NO314343B1 - Process for Bonding Carbon Dioxide Gas (CO2) by Formation of Mineral Acid - Google Patents

Process for Bonding Carbon Dioxide Gas (CO2) by Formation of Mineral Acid Download PDF

Info

Publication number
NO314343B1
NO314343B1 NO20014998A NO20014998A NO314343B1 NO 314343 B1 NO314343 B1 NO 314343B1 NO 20014998 A NO20014998 A NO 20014998A NO 20014998 A NO20014998 A NO 20014998A NO 314343 B1 NO314343 B1 NO 314343B1
Authority
NO
Norway
Prior art keywords
gas
ammonia
water solution
carbon dioxide
na2c03
Prior art date
Application number
NO20014998A
Other languages
Norwegian (no)
Other versions
NO20014998L (en
NO20014998D0 (en
Inventor
Tord Hansen
Original Assignee
Silicatech Ans V Ole Johan Aul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO20011070A external-priority patent/NO20011070D0/en
Application filed by Silicatech Ans V Ole Johan Aul filed Critical Silicatech Ans V Ole Johan Aul
Priority to NO20014998A priority Critical patent/NO314343B1/en
Publication of NO20014998D0 publication Critical patent/NO20014998D0/en
Publication of NO20014998L publication Critical patent/NO20014998L/en
Publication of NO314343B1 publication Critical patent/NO314343B1/en

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

Beskrivelse Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for å binde karbondioksid ( C02 gass), ved at magnesiumklorid (MgC12) i vannløsning, eller magnesiumsulfat (MgS04) i vannløsning, gjennomgår en kjemisk reaksjonsprosess der det blir dannet magnesiumkarbonat (MgC03) og mineralsyre. The present invention relates to a method for binding carbon dioxide (C02 gas), in that magnesium chloride (MgC12) in water solution, or magnesium sulphate (MgS04) in water solution, undergoes a chemical reaction process in which magnesium carbonate (MgC03) and mineral acid are formed.

Det har de senere år i stadig sterkere grad blitt fokusert på reduksjon av klimagass utslipp. I forbindelse med Kyoto konferansen har bl.a. Norge vedtatt å begrense utslipp av karbondioksid (C02 gass). Dette har fått konsekvenser for de planlagte gasskraftverk i Norge, der tillatte utslipp av karbondioksid (C02 gass) vil være svært begrenset. Av denne grunn har det i lengere tid vært arbeidet med å finne frem til økonomisk lønnsomme prosesser for å redusere fremtidige karbondioksid utslipp fra nevnte planlagte gasskraftverk In recent years, there has been an increasingly strong focus on reducing greenhouse gas emissions. In connection with the Kyoto conference, i.a. Norway decided to limit emissions of carbon dioxide (C02 gas). This has had consequences for the planned gas power plants in Norway, where permitted emissions of carbon dioxide (C02 gas) will be very limited. For this reason, efforts have been made for a long time to find economically profitable processes to reduce future carbon dioxide emissions from the aforementioned planned gas power plants

Foreliggende oppfinnelse vil binde karbondioksid (C02 gass) til magnesiumklorid eller magnesiumsulfat ved at det dannes magnesiumkarbonat ( MgC03), i form av et hvitt pulver som i stor utstrekning vil ha anvendelse innen fillermarkedet. Da prosessen gir et positivt økonomisk bidrag, innebærer dette at store mengder karbondioksid kan omsettes til et meget rent percipitert magnesiumkarbonat med anvendelse som fyllstoff innen produksjon av papir, plast, maling, tetningsmiddel og gummivareindustri. Percipitert magnesiumkarbonat anvendes hovedsakelig innenfor tilsvarende markedsområder som mikronisert og percipitert kalsiumkarbonat (CaC03). Dette markedet forbruker årlig ca 10 mill. tonn mikronisert eller percipitert fillermateriale. The present invention will bind carbon dioxide (C02 gas) to magnesium chloride or magnesium sulphate by forming magnesium carbonate (MgC03), in the form of a white powder which will be widely used in the filler market. As the process makes a positive economic contribution, this means that large amounts of carbon dioxide can be converted into a very pure perceived magnesium carbonate for use as a filler in the production of paper, plastics, paints, sealants and the rubber goods industry. Precipitated magnesium carbonate is mainly used in similar market areas as micronized and precipitated calcium carbonate (CaC03). This market annually consumes approximately 10 million tonnes of micronized or percipitated filler material.

Hovedelementene i foreliggende oppfinnelse innebærer en prosess der inngående råmaterialer består av magnesiumklorid (MgC12), eventuelt magnesiumsulfat (MgS04), og karbondioksid (C02 gass), som behandles i en kjemisk prosesskjede, der det oppnås å fremstille magnesiumkarbonat (MgC03) og mineralsyre.. The main elements of the present invention involve a process where the raw materials involved consist of magnesium chloride (MgC12), possibly magnesium sulfate (MgS04), and carbon dioxide (C02 gas), which are processed in a chemical process chain, where it is achieved to produce magnesium carbonate (MgC03) and mineral acid.

I ovennevnte kjemiske prosesskjede inngår videre innsatsfaktorene ammoniakk og natriumkarbonat. Forbruket av disse innsatsfaktorene i den kjemiske prosesskjede vil imidlertid være ubetydelig, da disse resirkuleres i reaksjonsprosessene. For å drive prosessen kreves energi, hovedsakelig som varme energi i forbindelse med avdamping av ammoniakk gass i et delprosessledd. Energi delen vil imidlertid være av underordnet betydning i økonomisk prosessammenheng. The above-mentioned chemical process chain also includes the input factors ammonia and sodium carbonate. However, the consumption of these input factors in the chemical process chain will be negligible, as these are recycled in the reaction processes. To run the process, energy is required, mainly as heat energy in connection with the evaporation of ammonia gas in a partial process stage. The energy part will, however, be of subordinate importance in the economic process context.

Det oppnås i gjeldene fremgangsmåte å binde karbondioksid (C02 gass) i en prosess der magnesiumklorid, eventuelt magnesiumsulfat, omdannes til magnesiumkarbonat og mineralsyre. Gjennomsnittsprisen for magnesiumkarbonat produkter og mineralsyre utgjør ca 1000 kr/tonn mens prisen for magnesiumklorid/magnesiumsulfat utgjør ca 500 kr/tonn. Ved å binde karbondioksid som beskrevet, oppnås derved et positivt bidrag, omregnet i kr/tonn magnesiumsulfat magnesiumklorid på i størrelsesorden ca 500 kr/tonn. It is achieved in the current method to bind carbon dioxide (C02 gas) in a process where magnesium chloride, possibly magnesium sulphate, is converted into magnesium carbonate and mineral acid. The average price for magnesium carbonate products and mineral acid is approx. NOK 1,000/tonne, while the price for magnesium chloride/magnesium sulphate is approx. NOK 500/tonne. By binding carbon dioxide as described, a positive contribution is thereby achieved, converted into NOK/tonne of magnesium sulphate magnesium chloride of the order of approximately NOK 500/tonne.

Den kjemiske reaksjonsprosess for å binde karbondioksid med magnesiumklorid, hvor det dannes magnesiumkarbonat og saltsyre, består av en prosesskjede med følgende trinn The chemical reaction process for binding carbon dioxide with magnesium chloride, where magnesium carbonate and hydrochloric acid are formed, consists of a process chain with the following steps

Trinn 1 Step 1

MgC12 i en vannløsning tilsettes soda (Na2C03), hvorved det skjer en kjemisk reaksjon hvor det dannes magnesiumkarbonat (MgC03) som avfiltreres som faststoff, mens restløsningen bestående av koksalt (NaCl) i vannløsning går til adsorbsjonskammer for ammoniakk (NH3) gass. MgC12 in a water solution is added to soda (Na2C03), whereby a chemical reaction occurs where magnesium carbonate (MgC03) is formed which is filtered off as a solid, while the residual solution consisting of sodium chloride (NaCl) in water solution goes to the adsorption chamber for ammonia (NH3) gas.

Trinn 2 Step 2

Adsorbsjon av ammoniakk (NH3) gass med en vannløsning av koksalt (NaCl), fra trinn 1, og der denne løsningen tilsettes karbondioksid (C02 gass), hvorved det dannes NaHC03 som avfiltreres som faststoff. NaHC03 faststoff går deretter til konvertor der soda (Na2C03) blir dannet. (tilsvarende som i Solvay prosessen). Soda (Na2C03) resirkuleres til trinn 1 mens restløsningen bestående av NH4C1 i vannløsning går til avdampning av ammoniakk (NH3) gass. Adsorption of ammonia (NH3) gas with a water solution of common salt (NaCl), from step 1, and where carbon dioxide (C02 gas) is added to this solution, whereby NaHC03 is formed which is filtered off as a solid. NaHC03 solid then goes to converter where soda (Na2C03) is formed. (similar to the Solvay process). Soda (Na2C03) is recycled to stage 1, while the residual solution consisting of NH4C1 in water solution goes to the evaporation of ammonia (NH3) gas.

Trinn 3 Step 3

Avdamping av ammoniakkgass ved at ammoniumklorid (NH4C1) i vannløsning går til varmekjele for etter oppvarming å avgi ammoniakk (NH3 gass) der ammoniakkgassen resirkuleres til trinn 2. Restproduktet etter avdamping av ammoniakk gass består av saltsyre (HC1) i vannløsning som lagres i egen beholder. Evaporation of ammonia gas by ammonium chloride (NH4C1) in water solution going to a boiler to release ammonia (NH3 gas) after heating where the ammonia gas is recycled to step 2. The residual product after evaporation of ammonia gas consists of hydrochloric acid (HC1) in water solution which is stored in a separate container .

Reaksjonslikningene for prosesstrinnene blir som følger: The reaction equations for the process steps are as follows:

Dette gir da følgende hovedreaksjon This then gives the following main reaction

Fig.l viser et forenklet flytdiagram med utgangsråstoff i magnesiumklorid Dersom magnesiumsulfat blir anvendt i stedet for magnesiumklorid, erstattes 2C1' ioner med ett S04<2>" ion i de ovenfor beskrevne reaksjonslikninger. Fig. 2 viser et forenklet flytdiagram med magnesiumsulfat som utgangsråstoff. Fig.1 shows a simplified flow diagram with starting raw material in magnesium chloride If magnesium sulfate is used instead of magnesium chloride, 2C1' ions are replaced by one S04<2>" ion in the reaction equations described above. Fig. 2 shows a simplified flow diagram with magnesium sulfate as starting raw material.

Det henvises ellers til de selvstendige kravene. Reference is otherwise made to the independent requirements.

I det etterfølgende angis eksempel på utførelse av fremgangsmåte. In the following, an example of how to carry out the method is given.

Eksempel Example

Utgangsmaterialet som anvendes vil være MgC12 i vannløsning. Denne løsningen tilsettes soda (Na2C03) hvorved MgC03 felles ut som faststoff som frafiltreres og tørkes til et ferdig magnesiumkarbonat produkt i pulverform som lagres i bulksilo. Restløsningen består da av koksalt (NaCl) i vannløsning, som går til egen tank. NaCl i vannløsning blandes deretter med ammoniakk (NH3) gass fra egen beholder i en adsorbsjonstank. Løsningen fra adsorbsjonstanken føres derfra til karbonreaktor for gjennomblåsing av kulldioksid (C02 gass), hvor det dannes ammoniumklorid (NH4C1) og NaHC03 som faststoff, hvor faststoffet frafiltreres og konverteres til soda (NaC03), tilsvarende som i Solvay prosessen. Soda går til egen silo for deretter å resirkuleres til prosessdelen for utfelling av magnesiumkarbonat. Restløsningen etter frafiltrering av NaHC03 bestående av ammoniumklorid (NH4C1) i vannløsning, går til egen lagringstank for deretter å gå til varmekjel for avdamping av ammoniakk (NH3) gass. Ammoniakkgassen lagres på egen gassbeholder. Restproduktet etter ammoniakk avdamping består da av saltsyre (HC1) i vannløsning, som går til egen lagringstank for saltsyre. The starting material used will be MgC12 in water solution. Soda (Na2C03) is added to this solution, whereby MgC03 is precipitated as a solid which is filtered off and dried into a finished magnesium carbonate product in powder form which is stored in a bulk silo. The residual solution then consists of table salt (NaCl) in water solution, which goes to its own tank. NaCl in water solution is then mixed with ammonia (NH3) gas from a separate container in an adsorption tank. The solution from the adsorption tank is then led to a carbon reactor for blowing through carbon dioxide (C02 gas), where ammonium chloride (NH4C1) and NaHC03 are formed as a solid, where the solid is filtered off and converted to soda ash (NaC03), similar to the Solvay process. Soda goes to its own silo and is then recycled to the process section for precipitation of magnesium carbonate. The residual solution after filtering out NaHC03 consisting of ammonium chloride (NH4C1) in water solution, goes to a separate storage tank and then goes to a boiler for evaporation of ammonia (NH3) gas. The ammonia gas is stored in a separate gas container. The residual product after ammonia evaporation then consists of hydrochloric acid (HC1) in water solution, which goes to a separate storage tank for hydrochloric acid.

En tilsvarende prosessgang vil også være gjeldene når utgangsmaterialet MgC12 erstattes av magnesiumsulfat (MgS04) som alternativt utgangsmateriale, der da magnesiumkarbonat (MgC03) og svovelsyre (H2S04) blir sluttprodukter. A similar process will also apply when the starting material MgC12 is replaced by magnesium sulfate (MgS04) as an alternative starting material, where then magnesium carbonate (MgC03) and sulfuric acid (H2S04) become end products.

Claims (2)

1. Fremgangsmåte for å binde karbondioksid (C02 gass) hvor det med utgangspunkt i vannløst magnesiumklorid (MgC12) oppnås å danne magnesiumkarbonat (MgC03) og saltsyre (HC1), i en kjemisk reaksjonsprosess karakterisert ved de følgende trinn: - Trinn 1 magnesiumklorid (MgC12) i en vannløsning tilsettes soda (Na2C03), hvorved det skjer en kjemisk reaksjon hvor det dannes magnesiumkarbonat (MgC03) som avfiltreres som faststoff, mens restløsningen bestående av koksalt (NaCl) i vannløsning går til adsobsjonskammer for opptak av ammoniakk (NH3 gass), - Trinn 2 adsorbsjon av ammoniakk (NH3 gass) med en vannløsning av koksalt (NaCl) fra trinn 1, der denne løsningen tilsettes karbondioksid (C02 gass), hvor soda (Na2C03) blir dannet tilsvarende som i Solvay prosessen, hvorved soda (Na2C03) deretter resirkuleres til trinn 1, mens restløsningen bestående av ammoniumklorid (NH4C1) i vannløsning går til avdamping av ammoniakk (NH3 gass), - Trinn 3 avdamping av ammoniakk (NH3 gass) ved at ammoniumklorid (NH4C1) i vannløsning går til varmekjele, for etter oppvarming å avgi ammoniakk (NH3 gass), der ammoniakk resirkuleres til trinn 2, og der restproduktet etter avdamping av ammoniakk gass består av saltsyre (HC1) i vannløsning som lagres i egen beholder.1. Method for binding carbon dioxide (C02 gas) where starting from anhydrous magnesium chloride (MgC12) it is achieved to form magnesium carbonate (MgC03) and hydrochloric acid (HC1), in a chemical reaction process characterized by the following steps: - Step 1 magnesium chloride (MgC12) in a water solution is added soda ash (Na2C03), whereby a chemical reaction takes place where magnesium carbonate (MgC03) is formed which is filtered off as a solid, while the residual solution consisting of common salt (NaCl) in water solution goes to an adsorption chamber for absorption of ammonia (NH3 gas), - Step 2 adsorption of ammonia (NH3 gas) with a water solution of common salt (NaCl) from step 1, where carbon dioxide (C02 gas) is added to this solution, where soda (Na2C03) is formed similarly to the Solvay process, whereby soda (Na2C03) is then recycled to step 1, while the residual solution consisting of ammonium chloride (NH4C1) in water solution goes to the evaporation of ammonia (NH3 gas), - Step 3 evaporation of ammonia (NH3 gas) by ammonium chloride (NH4C1) in water solution going to a heating boiler, to give off ammonia (NH3 gas) after heating, where ammonia is recycled to step 2, and where the residual product after evaporation of ammonia gas consists of hydrochloric acid (HC1 ) in water solution which is stored in a separate container. 2. Fremgangsmåte for å binde karbondioksid (C02 gass) hvor det med utgangspunkt i vannløst magnesiumsulfat (MgS04) oppnås å danne magnesiumkarbonat (MgC03) og svovelsyre (H2S04), i en kjemisk prosess karakterisert ved de følgende trinn, - trinn 1 magnesiumsulfat (MgS04) i en vannløsning tilsettes soda (Na2C03), hvorved det skjer en kjemisk reaksjon hvor det dannes magnesiumkarbonat (MgC03) som avfiltreres som faststoff, mens restløsningen bestående av natriumsulfat (Na2S04) i vannløsning går til adsorbsjonskammer for ammoniakk (NH3 gass), - trinn 2 adsorbsjon av ammoniakk (NH3 gass) med vannløst natriumsulfat (Na2S04) fra trinn 1, der denne løsningen tilsettes karbondioksid (C02 gass), hvor det dannes soda (Na2C03) tilsvarende som i Solvay prosessen, hvorved soda (Na2C03) deretter resirkuleres til trinnl, mens restløsningen bestående av ammoniumsulfat ((NH4)2S04) går til avdamping av ammoniakk (NH3 gass), - trinn 3 avdamping av ammoniakk (NH3 gass) ved at ammoniumsulfat ((NH4)2S04) i vannløsning går til varmekjele, for etter oppvarming å avgi ammoniakk (NH3 gass), der ammoniakk resirkuleres til trinn 2, og der restproduktet etter avdamping av ammoniakk gass består av svovelsyre (H2S04) som lagres i egen beholder.2. Process for binding carbon dioxide (C02 gas) where starting from anhydrous magnesium sulphate (MgS04) it is achieved to form magnesium carbonate (MgC03) and sulfuric acid (H2S04), in a chemical process characterized by the following steps, - step 1 magnesium sulfate (MgS04) in a water solution is added soda ash (Na2C03), whereby a chemical reaction occurs where magnesium carbonate (MgC03) is formed which is filtered off as a solid, while the residual solution consisting of sodium sulfate (Na2S04) in water solution goes to the adsorption chamber for ammonia (NH3 gas) , - step 2 adsorption of ammonia (NH3 gas) with anhydrous sodium sulfate (Na2S04) from step 1, where carbon dioxide (C02 gas) is added to this solution, where soda ash (Na2C03) is formed similarly to the Solvay process, whereby soda ash (Na2C03) is then recycled to step l, while the residual solution consisting of ammonium sulphate ((NH4)2S04) goes to evaporate ammonia (NH3 gas), - step 3 evaporation of ammonia (NH3 gas) by ammonium sulphate ((NH4)2S04) in water solution going to a heating boiler, to give off ammonia (NH3 gas) after heating, where ammonia is recycled to step 2, and where the residual product after evaporation of ammonia gas consists of sulfuric acid (H2S04) which is stored in a separate container.
NO20014998A 2001-03-01 2001-10-12 Process for Bonding Carbon Dioxide Gas (CO2) by Formation of Mineral Acid NO314343B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20014998A NO314343B1 (en) 2001-03-01 2001-10-12 Process for Bonding Carbon Dioxide Gas (CO2) by Formation of Mineral Acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20011070A NO20011070D0 (en) 2001-03-01 2001-03-01 Process for Binding Carbon Dioxide (CO2 Gas) by an Acid-Based Process
NO20014998A NO314343B1 (en) 2001-03-01 2001-10-12 Process for Bonding Carbon Dioxide Gas (CO2) by Formation of Mineral Acid

Publications (3)

Publication Number Publication Date
NO20014998D0 NO20014998D0 (en) 2001-10-12
NO20014998L NO20014998L (en) 2002-09-02
NO314343B1 true NO314343B1 (en) 2003-03-10

Family

ID=26649297

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20014998A NO314343B1 (en) 2001-03-01 2001-10-12 Process for Bonding Carbon Dioxide Gas (CO2) by Formation of Mineral Acid

Country Status (1)

Country Link
NO (1) NO314343B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094691A1 (en) * 2006-02-17 2007-08-23 Enpro As Method for handling saline water and carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094691A1 (en) * 2006-02-17 2007-08-23 Enpro As Method for handling saline water and carbon dioxide

Also Published As

Publication number Publication date
NO20014998L (en) 2002-09-02
NO20014998D0 (en) 2001-10-12

Similar Documents

Publication Publication Date Title
DK2234699T3 (en) PROCEDURE FOR THE PREPARATION OF SODIUM BICARBONATE FOR Sulfurization of Flue Gas
Huijgen Carbon dioxide sequestration by mineral carbonation
Liu et al. Synthesis of sole gismondine-type zeolite from blast furnace slag during CO2 mineralization process
CN102153113B (en) Process for producing mirabilite type bittern, sodium carbonate, sodium chloride, sodium sulfate and ammonium chloride
CN104096707B (en) Semi-dry desulphurization ash resource utilization method
Mattila et al. Production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues
Eloneva Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product
Cho et al. Novel process design of desalination wastewater recovery for CO2 and SOX utilization
Baciocchi et al. Regeneration of a spent alkaline solution from a biogas upgrading unit by carbonation of APC residues
CN107572554B (en) A kind of clean energy-saving type production salt producing craft
WO2007139392A1 (en) A modified solvay process, and uses thereof for processing co2-containing gas streams and for desalination
CA2728521A1 (en) Carbon dioxide capture
Baena-Moreno et al. Synergizing carbon capture storage and utilization in a biogas upgrading lab-scale plant based on calcium chloride: Influence of precipitation parameters
MX2011010165A (en) Process for simultaneous production of potassium sulphate, ammonium sulfate, magnesium hydroxide and/or magnesium oxide from kainite mixed salt and ammonia.
CN105000579A (en) Technology for combined production of sodium carbonate and ammonium chloride through sodium sulfate type brine thermal cycle method
CN104591226A (en) Circular production method for co-production of potassium sulfate, calcium chloride and baking soda
US20220288556A1 (en) Methods of treating metal carbonate salts
Chu et al. Chemical synthesis of magnesium oxide (MgO) from brine towards minimal energy consumption
CA3002655C (en) Process and system for removing sulfur dioxide from flue gas
NO314343B1 (en) Process for Bonding Carbon Dioxide Gas (CO2) by Formation of Mineral Acid
US8152895B2 (en) Production of magnesium metal
KR20190094872A (en) Mineral carbonation method using carbon dioxide membrane
CN105329920A (en) Method for joint production of potassium sulphate and calcium chloride dihydrate
CN102424404A (en) Process of co-production of soda ash and hydrochloric acid by using recycled calcium carbonate and salts as raw materials
WO2015194963A1 (en) Process for producing soda ash

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees