NO314129B1 - Use and method of increasing the oxidation of sulfur dioxide dissolved in seawater - Google Patents

Use and method of increasing the oxidation of sulfur dioxide dissolved in seawater Download PDF

Info

Publication number
NO314129B1
NO314129B1 NO996030A NO996030A NO314129B1 NO 314129 B1 NO314129 B1 NO 314129B1 NO 996030 A NO996030 A NO 996030A NO 996030 A NO996030 A NO 996030A NO 314129 B1 NO314129 B1 NO 314129B1
Authority
NO
Norway
Prior art keywords
seawater
sulfur dioxide
oxidation
ions
dissolved
Prior art date
Application number
NO996030A
Other languages
Norwegian (no)
Other versions
NO996030L (en
NO996030D0 (en
Inventor
Otto Morten Bade
Original Assignee
Alstom Switzerland Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Switzerland Ltd filed Critical Alstom Switzerland Ltd
Priority to NO996030A priority Critical patent/NO314129B1/en
Publication of NO996030D0 publication Critical patent/NO996030D0/en
Priority to AU17423/01A priority patent/AU1742301A/en
Priority to PCT/NO2000/000401 priority patent/WO2001041902A1/en
Priority to MYPI20005770A priority patent/MY143670A/en
Publication of NO996030L publication Critical patent/NO996030L/en
Publication of NO314129B1 publication Critical patent/NO314129B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

Foreliggende oppfinnelse angår en anvendelse og en femgangsmåte for å oppnå i det vesentlige fullstendig oksidasjon av svoveldioksid oppløst i sjøvann til sulfat ved reaksjon med oksygen. The present invention relates to an application and a five-step method for achieving substantially complete oxidation of sulfur dioxide dissolved in seawater to sulphate by reaction with oxygen.

Artikkelen "The rate of sulfite oxidation in seawater" av Zhang og Millero, Miami Universitet, beskriver hvordan oksideringshastigheten av sulfitt i sjøvann varierer som funskjon av pH. The article "The rate of sulfite oxidation in seawater" by Zhang and Millero, University of Miami, describes how the oxidation rate of sulfite in seawater varies as a function of pH.

Flåkt-Hydro prosessen for avsvovling av avløpsgass (FGD) benytter sjøvann som et gjennomgangsabsorbsjonsmiddel. Sjøvann er i seg selv alkalisk med en pH på 8,0 til 8,3. Avløpsgass som inneholder svoveldioksid blir skrubbet i en absorber med sjøvann. Det absorberte svoveldioksid trenger å bli oksidert til sulfat før uttømming i sjøen for miljøgrunnet. Følgelig, blir svovel inneholdende vann overført til et luftebasseng i hvilket luft og fersk sjøvann blir tilsatt, og oksidering av oppløst svoveldioksid til sulfat blir utført. Luftebassenget kan enten være lokalisert på bunnen av absorberen, i kjølevannskanalen, i sammenkoplingsrør, eller som et separat anlegg. The Flåkt-Hydro process for waste gas desulphurisation (FGD) uses seawater as a pass-through absorbent. Seawater is inherently alkaline with a pH of 8.0 to 8.3. Waste gas containing sulfur dioxide is scrubbed in an absorber with seawater. The absorbed sulfur dioxide needs to be oxidized to sulphate before discharge into the sea for environmental reasons. Consequently, sulfur-containing water is transferred to an aeration basin to which air and fresh seawater are added, and oxidation of dissolved sulfur dioxide to sulfate is effected. The air pool can either be located at the bottom of the absorber, in the cooling water channel, in connecting pipes, or as a separate facility.

Mengden av oksidering er strengt temperaturavhengig, og spesielt for de steder med kaldt vann er oksideringen langsom. For å sikre fullstendig oksidering, må oppholdstiden og således luftebassengets volum være stort. Luftebassenget er en kostbar del av FGD-enheten. The amount of oxidation is strictly temperature-dependent, and particularly in places with cold water, oxidation is slow. To ensure complete oxidation, the residence time and thus the volume of the aeration basin must be large. The aeration basin is an expensive part of the FGD unit.

Generelt er ikke mekanismen og kinetikken angående sulfit og bisulfit oksidering helt klar. Selv om oksidering med molekulær oksygen kan uttrykkes på denne enkle måte: In general, the mechanism and kinetics regarding sulfite and bisulfite oxidation are not completely clear. Although oxidation by molecular oxygen can be expressed in this simple way:

er reaksjonene meget kompliserte. the reactions are very complicated.

Det er vel kjent at katalytisk autooksidering av oppløst svoveldioksid i vann skjer. Ioner av overgangsmetaller, så som Mn, Fe, Co og Cu er beskrevet i litteraturen som katalysatorer for sulfitoksidering. Også noen heterogene katalysatorer er kjent. It is well known that catalytic autoxidation of dissolved sulfur dioxide in water occurs. Ions of transition metals, such as Mn, Fe, Co and Cu are described in the literature as catalysts for sulfite oxidation. Some heterogeneous catalysts are also known.

I ferskvann, utviser reaksjonsmengden av Fe-katalysert oksideringsprosess en generell klokke-formet pH avhengighet med maksimum mengde rundt pH 2-4. Ved høyere pH-verdier, er ikke det oppløste jern aktivt på grunn av meget hurtig utfelling avFe<3+>hydroksider. In freshwater, the reaction rate of Fe-catalyzed oxidation processes exhibits a general bell-shaped pH dependence with a maximum rate around pH 2-4. At higher pH values, the dissolved iron is not active due to very rapid precipitation of Fe<3+>hydroxides.

katalysert oksidering i sjøvann er forskjellig fra ferskvann. I sjøvann, må oksideringen utføres i et pH-område mellom 4 og 7, og konsentrasjonen av jernioner som er nødvendig er meget lavere. Grunnen for denne forskjell er at sjøvann inneholder store mengder Cl" ioner, hvilket stabiliserer de aktive Fe-komplekser mot utfelling under den tid som er nødvendig for oksidering. Med samme mengde av tilsatt jern (Fe<2+>, Fe<3*>), er oksideringstakten i sjøvann funnet å være mer enn en størrelsesorden høyere enn i ferskvann. ;Ved å tilsette 10-20 ppb av Fe<2+>eller F<3+>til sulfit inneholdende sjøvann, er mengden av S(IV) oksidering omkring 5 ganger høyere enn oksideringsmengder observert i sjøvann uten noen katalysator tilsatt. Uttømming av sjøvann med denne lave konsentrasjon av jern har ingen negativ virkning må miljøet. ;Jern kan tilsettes til sjøvannet i form av oppløselig jemsalter, for eksempel som sulfat eller klorid. Jernsaltene kan tilsettes absorberutgangen eller til sjøvannet oppstrøms fra absorberen eller oppstrøms fra luftebassenget. Oksidasjonstilstanden av tilsatt jern (Fe<2+>eller Fe<3+>) har ingen virkning på mengden av S(IV) oksidasjon, forutsatt at katalysatoren tilsettes i sur effluent. Bare ferrojern bør imidlertid brukes for sjøvann oppstrøms fra absorberen eller oppstrøms fra luftebassenget. Grunnen til dette er den meget hurtige utfelling av Fe<3+>i nøytral eller basiske oppløsninger. Alternativt, kan jernionene tilsettes til systemet gjennom oppløsning av jernmaterialer i en jernoppløsning eller i den sur absorbereffluent. Ved bruk av prinsippene av katodisk beskyttelse og en anode av ferromateriale 0em>s*ål osv) kan mengden av oppløsning av jernioner i sjøvann eller til absorbereffluenten blir styrt ved tilførte strøm. catalyzed oxidation in seawater is different from fresh water. In seawater, the oxidation must be carried out in a pH range between 4 and 7, and the concentration of iron ions required is much lower. The reason for this difference is that seawater contains large amounts of Cl" ions, which stabilizes the active Fe complexes against precipitation during the time required for oxidation. With the same amount of added iron (Fe<2+>, Fe<3*> ), the oxidation rate in seawater is found to be more than an order of magnitude higher than in fresh water. ;By adding 10-20 ppb of Fe<2+>or F<3+> to sulfite-containing seawater, the amount of S(IV) oxidation about 5 times higher than oxidation amounts observed in seawater without any catalyst added. Depletion of seawater with this low concentration of iron has no negative effect on the environment. ;Iron can be added to the seawater in the form of soluble iron salts, for example as sulfate or chloride. The iron salts can be added to the absorber outlet or to the seawater upstream from the absorber or upstream from the aeration basin.The oxidation state of added iron (Fe<2+>or Fe<3+>) has no effect on the amount of S(IV) oxidation, provided that the catalyst is added to acidic effluent. However, only ferrous iron should be used for seawater upstream from the absorber or upstream from the aeration basin. The reason for this is the very rapid precipitation of Fe<3+> in neutral or basic solutions. Alternatively, the iron ions can be added to the system through dissolution of iron materials in an iron solution or in the acidic absorber effluent. By using the principles of cathodic protection and an anode made of ferrous material 0em>s*ål etc) the amount of dissolution of iron ions in seawater or in the absorber effluent can be controlled by applied current.

Med fremgangsmåten og anvendelsen ifølge foreliggende oppfinnelse, slik de er definert med de i kravene anførte trekk, oppnås en økt oksidering av oppløst svoveldioksid i sjøvann. With the method and application according to the present invention, as they are defined with the features listed in the claims, an increased oxidation of dissolved sulfur dioxide in seawater is achieved.

Nyheten ved denne prosessen er de meget små mengder av Fe ioner som er nødvendig, på grunn av de meget aktive komplekser av jern utformet i sjøvann i pH området 4-7. Denne observasjon har ikke vært rapport før. The novelty of this process is the very small amounts of Fe ions that are needed, due to the very active complexes of iron formed in seawater in the pH range 4-7. This observation has not been reported before.

Flere oksidasjonseksperimenter har vært utført i et små-skala-pilotanlegg. Ferri-eller ferrojern (i form av oppløselige salter) blir tilsatt et reaksjonskar inneholdende friskt sjøvann som er gjort surt med oppløst SO2. Bare en langsom oksidasjon er observert når pH-verdien av oppløsningen er under 4, men oksidasjonsreaksjonen starter imidlertid og fortsetter meget raskt når mer sjøvann tilsettes reaksjonskaret og pH-verdien av oppløsningen er i området 4-7. For å nå denne spesifiserte pH, er tilsetningen av sjøvann dimensjonert slik at det naturlig forekommende bikarbonat i sjøvann er tilstrekkelig til å virke som en buffer. Det er også mulig å øke alkaliniteten av sjøvann, og dermed absorpsjonskapasiteten av svoveldioksid, ved å tilsatte kalk eller kalkstein eller oppløsninger av disse til sjøvannet. Several oxidation experiments have been carried out in a small-scale pilot plant. Ferric or ferrous iron (in the form of soluble salts) is added to a reaction vessel containing fresh seawater that has been acidified with dissolved SO2. Only a slow oxidation is observed when the pH value of the solution is below 4, but the oxidation reaction however starts and continues very quickly when more seawater is added to the reaction vessel and the pH value of the solution is in the range 4-7. To reach this specified pH, the addition of seawater is dimensioned so that the naturally occurring bicarbonate in seawater is sufficient to act as a buffer. It is also possible to increase the alkalinity of seawater, and thus the absorption capacity of sulfur dioxide, by adding lime or limestone or solutions of these to the seawater.

Luft eller oksygen blir boblet gjennom karet for å sikre nærvær av oppløst oksygen under oksidasjonsreaksjonen. pH og oppløst oksygen blir kontinuerlig overvåket under reaksjonen, mens prøver for sulfitanalyser blir tatt ved intervallet på noen få sekunder. Sulfitkonsentrasjonene blir bestemt ved jod/tiosulfat-titrering, ved bruk at stivelse som indikator. Kjemikaliene som ble brukt var av analytisk reagensgrad. Karet ble rengjort med HC1 mellom kjøringer for å minimalisere virkningen av katalysator fra tidligere eksperimenter. Air or oxygen is bubbled through the vessel to ensure the presence of dissolved oxygen during the oxidation reaction. pH and dissolved oxygen are continuously monitored during the reaction, while samples for sulfite analyzes are taken at intervals of a few seconds. The sulphite concentrations are determined by iodine/thiosulphate titration, using starch as an indicator. The chemicals used were of analytical reagent grade. The vessel was cleaned with HC1 between runs to minimize the effect of catalyst from previous experiments.

Resultatene viser at mengden av S(IV) oksidasjon er omkring 5 ganger raskere i eksperimenter med 20 ppb Fe-ioner enn uten tilsetning av katalysator. The results show that the amount of S(IV) oxidation is about 5 times faster in experiments with 20 ppb Fe ions than without the addition of catalyst.

Claims (7)

1. Fremgangsmåte for å oppnå i det vesentlige fullstendig oksidasjon av svoveldioksid oppløst i sjøvann til sulfat ved reaksjon med oksygen,karakterisert vedå oppløse svoveldioksid i sjøvann i en slik mengde at sjøvannet med oppløst svoveldioksid oppnår en pH i området fra pH 4 til pH 7, og å tilføre sjøvannet Fe-ioner og molekylært oksygen ved å boble luft inneholdende svoveldioksid og Fe-ioner gjennom sjøvannet.1. Process for achieving substantially complete oxidation of sulfur dioxide dissolved in seawater to sulfate by reaction with oxygen, characterized by dissolving sulfur dioxide in seawater in such an amount that the seawater with dissolved sulfur dioxide achieves a pH in the range from pH 4 to pH 7, and to supply the seawater with Fe ions and molecular oxygen by bubbling air containing sulfur dioxide and Fe ions through the seawater. 2. Fremgangsmåte ifølge krav 1,karakterisert vedå tilsette Fe<2+->eller Fe<3+->holdig salt til vannet i luftebassengets oppstrømsside.2. Method according to claim 1, characterized by adding Fe<2+-> or Fe<3+-> containing salt to the water in the upstream side of the aeration basin. 3. Fremgangsmåte ifølge krav 1,karakterisert vedå tilsette Fe<2+->eller Fe<3+->holdig salt i absorberen eller i utløpsstrømmen fra denne.3. Method according to claim 1, characterized by adding Fe<2+-> or Fe<3+-> containing salt in the absorber or in the outlet stream from it. 4. Fremgangsmåte ifølge krav 1-3,karakterisert vedå holde konsentrasjonen av Fe-ioner i sjøvannet på 10-20 ppb.4. Method according to claims 1-3, characterized by keeping the concentration of Fe ions in the seawater at 10-20 ppb. 5. Fremgangsmåte ifølge krav 1,karakterisert vedå tilføre Fe til sjøvannet ved at dette korroderer et jernmateriale.5. Method according to claim 1, characterized by adding Fe to the seawater in that this corrodes an iron material. 6. Fremgangsmåte ifølge krav 1,karakterisert vedå tilføre Fe til sjøvannet fra en jernholdig anode ved å utnytte kjente prinsipper for katodiske beskyttelse.6. Method according to claim 1, characterized by adding Fe to the seawater from a ferrous anode by utilizing known principles for cathodic protection. 7. Anvendelse av fremgangsmåten ifølge krav 1-6, til å fjerne svoveldioksid som var dannet ved en prosess for avsvovling av en avløpsgass og som er absorbert i sjøvann i en skrubber, ved å oksidere svoveldioksidet til sulfat med oksygen eller luft.7. Use of the method according to claims 1-6, to remove sulfur dioxide which was formed by a process for desulphurisation of a waste gas and which is absorbed in seawater in a scrubber, by oxidising the sulfur dioxide to sulphate with oxygen or air.
NO996030A 1999-12-08 1999-12-08 Use and method of increasing the oxidation of sulfur dioxide dissolved in seawater NO314129B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NO996030A NO314129B1 (en) 1999-12-08 1999-12-08 Use and method of increasing the oxidation of sulfur dioxide dissolved in seawater
AU17423/01A AU1742301A (en) 1999-12-08 2000-12-01 A process to increase the oxidation rate of dissolved sulphur dioxide in seawater
PCT/NO2000/000401 WO2001041902A1 (en) 1999-12-08 2000-12-01 A process to increase the oxidation rate of dissolved sulphur dioxide in seawater
MYPI20005770A MY143670A (en) 1999-12-08 2000-12-08 A process to increase the oxidation rate of dissolved sulphur dioxide in seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO996030A NO314129B1 (en) 1999-12-08 1999-12-08 Use and method of increasing the oxidation of sulfur dioxide dissolved in seawater

Publications (3)

Publication Number Publication Date
NO996030D0 NO996030D0 (en) 1999-12-08
NO996030L NO996030L (en) 2001-06-11
NO314129B1 true NO314129B1 (en) 2003-02-03

Family

ID=19904080

Family Applications (1)

Application Number Title Priority Date Filing Date
NO996030A NO314129B1 (en) 1999-12-08 1999-12-08 Use and method of increasing the oxidation of sulfur dioxide dissolved in seawater

Country Status (4)

Country Link
AU (1) AU1742301A (en)
MY (1) MY143670A (en)
NO (1) NO314129B1 (en)
WO (1) WO2001041902A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505734A (en) * 2008-10-17 2012-03-08 斯幹 彭 Method and apparatus for simultaneous desulfurization and denitration of exhaust gas by seawater method
ES2590359T3 (en) 2011-02-10 2016-11-21 General Electric Technology Gmbh A method and device for treating effluent seawater from a seawater gas scrubber
EP2578544B1 (en) * 2011-10-07 2018-12-12 General Electric Technology GmbH Method and system for controlling treatment of effluent from seawater flue gas scrubber
US9550688B2 (en) * 2013-09-18 2017-01-24 General Electric Technology Gmbh Method and apparatus for catalyzing seawater aeration basins
US9630864B2 (en) 2015-06-17 2017-04-25 General Electric Technology Gmbh Seawater plant with inclined aeration and mixed auto recovery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152218A (en) * 1972-08-28 1979-05-01 Hitachi, Ltd. Method for the distillation of sea water
NO156235C (en) * 1980-02-13 1988-02-02 Flaekt Ab PROCEDURE FOR ABSORPTION OF SULFUR OXIDES FROM SEASY GASES IN SEAWATER.
DE29517697U1 (en) * 1995-07-29 1996-01-18 Gottfried Bischoff Gmbh & Co Flue gas desulfurization plant
DE19752470C2 (en) * 1997-11-27 2002-04-11 Lurgi Lentjes Bischoff Gmbh Process and system for separating SO¶2¶ from exhaust gas

Also Published As

Publication number Publication date
WO2001041902A1 (en) 2001-06-14
AU1742301A (en) 2001-06-18
NO996030L (en) 2001-06-11
MY143670A (en) 2011-06-30
NO996030D0 (en) 1999-12-08

Similar Documents

Publication Publication Date Title
FI75140B (en) FOERFARANDE FOER AVGIFNING AV EN KONTINUERLIG AVFALLSVATTENSTROEM SAMT FOER MINSKNING AV DET KEMISKA OCH BIOLOGISKA SYREBEHOVET I DENNA MED VAETEPEROXID.
Jin et al. Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution
AU542814B2 (en) Wastewater treatment process
Pintar et al. Hardness and salt effects on catalytic hydrogenation of aqueous nitrate solutions
ES2337997T3 (en) NOX LEVEL REDUCTION PROCESS IN RESIDUAL GAS CURRENTS BY SODIUM CHLORITE USE.
Charron et al. Use of hydrogen peroxide in scrubbing towers for odor removal in wastewater treatment plants
Tzvi et al. Highly efficient method for oxidation of dissolved hydrogen sulfide in water, utilizing a combination of UVC light and dissolved oxygen
SE444389B (en) PROCESSING KIT FOR ABSORPTION OF SULFUR OXIDES FROM Flue gases
NO130469B (en)
US4256710A (en) Process for deodorization
Karatza et al. Reaction rate of sulfite oxidation catalyzed by cuprous ions
NO314129B1 (en) Use and method of increasing the oxidation of sulfur dioxide dissolved in seawater
CA1069273A (en) Purification of sulfur-containing waste gases with hydrogen peroxide
KR20140014148A (en) Device and method for reducing the hydrogen peroxide and peracetic acid content in a water flow
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
US20140360935A1 (en) Method and device for treating ballast water
JPH03131319A (en) Method of absorbing chlorine selectively from carbon dioxide containing waste gas
CA2746480A1 (en) Removal of ammonia nitrogen, ammonium nitrogen and urea nitrogen by oxidation with hypochlorite-containing solutions from exhaust air in plants for producing ammonia and urea
CA2512779A1 (en) Method and installation for purifying gas
Abrams et al. Use of seawater in flue gas desulfurization: A new low-cost FGD system for special applications
Huang et al. A comparative study on sulfide removal by HClO and KMnO 4 in drinking water
Pasiuk-Bronikowska et al. Solubilization of organics in water coupled with sulphite autoxidation
Vorbach et al. Catalytic oxidation of sulfite/bisulfite in a falling-film absorption column
US20060104876A1 (en) Magnesium thiosulfate as ozone and chlorine quencher
Kociołek‐Balawejder A Crosslinked Copolymer with N‐Bromosulfonamide Pendant Groups as Oxidant for Residual Sulfides in Alkaline Media

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

CREP Change of representative

Representative=s name: BRYN AARFLOT AS, POSTBOKS 449 SENTRUM, 0104 OSLO

MM1K Lapsed by not paying the annual fees