligere 1 time etter tilsetningen var fullstendig og kjølt til -10 °C. En blanding av konsentrert HCl/ mettet løsning av NH4C1(30 ml/720 ml) ble tilsatt i løpet av 10 minutter. MTBE(760 ml) ble tilsatt og blandingen ble rørt i l time ved 23°C. Røring ble stoppet og fasene ble separert. Den vandige fasen ble ekstrahert med MTBE (320 ml) . De to organiske fasene ble kombinert, vasket suksessivt med en mettet løsning av NH4C1 (320 ml), DI-vann (320 ml) og saltløsning (320 ml). Løsningen ble tørket med MgSO4{60 g), filtrert og konsentrert for å gi en gul olje (228 g) inneholdende det ønskede produktet som en enkelt diastereoisomer. DSC:227,54°C (endo.61,63 J/g) ; In a 5 L 3 neck round bottom flask equipped with a mechanical stirrer, reagent from Example I, Step 1, (332 g, 0.8 mol) was taken up in NMP (660 mL) under nitrogen. The solution was then cooled to -10 °C. A solution of the imine prepared in step 2, in NMP (320 mL) was prepared under nitrogen and then added over 30 minutes to the above reaction mixture while maintaining the temperature at -5 °C. The mixture was stirred for an additional 1 hour after the addition was complete and cooled to -10 °C. A mixture of concentrated HCl/saturated solution of NH 4 Cl (30 mL/720 mL) was added over 10 minutes. MTBE (760 ml) was added and the mixture was stirred for 1 hour at 23°C. Stirring was stopped and the phases were separated. The aqueous phase was extracted with MTBE (320 mL). The two organic phases were combined, washed successively with a saturated solution of NH 4 Cl (320 mL), DI water (320 mL) and brine (320 mL). The solution was dried with MgSO 4 {60 g), filtered and concentrated to give a yellow oil (228 g) containing the desired product as a single diastereoisomer. DSC: 227.54°C (endo.61.63 J/g);

Mikroanalytisk : beregnet for C25H33BrClN06: Microanalytical: calculated for C25H33BrClN06:

C: 53,72%; H:5,95%; N:2,50%; Br:14,29%; Cl:6,33% funnet: C:53,80%; H:6,45%; N:2,23%; Br: 12,85%; Cl:6,12%. C: 53.72%; H:5.95%; N:2.50%; Br:14.29%; Cl:6.33% found: C:53.80%; H:6.45%; N:2.23%; Br: 12.85%; Cl: 6.12%.

Trinn 4 Step 4

Fremstilling av Manufacture of

En løsning av ubearbeidet ester, fremstilt i trinn 3 (~111 A solution of crude ester, prepared in step 3 (~111

g), i etanol (1500 ml) ble fylt under nitrogen atmosfære til en 3 1 3-halset rundbunnflaske utstyrt med en mekanisk g), in ethanol (1500 mL) was filled under a nitrogen atmosphere into a 3 1 3-necked round-bottom flask equipped with a mechanical

rører. Reaksjonsblandingen ble kjølt til 0°C og bly tetra-acetat (88,67 g, 0,2 mol) ble tilsatt i en omgang. Reaksjonsblandingen ble rørt i 3 timer ved 0°C og så ble 15% stirring. The reaction mixture was cooled to 0°C and lead tetraacetate (88.67 g, 0.2 mol) was added in one portion. The reaction mixture was stirred for 3 hours at 0°C and then 15%

vandig NaOH (150 ml) tilsatt til reaksjonsblandingen under 5°C. Etanolen ble fjernet under redusert trykk på rotasjonsfordamper. Ytterligere 600 ml av 15% vandig NaOH ble tilsatt og reaksjonsblandingen ble ekstrahert med etylacetat (2 x 300 ml), MTBE (2 x 200 ml) og etylacetat (2 x 200 ml). De organiske fasene ble kombinert og vasket med DI vann (2 x 200 ml) og saltløsning (2 x 100 ml) og tørket over vannfri MgS04 (30 g) . Løsningen ble så filtrert over celit og konsentrert under redusert trykk for å gi produktet som en oransje olje (96 g) som ble anvendt i neste trinn uten videre rensing. aqueous NaOH (150 mL) added to the reaction mixture below 5°C. The ethanol was removed under reduced pressure on a rotary evaporator. An additional 600 mL of 15% aqueous NaOH was added and the reaction mixture was extracted with ethyl acetate (2 x 300 mL), MTBE (2 x 200 mL) and ethyl acetate (2 x 200 mL). The organic phases were combined and washed with DI water (2 x 200 ml) and brine (2 x 100 ml) and dried over anhydrous MgSO 4 (30 g). The solution was then filtered over celite and concentrated under reduced pressure to give the product as an orange oil (96 g) which was used in the next step without further purification.

DSC:233,60°C (endo. 67,85 Jg); DSC: 233.60°C (endo. 67.85 µg);

Mikroanalytisk : beregnet for C24H29BrClN05: Microanalytical: calculated for C24H29BrClN05:

C:54,71%; H:5,54%; N:2,65%; Br:15,16%; Cl:6,72% funnet: C:52,12%; H:5,40%; N:2,47%; Br:14,77%; Cl:6,48%. C:54.71%; H:5.54%; N:2.65%; Br:15.16%; Cl:6.72% found: C:52.12%; H:5.40%; N:2.47%; Br:14.77%; Cl: 6.48%.

Trinn 5 Step 5

Fremstilling av Manufacture of

Det ubearbeidede produktet fra trinn 4 (~94 g) ble tatt opp i absolutt etanol (180 ml) og para-toluensulfonsyre-monohydrat (50,0 g, 0,26 mol) ble tilsatt. Reaksjonsblandingen ble så varmet til refluks i 8 timer etter dette ble løs-ningsmidlet fjernet under redusert trykk. Restfaststoffet ble tatt opp i THF (100 ml) og THF ble så strippet av under redusert trykk. Resten ble oppløst i etylacetat (500 ml) og kjølt til -5°C. Faststoffet ble filtrert og vasket med heptan (2 x 50 ml) for å gi et hvitt faststoff. Faststoffet ble så lufttørket for å gi det ønskede produktet som et hvitt faststoff (38 g) som en enkelt isomer.Hl NMR (DMSO, TMS)(ppm)1,12 (t,3H), 2,29(s,3H), 3,0 (m,2H), 4,05 (q,2H), The crude product from step 4 (~94 g) was taken up in absolute ethanol (180 mL) and para-toluenesulfonic acid monohydrate (50.0 g, 0.26 mol) was added. The reaction mixture was then heated to reflux for 8 hours after which the solvent was removed under reduced pressure. The residual solid was taken up in THF (100 mL) and the THF was then stripped off under reduced pressure. The residue was dissolved in ethyl acetate (500 mL) and cooled to -5°C. The solid was filtered and washed with heptane (2 x 50 mL) to give a white solid. The solid was then air dried to give the desired product as a white solid (38 g) as a single isomer. H1 NMR (DMSO, TMS)(ppm) 1.12 (t,3H), 2.29 (s,3H) , 3.0 (m,2H), 4.05 (q,2H),

4,88 (t,lH), 7,11 (d,2H), 7,48 (d,2H), 7,55 (D,1H), 7,68 (lH,d), 8,35 (br.s,3); <13>C NMR (DMSO, TMS) (ppm) : 13,82, 20,75, 37,13, 45,59, 60,59, 110,63, 122,47, 125,44, 127,87, 128,06, 129,51, 131,95, 137,77, 145,33, 150,14, 168,98; 4.88 (t,lH), 7.11 (d,2H), 7.48 (d,2H), 7.55 (D,1H), 7.68 (lH,d), 8.35 (br .s,3); <13>C NMR (DMSO, TMS) (ppm) : 13.82, 20.75, 37.13, 45.59, 60.59, 110.63, 122.47, 125.44, 127.87, 128.06, 129.51, 131.95, 137.77, 145.33, 150.14, 168.98;

DSC: 69,86°C (end.,406,5 J/g), 165,72°C (end. 62,27 J/g), 211,24°C (ekso.20,56 j/g) [a] D25= + 4,2° (c=0,960,MeOH) ; IR (MIR) {cm-D 2922, 1726, 1621, 1591, 1494, 1471, 1413, 1376, 1324, 1286, 1237, 1207; DSC: 69.86°C (end.,406.5 J/g), 165.72°C (end. 62.27 J/g), 211.24°C (ex.20.56 j/g) [a] D25 = + 4.2° (c=0.960, MeOH) ; IR (MIR) {cm-D 2922, 1726, 1621, 1591, 1494, 1471, 1413, 1376, 1324, 1286, 1237, 1207;

Mikroanalytisk: beregnet for CiBH21BrClN06S: Microanalytical: calculated for CiBH21BrClN06S:

C:43,69%; H:4,27%; N:2,83%; Br:16,15%; Cl:7,16%; S:6,48% funnet: C:43,40%; H:4,27%; N:2,73%; Br.-16,40%; Cl:7,20%; S:6, 54% C:43.69%; H:4.27%; N:2.83%; Br:16.15%; Cl:7.16%; S:6.48% found: C:43.40%; H:4.27%; N:2.73%; Br.-16.40%; Cl:7.20%; S:6, 54%

Trinn 6 Step 6

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til fremgangsmåtene fremlagt i eksempel I, trinn 4 og trinn 5 hvor en ekvivalent mengde av mellomproduktet fremstilt i trinn 5 som den frie basen blir substituert.i eksempel I, trinn 4. The above compound was prepared according to the procedures set forth in Example I, Step 4 and Step 5 where an equivalent amount of the intermediate prepared in Step 5 as the free base is substituted in Example I, Step 4.

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel M Example M

Fremstilling av Manufacture of

Trinn 1 Step 1

Fremstilling av 3-jod-5-klorsalisylaldehyd. Preparation of 3-iodo-5-chlorosalicylaldehyde.

N-jodsuccinimid (144,0 g, 0,641 mol) ble tilsatt til en løsning av 5-klorsalisylaldehyd (100 g, 0,638 mol) i dimetylformamid (400 ml). Reaksjonsblandingen ble rørt i to døgn ved romtemperatur. Ytterligere N-jodsuccinimid (20,0 g) ble tilsatt og røring fortsatte i ytterligere to døgn. Reaksjonsblandingen ble fortynnet med etylacetat (1 1), vasket med saltsyre (300 ml, 0,1N), vann (300 ml), natriumtiosulfat (5%, 300 ml), saltløsning (300 ml), tørket (MgS04) og konsentrert til tørrhet for å gi det ønskede aldehydet som et blek-gult faststoff (162 g, 90% utbytte). N-iodosuccinimide (144.0 g, 0.641 mol) was added to a solution of 5-chlorosalicylaldehyde (100 g, 0.638 mol) in dimethylformamide (400 mL). The reaction mixture was stirred for two days at room temperature. Additional N-iodosuccinimide (20.0 g) was added and stirring continued for another two days. The reaction mixture was diluted with ethyl acetate (1 L), washed with hydrochloric acid (300 mL, 0.1N), water (300 mL), sodium thiosulfate (5%, 300 mL), brine (300 mL), dried (MgSO 4 ), and concentrated to dryness to give the desired aldehyde as a pale yellow solid (162 g, 90% yield).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 2 Step 2

Fremstilling av 2-0-(MEM)-3-jod-5-klorsalisylaldehyd. Preparation of 2-O-(MEM)-3-iodo-5-chlorosalicylaldehyde.

Kaliumkarbonat (41,4 g, 0,30 mol) ble tilsatt til en løs-ning av 3-jod-5-klorsalisylaldehyd (84,74 g, 0,30 mol) i DMF (200 ml) ved 20°C. Dette resulterte i en gul slurry og MEM-C1 (38,2 g, 0,305 moi) ble tilsatt mens reaksjonstempe-raturen opprettholdes. Etter to timer, ble ytterligere MEMCl (1,5 g) tilsatt. Etter røring i en time, ble reaksjonsblandingen tømt i en is-vann blanding og rørt. Bunnfallet som ble dannet, filtrert og tørket in vacuo for å gi det ønskede beskyttede aldehydet. Utbytte: 95 g (85%). Potassium carbonate (41.4 g, 0.30 mol) was added to a solution of 3-iodo-5-chlorosalicylaldehyde (84.74 g, 0.30 mol) in DMF (200 mL) at 20°C. This resulted in a yellow slurry and MEM-C1 (38.2 g, 0.305 moi) was added while maintaining the reaction temperature. After two hours, additional MEMCl (1.5 g) was added. After stirring for one hour, the reaction mixture was poured into an ice-water mixture and stirred. The precipitate that formed was filtered and dried in vacuo to give the desired protected aldehyde. Yield: 95 g (85%).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 3 Step 3

Fremstilling av Manufacture of

(S)-fenylglysinol {15,37 g, 0,112 mol) ble tilsatt til en løsning av 2-0-(MEM)-3-jod-5-klorsalisylaldehyd (41,5 g, 0,112 mol) i THF (200 ml) ved romtemperatur. Etter en time med røring ble MgS04 (16 g) tilsatt og røringen fortsatte i to timer. Reaksjonsblandingen ble filtrert og filtratet ble konsentrert og ble tørket in vacuo i to timer for å gi det ønskede mellomproduktiminet. En 2-halset rundkolbe ble fylt med Reformatsky-reagenset fra eksempel I, trinn 1, (81,1 g, 0,2464 mol), og rørt ved -lO^C. En løsning av iminet i N-metylpyrrolidon (100 ml) ble sakte tilsatt mens temperaturen opprettholdes ved -10°C. Blandingen ble opprettholdt ved denne temperaturen i to timer og i en time ved -5°C. Etter kjøling av reaksjonsblandingen til -10°C, ble en løsning av konsentrert HCl i mettet ammoniumklorid (16 ml/200 ml) tilsatt. Etyleter (500 ml) ble tilsatt og rørt i to timer ved romtemperatur. Eterfasen ble separert og den vandige fasen ble videre ekstrahert med eter (300 nil) . De kombinerte eterfåsene ble vasket med mettet ammoniumklorid (200 ml), vann (200 ml), saltløsning {200 ml) tør-ket (MgS04) og konsentrert for å gi en olje (61,0 g, 90% utbytte). Hl NMR indikerte at den ønskede strukturen i alt vesentlig var en diastereomer og MS var samsvarende med den ønskede strukturen. Trinn 4 Fremstilling av (S)-Phenylglycinol {15.37 g, 0.112 mol) was added to a solution of 2-O-(MEM)-3-iodo-5-chlorosalicylaldehyde (41.5 g, 0.112 mol) in THF (200 mL) at room temperature. After one hour of stirring, MgSO 4 (16 g) was added and stirring was continued for two hours. The reaction mixture was filtered and the filtrate was concentrated and dried in vacuo for two hours to give the desired intermediate imine. A 2-necked round bottom flask was charged with the Reformatsky reagent from Example I, Step 1, (81.1 g, 0.2464 mol), and stirred at -10°C. A solution of the imine in N-methylpyrrolidone (100 mL) was slowly added while maintaining the temperature at -10°C. The mixture was maintained at this temperature for two hours and for one hour at -5°C. After cooling the reaction mixture to -10°C, a solution of concentrated HCl in saturated ammonium chloride (16 mL/200 mL) was added. Ethyl ether (500 ml) was added and stirred for two hours at room temperature. The ether phase was separated and the aqueous phase was further extracted with ether (300 nil). The combined ether layers were washed with saturated ammonium chloride (200 mL), water (200 mL), brine (200 mL), dried (MgSO 4 ) and concentrated to give an oil (61.0 g, 90% yield). H1 NMR indicated that the desired structure was essentially a diastereomer and MS was consistent with the desired structure. Step 4 Preparation of

En løsning av den ubearbeidede esteren fremstilt i trinn 3 (48,85 g, 80,61 mol) ble oppløst i etanol (500 ml) og ble kjølt til 0°C. Bly (35,71 g, 80,61 mmol) ble tilsatt. Etter 3 timer ble 15% løsning av NaOH (73 ml) tilsatt til reaksjonsblandingen. Det meste av etanolen ble fjernet under redusert trykk. Til resten ble en 15% løsning av NaOH (200 ml) tilsatt og denne ble så ekstrahert med eter (400 ml). Eterfasen ble vasket med vann (100 ml), saltløsning (100 ml), tørket og konsentrert for å gi en oransje olje. Oljen ble løst opp i etanol (100 ml) og para-toluensulfonsyre (19,9 g) ble tilsatt. Løsningen ble varmet ved refluks i 8 timer og konsentrert under redusert trykk. Resten ble fortynnet med THF (60 ml) og varmet ved refluks og kjølt. Bunnfallet ble filtrert, vasket med heksan (300 ml, 1:1) og tørket for å gi det ønskede produktet. A solution of the crude ester prepared in step 3 (48.85 g, 80.61 mol) was dissolved in ethanol (500 mL) and cooled to 0°C. Lead (35.71 g, 80.61 mmol) was added. After 3 hours, 15% solution of NaOH (73 mL) was added to the reaction mixture. Most of the ethanol was removed under reduced pressure. To the residue a 15% solution of NaOH (200 ml) was added and this was then extracted with ether (400 ml). The ether phase was washed with water (100 mL), brine (100 mL), dried and concentrated to give an orange oil. The oil was dissolved in ethanol (100 ml) and para-toluenesulfonic acid (19.9 g) was added. The solution was heated at reflux for 8 hours and concentrated under reduced pressure. The residue was diluted with THF (60 mL) and heated at reflux and cooled. The precipitate was filtered, washed with hexane (300 mL, 1:1) and dried to give the desired product.

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Trinn 5 Step 5

S-Etyl 3-(N-BOC-gly)-amino-3-(S)-(5-klor-2-hydroksy-3-jod)fenylpropionat S-Ethyl 3-(N-BOC-gly)-amino-3-(S)-(5-chloro-2-hydroxy-3-iodo)phenylpropionate

Til en blanding av BOC-gly-OSu(9,4 g, 34,51 mmol), etyl 3-(S)-amino-3-(5-klor-2-hydroksy-3-jod)propionat-PTSA-salt (17,0 g, 31,38 mol) i DMF (200 ml) ble trietylen (4,8 ml) tilsatt. Reaksjonsblandingen ble rørt i 18 timer ved romtemperatur. DMS ble fjernet in vacuo og resten ble delt mellom etylacetat (600 ml) og fortynnet saltsyre (100 ml). Den organiske fasen ble vasket med natriumbikarbonat (200 ml) , salt løsning (200 ml) , tørket (MgS04) og ble konsentrert for å gi det ønskede produktet som et faststoff To a mixture of BOC-gly-OSu (9.4 g, 34.51 mmol), ethyl 3-(S)-amino-3-(5-chloro-2-hydroxy-3-iodo)propionate PTSA salt (17.0 g, 31.38 mol) in DMF (200 mL) triethylene (4.8 mL) was added. The reaction mixture was stirred for 18 hours at room temperature. DMS was removed in vacuo and the residue was partitioned between ethyl acetate (600 mL) and dilute hydrochloric acid (100 mL). The organic phase was washed with sodium bicarbonate (200 mL), brine (200 mL), dried (MgSO 4 ) and concentrated to give the desired product as a solid.

(14,2 g, 86% utbytte). (14.2 g, 86% yield).

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Trinn 6 Step 6

S-etyl 3-(N-gly)-amino-3-(5-klor-2-hydroksy-3-jod)fenylpropionat-hydroklorid. S-ethyl 3-(N-gly)-amino-3-(5-chloro-2-hydroxy-3-iodo)phenylpropionate hydrochloride.

Dioksan/HCl (4N, 70 ml) ble tilsatt til etyl 3-(S)-(N-BOC-gly) -amino-3-(5-klor-2-hydroksy-3-jod)fenylpropionat (37,20 g, 70,62 mmol) ved 0°C og rørt ved romtemperatur i tre timer. Reaksjonsblandingen ble konsentrert og konsentrert en gang til etter tilsetting av toluen (100 ml). Resten oppnådd ble suspendert i eter, filtrert og tørket for å gi det ønskede produktet som et krystallinsk pulver (32,0 g, 98% utbytte). Dioxane/HCl (4N, 70 mL) was added to ethyl 3-(S)-(N-BOC-gly)-amino-3-(5-chloro-2-hydroxy-3-iodo)phenylpropionate (37.20 g , 70.62 mmol) at 0°C and stirred at room temperature for three hours. The reaction mixture was concentrated and concentrated once more after addition of toluene (100 mL). The residue obtained was suspended in ether, filtered and dried to give the desired product as a crystalline powder (32.0 g, 98% yield).

MS og <X>R NMR var konsistente med den ønskede strukturen. MS and <X>R NMR were consistent with the desired structure.

Eksempel N Example N

Fremstilling av Manufacture of

Trinn 1 Fremstilling av Ovennevnte forbindelse ble fremstilt i henhold til eksempel I, trinn 2A, substituerende en ekvivalent mengde av 2-hydroksy-3,5-dibrombenzaldehyd for 3,5-diklorsalisylaldehyd. Utbytte: 88%; blekt gult faststoff; smp. 46-47°C; Rf = 0,6 (EtOAc/heksan 1:1 v/v); Hl-NMR (CDC13) d 3,37 (s, 3H) , 3,56 (m, 2H), 3,92 (m, 2H), 5,29 (s, 2H), 7,91 (d, 1H, J = 2,4 Hz), 7,94 {d, 1H, J = 2,4 Hz), 10,27 <S, 1H); FAB-MS m/ z 367 (M<*>) Step 1 Preparation of The above compound was prepared according to Example I, Step 2A, substituting an equivalent amount of 2-hydroxy-3,5-dibromobenzaldehyde for 3,5-dichlorosalicylaldehyde. Yield: 88%; pale yellow solid; m.p. 46-47°C; Rf = 0.6 (EtOAc/hexane 1:1 v/v); H1-NMR (CDCl 3 ) d 3.37 (s, 3H), 3.56 (m, 2H), 3.92 (m, 2H), 5.29 (s, 2H), 7.91 (d, 1H , J = 2.4 Hz), 7.94 {d, 1H, J = 2.4 Hz), 10.27 <S, 1H); FAB-MS m/z 367 (M<*>)

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 2 Step 2

Ovennevnte forbindelse ble fremstilt ved anvendelse av fremgangsmåten for eksempel I, trinn 2B og trinn 2C, substituerende en ekvivalent mengde av forbindelsen i trinn 1 i eksempel I, trinn 2B. The above compound was prepared using the procedure of Example I, Step 2B and Step 2C, substituting an equivalent amount of the compound in Step 1 into Example I, Step 2B.

Utbytte 90%; gult faststoff; smp.57-59°C; Rf = 0,46 (EtOAc/ heksan 1:1 v/v); <*>H-NMR {CDC13) d 1,45 (s, 9H) ; 2,1 {br, 1H utbyttbar), 2,51 {d, 1H, Jj. = 9,9 Hz, J2 = 15,3 Hz), 2,66 Yield 90%; yellow solid; m.p. 57-59°C; Rf = 0.46 (EtOAc/hexane 1:1 v/v); <*>H-NMR (CDCl 3 ) d 1.45 (s, 9H); 2.1 {br, 1H exchangeable), 2.51 {d, 1H, Jj. = 9.9 Hz, J2 = 15.3 Hz), 2.66

(d, 1H, Ji = 4,2 Hz, J2 = 15,3 Hz), 3,02 {br, 1H, utbyttbar), 3,39 {s, 3H), 3,58-3,62 (m, 4H), 3,81 (m, 1H), 3,93 (m, 2H), 4,63 {dd, 1H, J = 4,2 Hz), 5,15 (s, 2H), 7,17-7,25 (m, 6H), 7,49 {d, 1H); FAB-MS m/ z 602 ((M + H) (d, 1H, Ji = 4.2 Hz, J2 = 15.3 Hz), 3.02 {br, 1H, exchangeable), 3.39 {s, 3H), 3.58-3.62 (m, 4H), 3.81 (m, 1H), 3.93 (m, 2H), 4.63 {dd, 1H, J = 4.2 Hz), 5.15 (s, 2H), 7.17- 7.25 (m, 6H), 7.49 (d, 1H); FAB-MS m/z 602 ((M + H)

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 3 Step 3

Fremstilling av Manufacture of

Ovennevnte forbindelse {p-toluensulfonatsalt) ble fremstilt i henhold til eksempel I, trinn 3 ved å substituere en ekvivalent mengde av produktet fremstilt i trinn 2 i eksempel I, trinn 3A. Utbytte 62%; hvitt faststoff; <*>H-NMR (DMSO-de) d 1,09 (t, 3H, J = 7,2 Hz) , 2,27 (s, 3H) , 2,97 (dd, 2H, Ji = 3,0 Hz, J2 = 7,2 Hz), 4,02 {q, 2H, J = 7,2 Hz), 4,87 (t, 1H, J = 7,2 Hz), 7,08 (d, 2H, J = 4,8 Hz), 7,45 {m, 3H), 7,57 {d, 1H, J = 2,4 Hz), 8,2 (br, 3H); FAB-MS m/ z 365 (M + H) The above compound (p-toluenesulfonate salt) was prepared according to Example I, Step 3 by substituting an equivalent amount of the product prepared in Step 2 into Example I, Step 3A. Yield 62%; white solid; <*>H-NMR (DMSO-de) d 1.09 (t, 3H, J = 7.2 Hz) , 2.27 (s, 3H) , 2.97 (dd, 2H, Ji = 3.0 Hz, J2 = 7.2 Hz), 4.02 {q, 2H, J = 7.2 Hz), 4.87 (t, 1H, J = 7.2 Hz), 7.08 (d, 2H, J = 4.8 Hz), 7.45 {m, 3H), 7.57 {d, 1H, J = 2.4 Hz), 8.2 (br, 3H); FAB-MS m/z 365 (M + H)

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Trinn 4 Step 4

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt ved anvendelse av fremgangsmåten til eksempel I, trinn 4 substituerende forbindelsen fremstilt i trinn 3. Det resulterende BOC-beskyttede mellomproduktet, ble omdannet til den ønskede forbindelsen ved anvendelse av fremgangsmåten i eksempel I, trinn 5. The above compound was prepared using the procedure of Example I, Step 4 substituting the compound prepared in Step 3. The resulting BOC-protected intermediate was converted to the desired compound using the procedure of Example I, Step 5.

MS og ^ NMR var konsistente med den ønskede strukturen. MS and ^NMR were consistent with the desired structure.

Eksempel P Example P

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til fremgangsmåten til eksempel I ved å substituere en ekvivalent mengde av 3-jod-5-bromsalisylaldehyd fremstilt i eksempel F, trinn 1 med 3,5-diklorsalisylaldehyd i eksempel I, trinn 2A. The above compound was prepared according to the procedure of Example I by substituting an equivalent amount of 3-iodo-5-bromosalicylaldehyde prepared in Example F, Step 1 with 3,5-dichlorosalicylaldehyde in Example I, Step 2A.

Eksempel 1 Example 1

( ±) 3- brom- 5- klor- 2- hvdroksv- p- r\ 2 - f fr3- hydroksv- 5 r( 1. 4, 5, 6-tetrahvdro- 5- hydoksypyrimidin- 2- yl) amino] fenvl] karbonyl] amino]- acetyl] amino] benzenpropansyre. trifluoracetatsalt Fremstilling av ( ±) 3- bromo- 5- chloro- 2- hydroxy- p- r\ 2 - f fr3- hydroxy- 5 r( 1. 4, 5, 6-tetrahydro- 5- hydroxypyrimidin- 2- yl) amino] phenvl ] carbonyl] amino]- acetyl] amino] benzenepropanoic acid. trifluoroacetate salt Preparation of

Til produktet fra eksempel H (0,4 g, 0,0014 mol), ble produktet fra eksempel B (0,58 g, 0,0014 mol), trietylamin (0,142 g, 0,0014 mol), DMAP (17 mg), og vannfri DMA (4 ml) tilsatt EDC1 (0,268 g, 0,0014 mol) ved isbadtemperatur. Reaksjonen ble rørt over natten ved romtemperatur. Det resulterende estermellomproduktet ble isolert ved omvendt fase preparativ HPLC. Til denne esteren i H20 (10 ml) og CH3CN To the product of Example H (0.4 g, 0.0014 mol), the product of Example B (0.58 g, 0.0014 mol), triethylamine (0.142 g, 0.0014 mol), DMAP (17 mg) , and anhydrous DMA (4 mL) added EDC1 (0.268 g, 0.0014 mol) at ice bath temperature. The reaction was stirred overnight at room temperature. The resulting ester intermediate was isolated by reverse phase preparative HPLC. To this ester in H 2 O (10 mL) and CH 3 CN

(5 ml) ble LiOH (580 mg, 0,0138 mol) tilsatt. Etter røring ved romtemperatur i en time ble pH senket til 2 med TFA og produktet ble renset ved omvendt fase preparativ HPLC for å gi (etter lyofilisering) det ønskede produktet som et hvitt faststoff (230 mg). (5 mL) LiOH (580 mg, 0.0138 mol) was added. After stirring at room temperature for one hour, the pH was lowered to 2 with TFA and the product was purified by reverse phase preparative HPLC to give (after lyophilization) the desired product as a white solid (230 mg).

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Eksempel 2 Example 2

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til metodikken i eksempel 1, ved å bytte en ekvivalent mengde av produktet fra eksempel A med produktet fra eksempel B. Utbyttet etter lyofilisering var 320 mg som et hvitt faststoff . The above compound was prepared according to the methodology of Example 1, by exchanging an equivalent amount of the product from Example A with the product from Example B. The yield after lyophilization was 320 mg as a white solid.

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel 3 Example 3

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til metodikken i eksempel 1, ved å bytte en ekvivalent mengde av produktet fra eksempel F med produktet fra eksempel B. Utbyttet (etter lyofilisering) var 180 mg som et hvitt faststoff. The above compound was prepared according to the methodology of Example 1, by exchanging an equivalent amount of the product from Example F with the product from Example B. The yield (after lyophilization) was 180 mg as a white solid.

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel 4 Example 4

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til metodikken i eksempel 1, ved å bytte en ekvivalent mengde av produktet fra eksempel D med produktet fra eksempel B. Utbyttet {etter lyofilisering) var 180 mg som et hvitt faststoff. The above compound was prepared according to the methodology of Example 1, by exchanging an equivalent amount of the product of Example D with the product of Example B. The yield (after lyophilization) was 180 mg as a white solid.

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel 5 Example 5

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til metodikken i eksempel 1, ved å bytte en ekvivalent mengde av produktet fra eksempel E med produktet fra eksempel B. Utbyttet (etter lyofilisering) var 250 mg som et hvitt faststoff. The above compound was prepared according to the methodology of Example 1, by exchanging an equivalent amount of the product from Example E with the product from Example B. The yield (after lyophilization) was 250 mg as a white solid.

MS og Hl NMR var konsistente med den ønskede strukturen. MS and H1 NMR were consistent with the desired structure.

Eksempel 6 Example 6

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt i henhold til metodikken i eksempel l, ved å bytte en ekvivalent mengde av produktet fra eksempel C med produktet fra eksempel B. Utbyttet (etter lyofilisering) var 220 mg som et hvitt faststoff. The above compound was prepared according to the methodology of Example 1, by exchanging an equivalent amount of the product of Example C with the product of Example B. The yield (after lyophilization) was 220 mg as a white solid.

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel 7 Example 7

Fremstilling av Manufacture of

Til produktet fra eksempel H (7,8 g, 0,027 mol) oppløst i vannfri DMA (50 ml) i en flammetørket kolbe under N2 og ved isbadtemperatur ble isobutylklorformat (3,7 g, 0,027 mol) sakte tilsatt fulgt av N-metylmorfolin (2,73 g, 0,027 mol). Løsningen ble rørt ved isbadtemperatur i 15 minutter. Til reaksjonsblandingen ble så produktet fra eksempel 1 (10,0 g, 0,024 mol) tilsatt ved isbadtemperatur fulgt av N-metylmorfolin (2,43 g, 0,024 mol). Reaksjonen ble så rørt ved romtemperatur over natten. Det resulterende ester mellomproduktet ble isolert ved omvendt fase preparativ HPLC. Til estere i H20 (60 ml) og CH3CN (30 ml) ble LiOH (10 g, 0,238 mol) tilsatt. Reaksjonsblandingen ble rørt ved romtemperatur i en time. pH ble så senket til 2 med TFA. Produktet ble renset ved omvendt fase preparativ HPLC for å gi (etter lyofilisering) det ønskede produktet som et hvitt faststoff (9,7 g). To the product of Example H (7.8 g, 0.027 mol) dissolved in anhydrous DMA (50 mL) in a flame-dried flask under N 2 and at ice bath temperature, isobutyl chloroformate (3.7 g, 0.027 mol) was slowly added followed by N-methylmorpholine ( 2.73 g, 0.027 mol). The solution was stirred at ice bath temperature for 15 minutes. To the reaction mixture was then added the product from Example 1 (10.0 g, 0.024 mol) at ice bath temperature followed by N-methylmorpholine (2.43 g, 0.024 mol). The reaction was then stirred at room temperature overnight. The resulting ester intermediate was isolated by reverse phase preparative HPLC. To esters in H 2 O (60 mL) and CH 3 CN (30 mL) was added LiOH (10 g, 0.238 mol). The reaction mixture was stirred at room temperature for one hour. The pH was then lowered to 2 with TFA. The product was purified by reverse phase preparative HPLC to give (after lyophilization) the desired product as a white solid (9.7 g).

MS og <X>H NMR var konsistente med den ønskede strukturen. MS and <X>H NMR were consistent with the desired structure.

Eksempel 8 Example 8

( S) 3, 5- diklor- 2- hvdroksv-( 3- Tf2- [ [ r3- hvdroksv- 5- [( 1. 4. 5. 6-tetrahvdro- 5- hydoksypvrimidin- 2- vi) amino] fenyl] karbo-nyl] amino] acetyl] amino]- benzenpropansyre, monohvdroklorid monohydrat ( S ) 3, 5- dichloro- 2- hydroxy-( 3- Tf2- [ [ r3- hydroxy- 5- [( 1. 4. 5. 6-tetrahydro- 5- hydoxypyrimidin- 2- vi) amino] phenyl] carbonyl] amino] acetyl] amino]- benzenepropanoic acid, monohydrochloride monohydrate

Fremstilling av Manufacture of

Trinn A Step A

Til produktet fra eksempel H (9,92 g, 0,0345 mol) oppløst i vannfri DME (200 ml) blir N-metylmorfolin (4,0 ml, 0,0362 mol) tilsatt. Reaksjonsblandingen ble kjølt til -5°C (salt-isbad). isobutylkloroformat, IBCF (4,48 ml, 4,713 g, 0,0345 mol) ble tilsatt over ett minutt og reaksjonsblandingen rørt ved isbadtemperatur i 12 minutter. Til reaksjonsblandingen ble så produktet fra eksempel I (11,15 g, 0,030 mol) tilsatt ved isbadtemperatur fulgt av N-metylmorfolin (4,0 ml, 0,0362 mol). Reaksjonsblandingen ble tillatt å varme til romtemperatur og gå til fullstendighet, så konsentrert under vakuum ved 50°C for å gi en mørk rest. Resten ble oppløst i acetonitril: H20 (ca. 50 ml) . pH ble gjort sur ved tilsetning av små mengder TFA. Resten ble plassert på en 10 x 500 cm C-18 (50 um partikkelstørrelse) kolonne og estere av det ønskede produktet isolert. (Løsningsmid-delprogram: 100% H20 + 0,05% TFA til 30:70 H20 + 0,05% TFA: acetonitril + 0,05% TFA over 1 time ved 100 ml/minutt: løs-ningsmiddelprogrammet ble initiert etter at løsningsmiddel-fronten elueres) Preparativ RPHPLC rensing resulterte i et hvitt faststoff (10,5 g) etter lyofilisering (50%). To the product from Example H (9.92 g, 0.0345 mol) dissolved in anhydrous DME (200 mL) is added N-methylmorpholine (4.0 mL, 0.0362 mol). The reaction mixture was cooled to -5°C (salt-ice bath). Isobutylchloroformate, IBCF (4.48 mL, 4.713 g, 0.0345 mol) was added over one minute and the reaction mixture stirred at ice bath temperature for 12 minutes. To the reaction mixture was then added the product from Example I (11.15 g, 0.030 mol) at ice bath temperature followed by N-methylmorpholine (4.0 ml, 0.0362 mol). The reaction mixture was allowed to warm to room temperature and go to completeness, then concentrated under vacuum at 50°C to give a dark residue. The residue was dissolved in acetonitrile: H 2 O (approx. 50 ml). The pH was made acidic by adding small amounts of TFA. The residue was placed on a 10 x 500 cm C-18 (50 µm particle size) column and esters of the desired product isolated. (Solvent program: 100% H 2 O + 0.05% TFA to 30:70 H 2 O + 0.05% TFA: acetonitrile + 0.05% TFA over 1 hour at 100 ml/min: the solvent program was initiated after solvent -front is eluted) Preparative RPHPLC purification resulted in a white solid (10.5 g) after lyophilization (50%).

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Trinn B Step B

Produktet fremstilt i trinn A {ca. 11 g) ble oppløst i di-oksanrvann og pH til løsningen justert til ca. 11,5 (pH me-ter) ved tilsetning av 2,5 N NaOH. Reaksjonsblandingen ble rørt ved romtemperatur. Periodisk, ble pH re-justert til The product produced in step A {approx. 11 g) was dissolved in dioxane water and the pH of the solution adjusted to approx. 11.5 (pH meter) by adding 2.5 N NaOH. The reaction mixture was stirred at room temperature. Periodically, the pH was re-adjusted to

>11 ved videre tilsetting av base. Etter 2-3 timer ble omdannelsen av ester til syre antatt å være fullstendig ved RPHPLC. pH til reaksjonsblandingen ble justert til omkring 6 og en viskøs olje falt ut fra løsningen. Oljen ble isolert ved dekantering og vasket med varmt vann (200 ml). Den resulterende vandige blandingen ble tillatt å kjøle og faststoffet ble samlet ved filtrering for å gi den ovennevnte forbindelsen (2,6 g etter lyofilisering fra HCl løsning). Resten, som var en mørk viskøs olje ble behandlet med varmt vann for ved kjøling å gi et lærfarget pulver (4,12 g etter lyofilisering fra HCl løsning). >11 by further addition of base. After 2-3 hours, the conversion of ester to acid was assumed to be complete by RPHPLC. The pH of the reaction mixture was adjusted to about 6 and a viscous oil precipitated from the solution. The oil was isolated by decantation and washed with hot water (200 ml). The resulting aqueous mixture was allowed to cool and the solid was collected by filtration to give the above compound (2.6 g after lyophilization from HCl solution). The residue, which was a dark viscous oil, was treated with hot water to give on cooling a leather colored powder (4.12 g after lyophilization from HCl solution).

MS og Hl NMR var konsistente med den ønskede strukturen. MS and H1 NMR were consistent with the desired structure.

Eksempel 9 Example 9

( S) 3- brom- 5- klor- 2- hydroksy- p-[\ 2 -\ f[ 3- hydroksv- 5[( 1, 4, 5, 6-tetrahvdro- 5- hydoksypyrimidin- 2- vi) amino] fenyl] karbonyl] amino] acetyl] amino]- benzenpropansyre, trifluoracetatsalt Trinn 1 (S) 3- bromo- 5- chloro- 2- hydroxy- p-[\ 2 -\ f[ 3- hydroxys- 5[( 1, 4, 5, 6-tetrahydro- 5- hydroxypyrimidine- 2- vi) amino ] phenyl] carbonyl] amino] acetyl] amino]- benzenepropanoic acid, trifluoroacetate salt Step 1

Fremstilling av Manufacture of

Til en suspensjon av produktet fra eksempel J (1,0 g, 2,4 mmol), ble produktet fra eksempel H (0,75 g, 2,6 mmol) og 4-dietylaminopyridin (40 mg) i N,N-dimetylacetamid (10 ml) tilsatt trietylamin (0,24 g, 2,4 mmol). Blandingen ble rørt ved romtemperatur i 15 minutter og 1-(3-dimetylaminpropyl)-3-etylkarbodiimid hydroklorid (0,60 g, 3,1 mmol) ble tilsatt. Reaksjonsblandingen ble rørt ved romtemperatur over natten. Blandingen ble konsentrert in vacuo og renset ved omvendt fase HPLC (utgangsgradient 90:10 H20/TFA:MeCN, oppholdstid 22 minutter) for å gi det ønskede produktet, (1,6 g, 52% utbytte). To a suspension of the product of Example J (1.0 g, 2.4 mmol), the product of Example H (0.75 g, 2.6 mmol) and 4-diethylaminopyridine (40 mg) in N,N-dimethylacetamide (10 mL) added triethylamine (0.24 g, 2.4 mmol). The mixture was stirred at room temperature for 15 minutes and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.60 g, 3.1 mmol) was added. The reaction mixture was stirred at room temperature overnight. The mixture was concentrated in vacuo and purified by reverse phase HPLC (elution gradient 90:10 H 2 O/TFA:MeCN, residence time 22 minutes) to give the desired product, (1.6 g, 52% yield).

Hl NMR var konsistent med den ønskede strukturen. H1 NMR was consistent with the desired structure.

Trinn 2 Step 2

Til en løsning av estere fremstilt i trinn 1 (800 mg, 1,2 mmol) i en 1:4 MeCN:H20 løsning (7 ml) ble litiumhydroksid (148 mg, 6,2 mmol) tilsatt. Reaksjonsblandingen ble rørt ved romtemperatur i to timer. TFA (0,71 ml, 9,2 mmol) ble tilsatt og blandingen renset ved omvendt fase HPLC (utgangsgradient 95:5 H20/TFA:MeCN, oppholdstid 20 minutter) for å gi det ønskede produktet (860 mg, 83% utbytte). To a solution of esters prepared in step 1 (800 mg, 1.2 mmol) in a 1:4 MeCN:H 2 O solution (7 mL) was added lithium hydroxide (148 mg, 6.2 mmol). The reaction mixture was stirred at room temperature for two hours. TFA (0.71 mL, 9.2 mmol) was added and the mixture purified by reverse phase HPLC (elution gradient 95:5 H 2 O/TFA:MeCN, residence time 20 min) to give the desired product (860 mg, 83% yield) .

Analytisk beregnet for C22H23BrClN507 + 1,7 TFA: Analytical calculated for C22H23BrClN507 + 1.7 TFA:

C, 39,18; H: 3,20; N, 8,99 C, 39.18; H: 3.20; N, 8.99

funnet C, 39,11; H: 3,17; N, 9,07 found C, 39.11; H: 3.17; N, 9.07

MS og Hl NMR var konsistente med den ønskede strukturen. MS and H1 NMR were consistent with the desired structure.

Trinn 3 Step 3

Fremstilling av hydrokloridsaltet Preparation of the hydrochloride salt

Produktet fra trinn 2 ble oppløst i et passende løsnings-middel (acetonitril:vann) og løsningen ble sakte ført gjen-norner Bio-Rad AG2-8X (kloridform, 200-400 mesh, >5 ekvivalenter) ionebyttekolonne . Lyofilisering gir det ønskede produktet som et HCl salt. The product from step 2 was dissolved in a suitable solvent (acetonitrile:water) and the solution was slowly passed through a Bio-Rad AG2-8X (chloride form, 200-400 mesh, >5 equivalents) ion exchange column. Lyophilization gives the desired product as an HCl salt.

Eksempel 10 Example 10

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt ved anvendelse av fremgangsmåten i eksempel 8 ved å bytte produktet fra eksempel N med produktet fra eksempel I i eksempel 8, trinn A. Produktet ble isolert ved preparativ RPHPLC og lyofilisert for å gi det ønskede produktet som et TFA salt. The above compound was prepared using the procedure of Example 8 by exchanging the product of Example N for the product of Example I in Example 8, Step A. The product was isolated by preparative RPHPLC and lyophilized to give the desired product as a TFA salt.

MS og <*>H NMR var konsistente med den ønskede strukturen. MS and <*>H NMR were consistent with the desired structure.

Eksempel 11 Example 11

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt ved anvendelse av grunnleggende de samme fremgangsmåter som eksempel 8 og ved å bytte produktet fra eksempel M med produktet fra eksempel I i eksempel 8, trinn A. Produktet ble isolert ved preparativ RPHPLC og lyofilisert for å gi det ønskede produktet som et TFA-salt. The above compound was prepared using essentially the same procedures as Example 8 and by exchanging the product of Example M with the product of Example I in Example 8, Step A. The product was isolated by preparative RPHPLC and lyophilized to give the desired product as a TFA salt.

MS og <1>H NMR var konsistente med den ønskede strukturen. MS and <1>H NMR were consistent with the desired structure.

Eksempel 12 Example 12

Fremstilling av Manufacture of

Ovennevnte forbindelse ble fremstilt ved anvendelse av fremgangsmåtene i eksempel 8 og ved å bytte produktet fra eksempel P med produktet fra eksempel I i eksempel 8, trinn A. Produktet blir isolert ved preparativ RPHPLC og lyofilisert for å gi det ønskede produktet som et TFA-salt. The above compound was prepared using the procedures of Example 8 and by exchanging the product of Example P with the product of Example I in Example 8, Step A. The product is isolated by preparative RPHPLC and lyophilized to give the desired product as a TFA salt .

Eksempel 13 Example 13

Fremstilling av Manufacture of

Fremstilling av 2-0-(MEM)-3,5-dijodsalisylaldehyd Preparation of 2-O-(MEM)-3,5-diiodosalicylaldehyde

Kaliumkarbonat (18,5 g, 0,134 mol) ble tilsatt til en løs-ning av 3,5 dijodsalisylaldehyd (50,0 g, 0,134 mol) i DMF (150 ml) ved 20°C. Dette resulterte i en gul slurry og MEMCl (15,8 ml, 0,134 mol) ble tilsatt mens reaksjonstempera-turen opprettholdes. Etter to timer, ble ytterligere MEM-C1 (1,5 g) tilsatt. Etter røring i ytterligere en time, ble reaksjonsblandingen tømt over i isvann og rørt. Bunnfallet som ble dannet, ble filtrert, og tørket in vacuo for å gi det ønskede beskyttede aldehydet (61 g, 99% utbytte). Potassium carbonate (18.5 g, 0.134 mol) was added to a solution of 3,5-diiodosalicylaldehyde (50.0 g, 0.134 mol) in DMF (150 mL) at 20°C. This resulted in a yellow slurry and MEMCl (15.8 mL, 0.134 mol) was added while maintaining the reaction temperature. After two hours, additional MEM-C1 (1.5 g) was added. After stirring for a further hour, the reaction mixture was poured into ice water and stirred. The precipitate that formed was filtered, and dried in vacuo to give the desired protected aldehyde (61 g, 99% yield).

Hl NMR var konsistente med den ønskede strukturen. H1 NMR was consistent with the desired structure.

Trinn 2 Step 2

Fremstilling av Manufacture of

(S)-fenyl glycinol (17,9 g, 0,13 mol) ble tilsatt en løs-ning av 2-0-MEM-3,5-dijodsalicylaldehyd (41,5 g, 0,112 mol) i THF (150 ml) ved romtemperatur. Etter en time røring ble MgS04 (20,7 g) tilsatt og røringen ble fortsatt i to timer. Reaksjonsblandingen ble filtrert og filtratet ble konsentrert og tørket in vacuo i to timer. En 2-halset rundkolbe ble fylt med Refomatsky-reagenset (96 g, 0,289 mol) og N-metylpyrrilidon (250 ml) og ble rørt ved -10°C. En løsning av iminet i N-metylpyrrilidon (100 ml) ble sakte tilsatt (S)-Phenyl glycinol (17.9 g, 0.13 mol) was added to a solution of 2-O-MEM-3,5-diiodosalicylaldehyde (41.5 g, 0.112 mol) in THF (150 mL) at room temperature. After one hour of stirring, MgSO 4 (20.7 g) was added and stirring was continued for two hours. The reaction mixture was filtered and the filtrate was concentrated and dried in vacuo for two hours. A 2-necked round bottom flask was charged with the Refomatsky reagent (96 g, 0.289 mol) and N-methylpyrrilidone (250 mL) and stirred at -10°C. A solution of the imine in N-methylpyrrilidone (100 mL) was slowly added

opprettholdende temperaturen ved -10°C. Blandingen ble opprettholdt ved denne temperaturen i to timer og en time ved -5°C. Etter kjøling av reaksjonsblandingen til -10°C, ble en løsning av konsentrert HCl i mettet ammoniumklorid (16 ml/200 ml) tilsatt. Etyleter (500 ml) ble tilsatt og blandingen ble rørt i to timer ved romtemperatur. Eterfasen ble separert, og den vandige fasen videre ekstrahert med eter (3 00 ml). De kombinerte eterfåsene ble vasket med mettet ammoniumklorid (200 ml), vann (200 ml), saltløsning (200 ml) , tørket (MgS04) og konsentrert for å gi en olje (90,0 g, 99% utbytte). maintaining the temperature at -10°C. The mixture was maintained at this temperature for two hours and one hour at -5°C. After cooling the reaction mixture to -10°C, a solution of concentrated HCl in saturated ammonium chloride (16 mL/200 mL) was added. Ethyl ether (500 mL) was added and the mixture was stirred for two hours at room temperature. The ether phase was separated and the aqueous phase further extracted with ether (300 ml). The combined ether layers were washed with saturated ammonium chloride (200 mL), water (200 mL), brine (200 mL), dried (MgSO 4 ) and concentrated to give an oil (90.0 g, 99% yield).

NMR indikerte det ønskede produktet og en diastereomer. NMR indicated the desired product and a diastereomer.

Trinn 3 Step 3

Fremstilling av Manufacture of

En løsning av den ubearbeidede esteren fra trinn 2 (14,0 g, 20,1 mmol) ble løst opp i etanol (100 ml) og kjølt til 0°C. Blytetraacetat (9,20 g, 20,75 mmol) ble tilsatt i en omgang. Etter tre timer, ble 15% løsning av NaOH (73 ml) tilsatt til reaksjonsblandingen. Det meste av etanolen ble fjernet under redusert trykk. Resten ble tilsatt til en 15% løsning av NaOH (200 ml) som ble ekstrahert med eter (400 ml). Eterfasen ble vasket med vann (100 ml), saltløsning (100 ml), tørket og konsentrert for å gi en oransje olje. Denne ble oppløst i etanol (100 ml) og para-toluensulfonsyre (6,08 g) ble tilsatt. Løsningen ble varmet ved refluks i 8 timer og konsentrert under redusert trykk. Resten ble fortynnet med THF (60 ml), varmet ved refluks og avkjølt. Ved lagring ble ikke noe bunnfall dannet. Reaksjonsblandingen ble konsentrert og renset ved preparativ HPLC for å gi aminosyren som dens PTSA-salt. Faststoffet oppnådd ble oppløst i etanol og ble mettet med HCl-gass. Reaksjonsblandingen ble varmet ved refluks i 6 timer. Reaksjonsblandingen ble konsentrert for å gi PTSA-saltet av den ønskede aminosyren (12,47 g). A solution of the crude ester from Step 2 (14.0 g, 20.1 mmol) was dissolved in ethanol (100 mL) and cooled to 0 °C. Lead tetraacetate (9.20 g, 20.75 mmol) was added in one portion. After three hours, 15% solution of NaOH (73 mL) was added to the reaction mixture. Most of the ethanol was removed under reduced pressure. The residue was added to a 15% solution of NaOH (200 mL) which was extracted with ether (400 mL). The ether phase was washed with water (100 mL), brine (100 mL), dried and concentrated to give an orange oil. This was dissolved in ethanol (100 ml) and para-toluenesulfonic acid (6.08 g) was added. The solution was heated at reflux for 8 hours and concentrated under reduced pressure. The residue was diluted with THF (60 mL), heated at reflux and cooled. No precipitate was formed during storage. The reaction mixture was concentrated and purified by preparative HPLC to give the amino acid as its PTSA salt. The solid obtained was dissolved in ethanol and saturated with HCl gas. The reaction mixture was heated at reflux for 6 hours. The reaction mixture was concentrated to give the PTSA salt of the desired amino acid (12.47 g).

Trinn 4 Step 4

Fremstilling av etyl 3-(N-BOC-gly)-amino-3-(S)-(3,5-dijod-2-hydroksyfenyl)propionat Preparation of ethyl 3-(N-BOC-gly)-amino-3-(S)-(3,5-diiodo-2-hydroxyphenyl)propionate

Til blandingen av BOC-gly-OSu (7,48 g, 27,04 mmol), etyl 3-(S)-amino-3-(3,5-dijod-2-hydroksyfenyl)propionat-PTSA-salt (12,47 g, 27,04 mmol) i DMF (100 ml) ble trietylamin (3,8 ml) tilsatt. Reaksjonsblandingen ble rørt i 18 timer ved romtemperatur. DMS ble fjernet in vacuo og resten delt mellom etylacetat (500 ml) og fortynnet saltsyre (100 ml). Den organiske fasen ble vasket med natriumbikarbonat (200 ml), saltløsning (200 ml), tørket (MgS04) og konsentrert for å gi det ønskede produktet som et faststoff (17,0 g, 96% utbytte) . To the mixture of BOC-gly-OSu (7.48 g, 27.04 mmol), ethyl 3-(S)-amino-3-(3,5-diiodo-2-hydroxyphenyl)propionate PTSA salt (12, 47 g, 27.04 mmol) in DMF (100 mL) was added triethylamine (3.8 mL). The reaction mixture was stirred for 18 hours at room temperature. The DMS was removed in vacuo and the residue partitioned between ethyl acetate (500 mL) and dilute hydrochloric acid (100 mL). The organic phase was washed with sodium bicarbonate (200 mL), brine (200 mL), dried (MgSO 4 ) and concentrated to give the desired product as a solid (17.0 g, 96% yield).

Hl NMR var konsistente med den ønskede strukturen. H1 NMR was consistent with the desired structure.

Trinn 5 Step 5

Fremstilling av etyl 3-(N-gly)-amino-3-(3,5-dijod-2-hydrok-syf enyl) -propionat-hydroklorid Preparation of ethyl 3-(N-gly)-amino-3-(3,5-diiodo-2-hydroxyphenyl)-propionate hydrochloride

Til dioksan/HCl (4N, 40 ml) ble etyl 3-(N-BOC-gly)-amino-3-(S)-(3,5-dijod-2-hydroksyfenyl)propionat (17,0 g, 25,97 mmol) tilsatt ved 0°C og reaksjonsblandingen ble rørt ved romtemperatur i tre timer. Reaksjonsblandingen ble konsentrert, og konsentrert en gang til etter tilsetning av toluen (100 ml). Resten oppnådd ble tørket for å gi det ønskede produktet som et krystallinsk pulver (8,0 g, 56% utbytte) . To dioxane/HCl (4N, 40 mL) was added ethyl 3-(N-BOC-gly)-amino-3-(S)-(3,5-diiodo-2-hydroxyphenyl)propionate (17.0 g, 25, 97 mmol) added at 0°C and the reaction mixture was stirred at room temperature for three hours. The reaction mixture was concentrated, and concentrated once more after the addition of toluene (100 mL). The residue obtained was dried to give the desired product as a crystalline powder (8.0 g, 56% yield).

■""H NMR var konsistent med det ønskede produktet. ■""H NMR was consistent with the desired product.

Trinn 6 Step 6

En løsning av ml-(5-hydroksypyrimidin)hippursyre (3,74 g, 12,98 mmol) i dimetylacetamid (25 ml) ble varmet til alt materialet var oppløst. Det ble så kjølt til 0°C og isobutylkloroformat (1,68 ml) ble tilsatt i en porsjon fulgt av N-metylmorfolin (1,45 ml). Etter 10 minutter, ble etyl 3-(N-gly)-amino-3-(3,5-dijod-2-hydroksyfenyl)-propionat hydroklorid (6,0 g, 10,82 mmol) tilsatt i en porsjon fulgt av N-metylmorfolin (1,45 ml). Reaksjonsblandingen ble rørt i 18 timer ved romtemperatur. Reaksjonsblandingen ble konsentrert, resten oppløst i tetrahydrofuran/vann (1:1, 20 ml), og ble kromatografert (omvendt fase, 95:5 vann:acetonitril over 60 minutter til 30:70 vann:acetonitril inneholdende 0,1% TFA). De kombinerte fraksjonene ble konsentrert. Resten ble oppløst i acetonitril, vann og litiumhydroksid ble tilsatt inntil basisk løsning. Løsningen ble rørt i to timer. Reaksjonsblandingen ble konsentrert og ble renset som over ved HPLC for å gi den ønskede syren som TFA saltet. TFA saltet ble konvertert til det korresponderende hydrokloridsaltet ved å føre igjennom en ionebyttekolonne fulgt av lyofilisering. A solution of ml-(5-hydroxypyrimidine)hippuric acid (3.74 g, 12.98 mmol) in dimethylacetamide (25 mL) was heated until all the material was dissolved. It was then cooled to 0°C and isobutyl chloroformate (1.68 ml) was added in one portion followed by N-methylmorpholine (1.45 ml). After 10 min, ethyl 3-(N-gly)-amino-3-(3,5-diiodo-2-hydroxyphenyl)-propionate hydrochloride (6.0 g, 10.82 mmol) was added in one portion followed by N -methylmorpholine (1.45 ml). The reaction mixture was stirred for 18 hours at room temperature. The reaction mixture was concentrated, the residue dissolved in tetrahydrofuran/water (1:1, 20 mL), and chromatographed (reverse phase, 95:5 water:acetonitrile over 60 minutes to 30:70 water:acetonitrile containing 0.1% TFA). The combined fractions were concentrated. The residue was dissolved in acetonitrile, water and lithium hydroxide were added until the solution was basic. The solution was stirred for two hours. The reaction mixture was concentrated and was purified as above by HPLC to give the desired acid as the TFA salt. The TFA salt was converted to the corresponding hydrochloride salt by passing through an ion exchange column followed by lyophilization.

<X>H NMR var konsistent med det ønskede produktet. <X>H NMR was consistent with the desired product.

Eksempler 14- 18 Examples 14-18

Forbindelsene med formel VII, VIII, IX, XIII og XIV og isomerer derav, kan fremstilles i henhold til metodikken fremlagt heri ved å bytte det passende utgangsmaterialet og reagensene som ville være åpenbare for fagmannen. The compounds of formula VII, VIII, IX, XIII and XIV and isomers thereof may be prepared according to the methodology set forth herein by substituting the appropriate starting material and reagents as would be apparent to those skilled in the art.

Aktiviteten til forbindelsen i foreliggende oppfinnelse ble testet i følgende analyser. Resultatene av undersøkelsene i analysene er vist i tabell 1. The activity of the compound of the present invention was tested in the following assays. The results of the investigations in the analyzes are shown in table 1.

VITRONEKTIN- ADHESJONANALYSE VITRONETIN ADHESION ANALYSIS

MATERIALER MATERIALS

Human vitronektinreseptor (avp3) ble renset fra human pla-senta som tidligere beskrevet [Pytela et al., Methods in Enzymology. 144: 475-489 (1987)]. Human vitronektin ble renset fra fersk frossen plasma som tidligere beskrevet [Yatogho et al., Cell Structure and Function. 13: 281-292 Human vitronectin receptor (avp3) was purified from human placenta as previously described [Pytela et al., Methods in Enzymology. 144: 475-489 (1987)]. Human vitronectin was purified from fresh frozen plasma as previously described [Yatogho et al., Cell Structure and Function. 13: 281-292

(1988)]. Biotinylert human vitronektin ble fremstilt ved å koble NHS-biotin fra Pierce Chemical Company (Rockford, IL) med renset vitronektin som tidligere beskrevet [Charo et al., J. Biol. Chem.. 266(3): 1415-1421 (1991)]. Analysebuffer, OPD substrat-tabletter, og RIA grad BSA ble oppnådd fra Sigma (St.Louis, MO). Anti-biotin antistoff ble oppnådd fra Calbiochem (La Jolla, CA). Linbro mikrotiterplater ble oppnådd fra Flow Labs (McLean, VA). ADP reagens ble oppnådd fra Sigma (St. Louis, MO). (1988)]. Biotinylated human vitronectin was prepared by coupling NHS biotin from Pierce Chemical Company (Rockford, IL) with purified vitronectin as previously described [Charo et al., J. Biol. Chem.. 266(3): 1415-1421 (1991)]. Assay buffer, OPD substrate tablets, and RIA grade BSA were obtained from Sigma (St.Louis, MO). Anti-biotin antibody was obtained from Calbiochem (La Jolla, CA). Linbro microtiter plates were obtained from Flow Labs (McLean, VA). ADP reagent was obtained from Sigma (St. Louis, MO).

FREMGANGSMÅTER METHODS OF PROCESSING

Fastfasereseptoranalyser Solid-phase receptor assays

Denne analysen var grunnleggende den samme som tidligere rapportert [Niiya et al., Blood, 70:475-483 (1987)]. Den rensede humane vitronektinreseptoren (Ovp^) ble fortynnet fra brukalløsninger til 1,0 g/ml i tris-bufret saltløsning inneholdende 1,0 mM Ca<++>, Mg<++> og Mn<++>, pH 7,4 (TBS+++) . Den fortynnede reseptoren ble umiddelbart overført til Linbro mikrotiter plater ved 100 ul/brønn (100 ng reseptor/brønn). Platene ble forseglet og inkubert over natten ved 4°C for å tillate reseptoren til å binde til brønnene. Alle ytterligere trinn var ved romtemperatur. Analyseplatene ble tømt og 200 ul av 1% RIA grad BSA i TBS<+++> (TBS<+++>/BSA) ble tilsatt for å blokkere eksponerte plastoverflater. Etter to timer inkubasjon, ble analyseplatene vasket med TBS<+*+> ved anvendelse av en 96 brønnplatevasker. Logaritmisk seriefortynning av testforbindelsen og kontrollen ble gjort startende ved en brukskonsentrasjon og 2 nM og anvendende 2 nM biotinylert vitronektin i TBS<+++>/BSA som fortynneren. Denne forblandingen av merket ligand med test (eller kontroll) ligand, og etterfølgende overføring av 50 ul alikvoter til analyseplaten ble utført med en CETUS Propette robot; sluttkonsentrasjonen til den merkede liganden var 1 nM og den høyeste konsentrasjonen av testforbindelsen var 1,0 x IO"<4> M. Konkurransen skjedde over to timer etter dette ble alle brønnene vasket med en platevasker som tidligere. Affinitetsrenset pepperrotperroksi-dase merket gjeteanti-biotin antistoff ble fortynnet 1:3000 i TBS<+++>/BSA og 125 1 ble tilsatt til hver brønn. Etter 30 minutter, ble platene vasket og inkubert med 0PD/H20 og substrat i 100 mM/1 Citratbuffer, pH 5,0. Platen ble lest med en mikrotitterplateleser med en bølgelengde på 450 nm og når maksimal-bindingskontrollbrønnene nådde en absorbanse-bunn på omkring 1,0, ble den siste A450 registrert for analyse. Dataene ble analysert ved anvendelse av en makro skrevet for anvendelse med EXCEL regne-arkprogrammet. Middelverdien, standardavviket, og %CV ble bestemt for duplikate konsentrasjoner. Middelverdien for A450 verdiene ble normalisert til middelverdien for fire maksimum-bindingskontroller (ingen konkurrent tilsatt)(B-MAX). De normaliserte verdiene ble utsatt for en fire parameter kurvetilpasningsallegoritme [Rodbard et al., Int. Atomic Energy A<g>ency. Vienna, pp 469 (1977)], plottet på en semi-logaritmisk skala, og den beregnede konsentrasjonen tilsvarende inhibisjon av 50% av den maksimale bindingen av biotinylert vitronectin (IC50) og korresponderende R<2> ble rapportert for de forbindelsene som viste mer enn 50% inhibisjon ved den høyeste konsentrasjonen testet; ellers blir IC50 rapportert som å være større enn den høyeste konsentrasjonen testet. 0-[[2-[[5-£(aminoiminometyl)-amino]-1-oksopentyl]amino]-1-oksoetyl]amino]-3-pyri-dinpropansyre[USSN 08/375,338, eksempel 1] som er en sterk OvP3 antagonist (IC50 i området 3-10 nM) ble inkludert på hver plate som en positiv kontroll. This assay was essentially the same as previously reported [Niiya et al., Blood, 70:475-483 (1987)]. The purified human vitronectin receptor (Ovp^) was diluted from stock solutions to 1.0 g/ml in Tris-buffered saline containing 1.0 mM Ca<++>, Mg<++> and Mn<++>, pH 7, 4 (TBS+++) . The diluted receptor was immediately transferred to Linbro microtiter plates at 100 µl/well (100 ng receptor/well). The plates were sealed and incubated overnight at 4°C to allow the receptor to bind to the wells. All further steps were at room temperature. The assay plates were emptied and 200 µl of 1% RIA grade BSA in TBS<+++> (TBS<+++>/BSA) was added to block exposed plastic surfaces. After two hours of incubation, the assay plates were washed with TBS<+*+> using a 96 well plate washer. Serial logarithmic dilution of the test compound and the control was done starting at a working concentration of 2 nM and using 2 nM biotinylated vitronectin in TBS<+++>/BSA as the diluent. This premixing of labeled ligand with test (or control) ligand, and subsequent transfer of 50 µl aliquots to the assay plate was performed with a CETUS Propette robot; the final concentration of the labeled ligand was 1 nM and the highest concentration of the test compound was 1.0 x 10"<4> M. The competition took place over two hours after which all wells were washed with a plate washer as before. Affinity purified horseradish peroxidase labeled shepherd anti- biotin antibody was diluted 1:3000 in TBS<+++>/BSA and 125 L was added to each well. After 30 minutes, the plates were washed and incubated with 0PD/H 2 O and substrate in 100 mM/L Citrate buffer, pH 5, 0. The plate was read with a microtiter plate reader at a wavelength of 450 nm and when the maximum binding control wells reached an absorbance trough of about 1.0, the last A450 was recorded for analysis. The data was analyzed using a macro written for use with EXCEL spreadsheet program. The mean, standard deviation, and %CV were determined for duplicate concentrations. The mean of the A450 values was normalized to the mean of four maximum-binding controls (no competitor added)( B-MAX). The normalized values were subjected to a four parameter curve fitting algorithm [Rodbard et al., Int. Atomic Energy A<g>ency. Vienna, pp 469 (1977)], plotted on a semi-logarithmic scale, and the calculated concentration corresponding to inhibition of 50% of the maximal binding of biotinylated vitronectin (IC50) and the corresponding R<2> were reported for those compounds that showed more than 50% inhibition at the highest concentration tested; otherwise, the IC50 is reported as being greater than the highest concentration tested. 0-[[2-[[5-£(aminoiminomethyl)-amino]-1-oxopentyl]amino]-1-oxoethyl]amino]-3-pyridinepropanoic acid [USSN 08/375,338, Example 1] which is a strong OvP3 antagonist (IC50 in the range 3-10 nM) was included on each plate as a positive control.

RENSET Ilb/ Illa RESEPTORANALYSE PURIFIED Ilb/ Illa RECEPTOR ANALYSIS

MATERIALER MATERIALS

Human fibrinogenreseptor (ctnbPs) ble renset fra utdaterte blodplater. (Pytela, R., Pierschbacher, M.D., Argraves, S., Suzuki, S., og Rouslahti, E. "Arginine-Glycine-Aspartic acid adhesion receptors", Methods in Enzvmolocrv 144(1987):475-489). Human vitronektin ble renset fra fersk frossen plasma som beskrevet i Yåtohgo, T., Izumi, M., Kashiwagi, H. og Hyashi, M., "Novel purification of vitronectin from human plasma by heparin affinity chromatograp-hy," Cell Structure and Function 13(1988):281-292. Biotinylert human vitronektin ble fremstilt ved å koble NHS-boitin fra Pierce Chemical Company (Rockford, IL) med renset vitronectin som beskrevet tidligere. (Charo, I.F., Nan-nizzi, 1., Phillips, D.R., Hsu, M.A., Scaround bottomo-rough, R.M., "Inhibition of fibrinogen binding to GP Hb/Illa by a GP Illa peptide", J. Biol. Chem. 266(3)(1991):1415-1421). Analysebuffer, OPD substrattablet-ter, og RIA grad BSA ble oppnådd fra Sigma (St. Louis, MO). Anti-biotin antistoff ble oppnådd fra Calbiochem (La Jolla, CA). Linbro mikrotiterplater ble oppnådd fra Plow Labs (McLean, VA). ADP reagens ble oppnådd fra Sigma (St. Louis, Human fibrinogen receptor (ctnbPs) was purified from outdated platelets. (Pytela, R., Pierschbacher, M.D., Argraves, S., Suzuki, S., and Rouslahti, E. "Arginine-Glycine-Aspartic acid adhesion receptors", Methods in Enzvmolocrv 144(1987):475-489). Human vitronectin was purified from fresh frozen plasma as described in Yåtohgo, T., Izumi, M., Kashiwagi, H., and Hyashi, M., "Novel purification of vitronectin from human plasma by heparin affinity chromatograp-hy," Cell Structure and Function 13(1988):281-292. Biotinylated human vitronectin was prepared by coupling NHS boitin from Pierce Chemical Company (Rockford, IL) with purified vitronectin as described previously. (Charo, I.F., Nan-nizzi, 1., Phillips, D.R., Hsu, M.A., Scaround bottomo-rough, R.M., "Inhibition of fibrinogen binding to GP Hb/Illa by a GP Illa peptide", J. Biol. Chem. 266(3)(1991):1415-1421). Assay buffer, OPD substrate tablets, and RIA grade BSA were obtained from Sigma (St. Louis, MO). Anti-biotin antibody was obtained from Calbiochem (La Jolla, CA). Linbro microtiter plates were obtained from Plow Labs (McLean, VA). ADP reagent was obtained from Sigma (St. Louis,

MO) . MO).

FREMGANGSMÅTER METHODS OF PROCESSING

Fastfase- reseptoranalyse Solid phase receptor assay

Denne analysen er grunnleggende det samme som rapportert i Niiya, K., Hodson, E-, Bader, R., Byers-Ward, V.Koziol, J.A., Plow, E.F. og Ruggeri, Z.M., "Incrased surface ex-pression of the membrane glycoprotein Ilb/IIIa complex in-duced by platelet activation: Relationship to the binding of fibronogen and platelet aggregation" Blood 70(1987):475-48. Den rensede humane fibrinogenreseptoren (ctnbpa) ble fortynnet fra bruksløsningen til 1,0 ug/mL i Tris-buffret saltoppløsning inneholdende 1,0 mM Ca<*+>, Mg<++>, og Mn<++>, pH 7,4 (TBS+++) . Den f or tynnede reseptoren ble umiddelbart overført til Linbro mikrotiterplater ved 100 ul/brønn (100 ng reseptor/brønn). Platene ble forseglet og inkubert over natten ved 4°C for å tillate reseptoren å binde til brønne-ne. Alle resterende trinn var ved romtemperatur. Analyseplatene ble tømt og 200 ul av en 1% RIA grad BSA i TBS<+++>This analysis is essentially the same as reported in Niiya, K., Hodson, E-, Bader, R., Byers-Ward, V. Koziol, J.A., Plow, E.F. and Ruggeri, Z.M., "Increased surface expression of the membrane glycoprotein Ilb/IIIa complex induced by platelet activation: Relationship to the binding of fibronogen and platelet aggregation" Blood 70(1987):475-48. The purified human fibrinogen receptor (ctnbpa) was diluted from the working solution to 1.0 µg/mL in Tris-buffered saline containing 1.0 mM Ca<*+>, Mg<++>, and Mn<++>, pH 7, 4 (TBS+++) . The pre-diluted receptor was immediately transferred to Linbro microtiter plates at 100 ul/well (100 ng receptor/well). The plates were sealed and incubated overnight at 4°C to allow the receptor to bind to the wells. All remaining steps were at room temperature. The assay plates were emptied and 200 µl of a 1% RIA grade BSA in TBS<+++>

(TBS<+++>/BSA) ble tilsatt for å blokkere eksponerte plastoverflater. Følgende en to timers inkubasjon, ble analyseplatene vasket med TBS<+++> ved anvendelse av en 96 brønn platevasker. Logaritmisk seriefortynning av testforbindelsen og kontroller ble gjort startede ved en brukskonsentrasjon på 2 mM og anvendende 2 nM biotinylert vitronektin i TBS<+++>/BSA som fortynneren. Denne forblandingen av merket ligand med test (eller kontroll) ligand, og etterfølgende overføring av 50 (il alikvoter til analyseplaten ble utført med en CETUS Propette robot; sluttkonsentrasjonen av den merkede liganden var nM og den høyeste konsentrasjonen av testforbindelsen var 1,0 x IO"<4> M. Konkurransen skjedde i to timer deretter ble alle brønnene vasket med en platevasker som før. Affinitetsrenset pepperrot peroxidase merket gjeteanti-biotin antistoff ble fortynnet 1:3000 i TBS<+++>/BSA og (TBS<+++>/BSA) was added to block exposed plastic surfaces. Following a two hour incubation, the assay plates were washed with TBS<+++> using a 96 well plate washer. Logarithmic serial dilution of the test compound and controls were made starting at a working concentration of 2 mM and using 2 nM biotinylated vitronectin in TBS<+++>/BSA as the diluent. This premixing of labeled ligand with test (or control) ligand, and subsequent transfer of 50 µl aliquots to the assay plate was performed with a CETUS Propette robot; the final concentration of the labeled ligand was nM and the highest concentration of the test compound was 1.0 x 10 "<4> M. Competition occurred for two hours, then all wells were washed with a plate washer as before. Affinity-purified horseradish peroxidase labeled sheep anti-biotin antibody was diluted 1:3000 in TBS<+++>/BSA and

125 ul ble tilsatt til hver brønn. Etter 30 minutter, ble platene vasket og inkubert med 0DD/H202 substrat i 100 mM/1 sitratbuffer, pH 5,0. Platen ble lest med mikrotiterplate-leser med en bølgelengde på 450 nm og når maksimum bin-dingskontrollbrønnene nådde en absorbanse bunn på omkring 1,0, ble den siste A450 registrert for analyse. Dataene ble analysert ved anvendelse av en makro skrevet for anvendelse med EXCEL™ regnearkprogram. Gjennomsnittet av standardavviket, og %CV ble bestemt for duplikate konsentrasjoner. 125 µl was added to each well. After 30 minutes, the plates were washed and incubated with OD/H 2 O 2 substrate in 100 mM/l citrate buffer, pH 5.0. The plate was read with a microtiter plate reader at a wavelength of 450 nm and when the maximum binding control wells reached an absorbance trough of about 1.0, the last A450 was recorded for analysis. The data were analyzed using a macro written for use with the EXCEL™ spreadsheet program. The mean of the standard deviation and %CV were determined for duplicate concentrations.

Gjennomsnittlig A450 verdier ble normalisert til gjennomsnittet av fire maksimum-bindingskontroller {ingen konkurrent tilsatt)(B-MAX). De normaliserte verdiene ble utsatt for en fire parameter kurvetilpasningsallegoritme, [Robard et al., Int. Atomic Energy Agency. Vienna. pp 469(1977)], plottet på en semilogaritmisk skala, og den beregnede konsentrasjonen tilsvarende inhibisjon av 50% av den maksimale bindingen av biotinylert vitronektin {IC50) og korresponderende R<2> ble rapportert for de forbindelsene som viste større enn 50% inhibisjon ved den høyeste konsentrasjon testet; eller blir IC50 rapportert som å være større enn den høyeste konsentrasjonen testet. |3- [ [2- [ [5- [ (aminoimino-metyl)-amino]-1-oksopentyl]amino]-1-oxetyl]amino]-3-pyri-dinpropansyre[USSN 08/375,338, eksempel l] som er en kraftig Ovp3 antagonist (IC50) i området 3-10 nM) ble inkludert på hver plate som en positiv kontroll. Average A450 values were normalized to the average of four maximum-binding controls {no competitor added)(B-MAX). The normalized values were subjected to a four parameter curve fitting algorithm, [Robard et al., Int. Atomic Energy Agency. Vienna. pp 469(1977)], plotted on a semilogarithmic scale, and the calculated concentration corresponding to inhibition of 50% of the maximal binding of biotinylated vitronectin {IC50) and corresponding R<2> was reported for those compounds showing greater than 50% inhibition at the highest concentration tested; or the IC50 is reported as being greater than the highest concentration tested. |3- [ [2- [ [5- [ (aminoimino-methyl)-amino]-1-oxopentyl]amino]-1-oxethyl]amino]-3-pyridinepropanoic acid [USSN 08/375,338, Example 1] as is a potent Ovp3 antagonist (IC50 in the range 3-10 nM) was included on each plate as a positive control.

Human blodplate rik plasma analyse Human platelet rich plasma assay

Friske aspirinfrie donorer ble valgt fra et forråd av fri-villige. Festingen av blodplaterik plasma og etterfølgende ADP indusert blodplateaggregeringsanalyser ble utført som beskrevet i Zucker, M.B., "Platelet Aggregation Measured by the Phtometric Method", Methods in Enzymology 169(1989):117-133. Standard venepunkturteknikker anvendende en butterfly tillot uttrekking av 45 ml av helt blod til en 60 ml sprøyte inneholdende 5 ml 3,8% trinatriumsitrat. Etterfølgende grundig blanding i sprøyten, ble det antikoa-gulerte hele blodet overført til en 50 ml konisk polyetylen tube. Blodet ble sentrifugert ved romtemperatur i 12 minutter ved 200 mg for å sendimentere ikke-blodplateceller. Blodplaterik plasma ble fjernet til en polyetylentube og lagret ved romtemperatur inntil anvendt. Blodplatefattig plasma ble oppnådd fra en andre sentrifugering av det gjenværende blodet ved 2000 xg i 15 minutter. Blodplatetall er typisk 300.000 - 500.000 per mikroliter. Blodplaterik plasma (0,45 ml) ble alikvotet til silikoniserte kyvetter og rørt (1100 rpm) ved 37°C i ett minutt før tilsetting av 50 ul av prefortynnet testforbindelse. Etter ett minutt med blanding, ble agglomerering initiert ved tilsetningen av 50 Hl av 200 u(Ml) ADP. Aggreggering ble registrert i tre minutter i en Payton dobbelkanal aggrometer (Payton Scientific, Buffalo, NY). Prosent inhibisjon av maksimal respons (saltløsning kontroll) for en serie av testforbin-delsesfortynninger ble anvendt for å bestemme en dose re-sponskurve. Alle forbindelsene ble testet i duplikat og konsentrasjonen av halv-maksimal inhibisjon (IC50) ble beregnet grafisk fra doseresponskurven for de sammensetningene som viste 50% eller større inhibisjon ved høyeste konsentrasjon testet; ellers, blir IC50 rapportert som å være høyere enn den høyeste testede konsentrasjonen. Healthy aspirin-free donors were selected from a pool of volunteers. The fixation of platelet rich plasma and subsequent ADP induced platelet aggregation assays were performed as described in Zucker, M.B., "Platelet Aggregation Measured by the Phtometric Method", Methods in Enzymology 169(1989):117-133. Standard venipuncture techniques using a butterfly allowed the withdrawal of 45 ml of whole blood into a 60 ml syringe containing 5 ml of 3.8% trisodium citrate. Following thorough mixing in the syringe, the anticoagulated whole blood was transferred to a 50 ml conical polyethylene tube. The blood was centrifuged at room temperature for 12 minutes at 200 mg to pellet non-platelet cells. Platelet-rich plasma was removed into a polyethylene tube and stored at room temperature until use. Platelet-poor plasma was obtained from a second centrifugation of the remaining blood at 2000 xg for 15 minutes. Platelet count is typically 300,000 - 500,000 per microliter. Platelet-rich plasma (0.45 mL) was aliquoted into siliconized cuvettes and stirred (1100 rpm) at 37°C for one minute before addition of 50 µl of prediluted test compound. After one minute of mixing, agglomeration was initiated by the addition of 50 µl of 200 µl (Ml) ADP. Aggregation was recorded for three minutes in a Payton dual-channel aggrometer (Payton Scientific, Buffalo, NY). Percent inhibition of maximal response (saline control) for a series of test compound dilutions was used to determine a dose response curve. All compounds were tested in duplicate and the concentration of half-maximal inhibition (IC50) was calculated graphically from the dose-response curve for those compounds that showed 50% or greater inhibition at the highest concentration tested; otherwise, the IC50 is reported as being higher than the highest concentration tested.

Claims (15)

1. Forbindelse med formel hvori X og Y er den samme eller ulik halo gruppe; R er H eller Ci-Cio-alkyl; og farmasøytisk akseptable salter derav.1. Connection by formula wherein X and Y are the same or different halo group; R is H or C 1 -C 10 alkyl; and pharmaceutically acceptable salts thereof. 2. Forbindelse i følge krav 1 valgt fra gruppen bestående av: hvori R er H eller alkyl; eller farmasøytisk akseptable salter derav.2. Connection according to claim 1 selected from the group consisting of: wherein R is H or alkyl; or pharmaceutically acceptable salts thereof. 3. Forbindelse i følge krav 1 valgt fra gruppen bestående av3. Connection according to claim 1 selected from the group consisting of 4. Farmasøytisk sammensetning omfattende en terapeutisk effektiv mengde av en forbindelse i følge krav 1 og en far-masøytisk akseptabel bærer.4. Pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 1 and a pharmaceutically acceptable carrier. 5. Farmasøytisk sammensetning omfattende en terapeutisk effektiv mengde av en forbindelse i følge krav 2 og en far-masøytisk akseptabel bærer.5. Pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 2 and a pharmaceutically acceptable carrier. 6. Farmasøytisk sammensetning omfattende en terapeutisk effektiv mengde av en forbindelse i følge krav 3 og en far-masøytisk akseptabel bærer.6. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 3 and a pharmaceutically acceptable carrier. 7. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle tilstander formidlet ved Ovp3 integrinen i et pattedyr med behov for slik behandling.7. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat conditions mediated by the Ovp3 integrin in a mammal in need of such treatment. 8. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle tumor metastase .8. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat tumor metastasis. 9. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle hard tumorvekst.9. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat hard tumor growth. 10. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle angiogenese.10. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat angiogenesis. 11. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle osteoporose.11. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat osteoporosis. 12. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle humoral hyperkalsemi av malignansi.12. Use of the compound according to claim 1, 2 or 3 to prepare a medicament for treating humoral hypercalcemia of malignancy. 13. Anvendelse av forbindelsen ifølge krav l, 2 eller 3 for å fremstille et medikament for å behandle glatt mus-kelcellemigrasj on.13. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat smooth muscle cell migration. 14. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle revmatoid artritt.14. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat rheumatoid arthritis. 15. Anvendelse av forbindelsen ifølge krav 1, 2 eller 3 for å fremstille et medikament for å behandle makulær degenerasj on.15. Use of the compound according to claim 1, 2 or 3 to prepare a drug to treat macular degeneration.
NO20004316A 1998-03-04 2000-08-30 Meta azacyclic aminobenzoic acid compounds and derivatives thereof which are integrin antagonists NO315703B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3427098A 1998-03-04 1998-03-04
PCT/US1999/003281 WO1999044994A1 (en) 1998-03-04 1999-02-22 Meta-azacyclic amino benzoic acid compounds and derivatives thereof being integrin antagonists

Publications (3)

Publication Number Publication Date
NO20004316D0 NO20004316D0 (en) 2000-08-30
NO20004316L NO20004316L (en) 2000-11-06
NO315703B1 true NO315703B1 (en) 2003-10-13

Family

ID=21875345

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20004316A NO315703B1 (en) 1998-03-04 2000-08-30 Meta azacyclic aminobenzoic acid compounds and derivatives thereof which are integrin antagonists

Country Status (29)

Country Link
EP (1) EP1060164A1 (en)
JP (1) JP2002505323A (en)
KR (1) KR20010041584A (en)
CN (1) CN1214011C (en)
AP (1) AP1244A (en)
AR (1) AR018139A1 (en)
AU (1) AU753230B2 (en)
BG (1) BG104740A (en)
BR (1) BR9908470A (en)
CA (1) CA2322207A1 (en)
EA (1) EA200000804A1 (en)
EE (1) EE200000506A (en)
GE (1) GEP20033118B (en)
HR (1) HRP20000574A2 (en)
HU (1) HUP0100865A3 (en)
ID (1) ID25591A (en)
IL (1) IL137653A0 (en)
IS (1) IS5582A (en)
MY (1) MY123908A (en)
NO (1) NO315703B1 (en)
NZ (1) NZ506598A (en)
OA (1) OA11530A (en)
PL (1) PL342726A1 (en)
SK (1) SK13002000A3 (en)
TR (1) TR200002542T2 (en)
UA (1) UA71906C2 (en)
WO (1) WO1999044994A1 (en)
YU (1) YU52000A (en)
ZA (1) ZA994406B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9805655D0 (en) 1998-03-16 1998-05-13 Celltech Therapeutics Ltd Chemical compounds
GB9814414D0 (en) 1998-07-03 1998-09-02 Celltech Therapeutics Ltd Chemical compounds
GB9821061D0 (en) 1998-09-28 1998-11-18 Celltech Therapeutics Ltd Chemical compounds
GB9826174D0 (en) 1998-11-30 1999-01-20 Celltech Therapeutics Ltd Chemical compounds
US6518283B1 (en) 1999-05-28 2003-02-11 Celltech R&D Limited Squaric acid derivatives
US6455539B2 (en) 1999-12-23 2002-09-24 Celltech R&D Limited Squaric acid derivates
EP1332132B1 (en) 2000-04-17 2007-10-10 UCB Pharma, S.A. Enamine derivatives as cell adhesion molecules
US6403608B1 (en) 2000-05-30 2002-06-11 Celltech R&D, Ltd. 3-Substituted isoquinolin-1-yl derivatives
US6545013B2 (en) 2000-05-30 2003-04-08 Celltech R&D Limited 2,7-naphthyridine derivatives
US6921767B2 (en) * 2000-06-15 2005-07-26 Pharmacia Corporation Cycloalkyl alkanoic acids as integrin receptor antagonists derivatives
AU2001275724A1 (en) 2000-08-02 2002-02-13 Celltech R&D Limited 3-substituted isoquinolin-1-yl derivatives
AU2003299600A1 (en) * 2002-12-20 2004-07-29 Pharmacia Corpration The r-isomer of beta amino acid compounds as integrin receptor antagonists derivatives
UA87854C2 (en) 2004-06-07 2009-08-25 Мерк Энд Ко., Инк. N-(2-benzyl)-2-phenylbutanamides as androgen receptor modulators
KR20080031266A (en) * 2005-06-10 2008-04-08 바이파 사이언스 인코포레이티드 Parp modulators and treatment of cancer
EP2131861A2 (en) 2007-03-01 2009-12-16 Mallinckrodt Inc. Integrated photoactive small molecules and uses thereof
JP4792124B1 (en) * 2010-11-15 2011-10-12 エフイートレード株式会社 Method for molding protective film for vehicle and method for manufacturing protective film for vehicle
US8716226B2 (en) 2012-07-18 2014-05-06 Saint Louis University 3,5 phenyl-substituted beta amino acid derivatives as integrin antagonists
JP6215324B2 (en) 2012-07-18 2017-10-18 セントルイス ユニバーシティ Beta amino acid derivatives as integrin antagonists
KR20160147007A (en) 2014-05-30 2016-12-21 화이자 인코포레이티드 Carbonitrile derivatives as selective androgen receptor modulators
RU2729518C2 (en) 2015-12-30 2020-08-07 Сент-Луис Юниверсити Meta-azacyclic aminobenzoic acid derivatives as pan-integrin antagonists
WO2021230325A1 (en) 2020-05-14 2021-11-18 宇部興産株式会社 1, 4, 5, 6-tetrahydropyrimidine-2-amine derivative
WO2023275715A1 (en) 2021-06-30 2023-01-05 Pfizer Inc. Metabolites of selective androgen receptor modulators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ293323B6 (en) * 1995-08-30 2004-04-14 G. D. Searle & Co. Meta-guanidine, urea, thiourea or azacyclic amino benzoic acid derivatives as integrin antagonists

Also Published As

Publication number Publication date
ZA994406B (en) 2000-02-11
HUP0100865A3 (en) 2001-11-28
BG104740A (en) 2001-02-28
KR20010041584A (en) 2001-05-25
CN1214011C (en) 2005-08-10
NO20004316L (en) 2000-11-06
AU3294799A (en) 1999-09-20
HUP0100865A2 (en) 2001-08-28
NZ506598A (en) 2003-07-25
HRP20000574A2 (en) 2001-08-31
ID25591A (en) 2000-10-19
IL137653A0 (en) 2001-10-31
IS5582A (en) 2000-08-04
TR200002542T2 (en) 2001-05-21
UA71906C2 (en) 2005-01-17
GEP20033118B (en) 2003-11-25
AU753230B2 (en) 2002-10-10
PL342726A1 (en) 2001-07-02
OA11530A (en) 2004-05-17
CN1291978A (en) 2001-04-18
AP2000001893A0 (en) 2000-09-30
BR9908470A (en) 2000-12-05
MY123908A (en) 2006-06-30
EE200000506A (en) 2002-04-15
EA200000804A1 (en) 2001-04-23
CA2322207A1 (en) 1999-09-10
YU52000A (en) 2003-02-28
JP2002505323A (en) 2002-02-19
NO20004316D0 (en) 2000-08-30
SK13002000A3 (en) 2001-07-10
AP1244A (en) 2004-02-04
EP1060164A1 (en) 2000-12-20
WO1999044994A1 (en) 1999-09-10
AR018139A1 (en) 2001-10-31

Similar Documents

Publication Publication Date Title
NO315703B1 (en) Meta azacyclic aminobenzoic acid compounds and derivatives thereof which are integrin antagonists
CA2250586C (en) Meta-substituted phenylene sulphonamide derivatives
AU765294B2 (en) Heterocyclic glycyl beta-alanine derivatives as vitronectin antagonists
US5773644A (en) Cyclopropyl alkanoic acid derivatives
US6372719B1 (en) ανβ3 integrin antagonists in combination with chemotherapeutic agents
US6013651A (en) Meta-azacyclic amino benzoic acid compounds and derivatives thereof
MXPA05006732A (en) The r-isomer of beta amino acid compounds as integrin receptor antagonists derivatives.
US6689754B1 (en) Heterocyclic glycyl β-alanine derivatives
EP1156999B1 (en) Method for the preparation of a chiral-beta-amino ester
JP2004513088A (en) Lactone integrin antagonist
CZ20003218A3 (en) Derivatives of meta-azacyclic aminobenzoic acid and their derivatives that are integrin antagonists
MXPA00008427A (en) Meta-azacyclic amino benzoic acid compounds and derivatives thereof being integrin antagonists
US20080064716A1 (en) Biphenyl Integrin Antagonists
MXPA00009967A (en) Heterocyclic glycyl beta-alanine derivatives as vitronectin antagonists

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees