NO314002B1 - Flat ribbon lamella for reinforcing building components and method of applying the flat ribbon lamella to a building component - Google Patents

Flat ribbon lamella for reinforcing building components and method of applying the flat ribbon lamella to a building component Download PDF

Info

Publication number
NO314002B1
NO314002B1 NO19994733A NO994733A NO314002B1 NO 314002 B1 NO314002 B1 NO 314002B1 NO 19994733 A NO19994733 A NO 19994733A NO 994733 A NO994733 A NO 994733A NO 314002 B1 NO314002 B1 NO 314002B1
Authority
NO
Norway
Prior art keywords
lamella
building part
flat band
adhesive
fibers
Prior art date
Application number
NO19994733A
Other languages
Norwegian (no)
Other versions
NO994733L (en
NO994733D0 (en
Inventor
Alexander Bleibler
Ernesto Schuemperli
Werner Steiner
Original Assignee
Sika Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika Ag filed Critical Sika Ag
Publication of NO994733L publication Critical patent/NO994733L/en
Publication of NO994733D0 publication Critical patent/NO994733D0/en
Publication of NO314002B1 publication Critical patent/NO314002B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G23/0225Increasing or restoring the load-bearing capacity of building construction elements of circular building elements, e.g. by circular bracing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0255Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements whereby the fiber reinforced plastic elements are stressed
    • E04G2023/0259Devices specifically adapted to stress the fiber reinforced plastic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1028Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by bending, drawing or stretch forming sheet to assume shape of configured lamina while in contact therewith
    • Y10T156/103Encasing or enveloping the configured lamina

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Reinforced Plastic Materials (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Package Frames And Binding Bands (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Supports For Plants (AREA)

Abstract

Flat strip lamella (10) for reinforcing load-bearing or load transferring building components e.g. concrete, wood, steel, natural stone or masonry. The flat strip lamella (10) has a composite structure consisting of a plurality of parallel aligned, bendable or flexible carrying fibers (26) and a binding matrix (28) joining the carrying fibers to each other and making them shear resistant. The lamella can be attached facewise to the surface of the building component to be reinforced, using adhesive (16). In order to be able to bend the flat strip lamella over corner edges of a building component, the binding matrix (28) consists of a thermoplastic synthetic material.

Description

Oppfinnelsen vedrører en flatbåndlamell for forsterkning av lastopptagende eller lastoverførende byggedeler, hvilken lamell består av en komposittstruktur av et antall parallelt innrettede, bøyelige eller bøyeslappe bærefibre og en bindemiddelmatrise, som forbinder bærefibrene med hverandre på en skyvefast måte, hvilken lamell ved hjelp av et klebemiddel kan festes med en bredside til overflaten på byggedelen som skal forsterkes. Oppfinnelsen vedrører videre en fremgangsmåte for anbringelse av slike flatbåndlameller på en byggedel. The invention relates to a flat strip lamella for the reinforcement of load-absorbing or load-transmitting building parts, which lamella consists of a composite structure of a number of parallel aligned, flexible or flexible carrier fibers and a binder matrix, which connects the carrier fibers to each other in a sliding-proof manner, which lamella with the help of an adhesive can attached with a wide side to the surface of the building part to be reinforced. The invention further relates to a method for placing such flat strip slats on a building part.

Forsterkningslameller av denne type er eksempelvis kjent fra WO 96/21785. Forsterkningslamellene benyttes der på langstrakte og/eller flate byggedeler. De med en bindemiddelmatrise av en duroplast, særlig epoksyharpiks, utførte forsterkningslameller tillater ingen bøyninger med små bøyeradier, slik at det ikke har vært mulig å tilveiebringe ut over en byggedelkant lagte, bøylelignende forsterkninger. Bøyleformede armeringer kreves eksempelvis for i stålbetongbjelker og stålbetong platebjelker å sikre sammenhengen mellom trykksoner og strekksoner og unngå skyveriss og tverriss. Reinforcement lamellae of this type are known, for example, from WO 96/21785. The reinforcing slats are used there on elongated and/or flat construction parts. The reinforcing lamellae made with a binder matrix of a duroplast, especially epoxy resin, do not allow bending with small bending radii, so that it has not been possible to provide hoop-like reinforcements laid over a building part edge. Hoop-shaped reinforcements are required, for example, in reinforced concrete beams and reinforced concrete slab beams to ensure the connection between pressure zones and tension zones and to avoid shear cracks and transverse cracks.

Med dette utgangspunkt er det en hensikt med oppfinnelsen å tilveiebringe en flatbåndlamell som muliggjør en kantovergripende forsterkning av byggedeler. Nok en hensikt med oppfinnelsen er å tilveiebringe en fremgangsmåte for anbringelse av slike flatbåndlameller på byggedeler. With this as a starting point, it is an aim of the invention to provide a flat band lamella which enables an edge-wide reinforcement of construction parts. Another purpose of the invention is to provide a method for placing such flat strip slats on construction parts.

For oppnåelse av denne hensikt foreslås de i patentkravene 1 såvel som 6 til 10 angitte kjennetegnskombinasjoner. Fordelaktige utforminger og videreutviklinger av oppfinnelsen vil gå frem av de uselvstendige patentkrav. In order to achieve this purpose, the characteristic combinations specified in patent claims 1 as well as 6 to 10 are proposed. Advantageous designs and further developments of the invention will proceed from the independent patent claims.

Til grunn for oppfinnelsen ligger den erkjennelse at flatbåndlamellenes bøyestivhet fremfor alt er avhengig av bindemiddelmatrisen. For å kunne føre flatbåndlameller over bøyde byggedeloverflater og byggedelkanter, foreslås det ifølge oppfinnelsen at bindemiddelmatrisen skal bestå av et termoplastisk kunststoff. Med en lokal temperaturøking kan en slik flatbåndlamell formes og tilpasses overflatekonturen på den byggedel som skal forsterkes. Glassomvandlingspunktet til det anvendte termoplastiske kunststoff skal hensiktsmessig ligge over 100°C, mens flyt-overgangsområdet skal begynne over 160°C, for derved å sikre en pålitelig håndtering. Den lokale oppvarming av flatbåndlamellene kan skje lokalt, eksempelvis ved hjelp av varmluftvifter. The invention is based on the realization that the bending stiffness of the flat strip lamellae is above all dependent on the binder matrix. In order to be able to guide flat strip slats over bent building part surfaces and building part edges, it is proposed according to the invention that the binder matrix should consist of a thermoplastic synthetic material. With a local increase in temperature, such a flat band lamella can be shaped and adapted to the surface contour of the building part to be reinforced. The glass transition point of the thermoplastic plastic used should ideally be above 100°C, while the flow transition area should begin above 160°C, thereby ensuring reliable handling. The local heating of the flat strip slats can take place locally, for example with the help of hot air fans.

Som bindemiddelmatrise er eksempelvis et termoplastisk kunststoff fra gruppen polyolefiner, vinylpolymerer, polyamider, polyester, polyacetaler, polykarbonater og termoplastiske polyuretaner og ionomerer aktuelt. As a binder matrix, for example, a thermoplastic synthetic material from the group of polyolefins, vinyl polymers, polyamides, polyester, polyacetals, polycarbonates and thermoplastic polyurethanes and ionomers is relevant.

Bærefibrene er hensiktsmessig utformet som karbonfibre, som utmerker seg ved at de har en høy elastisitetsmodul. Bærefibrene kan imidlertid også inneholde eller bestå av aramidfibre, glassfibre, polypropylenfibre og lignende. The carrier fibers are appropriately designed as carbon fibers, which are distinguished by having a high modulus of elasticity. However, the carrier fibers can also contain or consist of aramid fibers, glass fibers, polypropylene fibers and the like.

For anbringelse av de nye langstrakte flatbåndlameller på en byggedel som skal forsterkes over en kant, foreslås det ifølge oppfinnelsen at flatbåndlamellen i sitt ut over byggedelkanten forløpende mellomområde oppvarmes til en temperatur over glassomvandlingspunktet til det termoplastiske bindemiddel, i oppvarmet tilstand bøyes i en vinkel svarende til byggedelens kantvinkel, og før eller etter avkjølingen klebes på byggedelen over byggedelkanten ved hjelp av et klebemiddelsjikt. For placing the new elongated flat strip lamellas on a building part that is to be reinforced over an edge, it is proposed according to the invention that the flat strip lamella in its intermediate area extending over the building part edge is heated to a temperature above the glass transition point of the thermoplastic binder, in the heated state bent at an angle corresponding to the building part's edge angle, and before or after cooling, the building part is glued to the building part edge using an adhesive layer.

Anvendelsen ifølge oppfinnelsen av en termoplastisk bindemiddelmatrise muliggjør en legging av flatbåndlamellene i en forspent tilstand på en byggedeloverflate. Flatbånd-lamellene kan med sine ut over byggedeloverflaten ragende frie ender i oppvarmet tilstand strekkes eller bøyes på et spennelement og fikseres der. Spennelementene kan så spennes innbyrdes, slik at flatbåndlamellene kan klebes på byggedeloverflaten i en forspent tilstand. For spenning av spennelementene kan det være anordnet en spennmekanisme som er anordnet i en avstand fra den byggedeloverflate som skal forsterkes. Spennmekanismen kan eventuelt bare påvirke en ende av flatbåndlamellen, dersom den andre enden er fiksert til byggedeloverflaten ved hjelp av et egnet spennelement. The use according to the invention of a thermoplastic binder matrix makes it possible to lay the flat band slats in a pre-tensioned state on a building part surface. The flat band slats, with their free ends protruding above the building part surface, can be stretched or bent on a tension element and fixed there when heated. The clamping elements can then be clamped together, so that the flat strip slats can be glued to the construction part surface in a pre-tensioned state. For tensioning the tensioning elements, a tensioning mechanism can be arranged which is arranged at a distance from the building part surface to be reinforced. The tensioning mechanism may possibly only affect one end of the flat band lamella, if the other end is fixed to the surface of the building part by means of a suitable tensioning element.

Videre gir den nye termoplastiske bindemiddelmatrise ifølge oppfinnelsen en mulighet for å kunne presse flatbåndlamellens frie ender til en bølge- eller sikk-sakkform under innvirkning av trykk og varme. For formsluttende forankring blir de på denne måte tilformede lamellender innført i en med et klebemiddel fylt byggedelutsparing, slik at sikk-sakkområdene fylles med det pastøse klebemiddel og det etter en herding av klebemiddelet dannes en formsluttende forbindelse. Furthermore, the new thermoplastic binder matrix according to the invention provides an opportunity to be able to press the free ends of the flat strip lamella into a wave or zig-zag shape under the influence of pressure and heat. For form-locking anchoring, the slats shaped in this way are introduced into a construction part recess filled with an adhesive, so that the zig-zag areas are filled with the pasty adhesive and, after the adhesive has hardened, a form-locking connection is formed.

Flatbåndlameller med den nye termoplastiske bindemiddelmatrise kan videre benyttes for forsterkning av søyleformede byggedeler. I den forbindelse blir den til en temperatur over bindemiddelmatrisens glassovergangsområde oppvarmede flatbåndlamell spiralviklet på den søyleformede byggedels overflate, hvor det er lagt et flytende reaksjonsklebemiddel, og i oppviklet tilstand foretas det en avkjøling til en bruks-temperatur, med samtidig herding av klebemiddelet For å unngå væskeansamlinger under flatbåndviklingen, er det fordelaktig dersom det holdes en avstand mellom to spiralvindinger med flatbåndlamell. Flat strip slats with the new thermoplastic binder matrix can also be used for strengthening column-shaped construction parts. In this connection, the flat strip lamella, heated to a temperature above the glass transition area of the binder matrix, is spirally wound on the surface of the columnar building part, where a liquid reaction adhesive has been placed, and in the wound state it is cooled to a service temperature, with simultaneous hardening of the adhesive To avoid liquid accumulations during the flat band winding, it is advantageous if a distance is kept between two spiral windings with a flat band lamella.

For å bedre forbindelsen mellom flatbånd-lamellen og det eksempelvis av epoksyharpiks bestående klebemiddel, kan det være fordelaktig dersom flatbånd-lamellen på sin klebemiddelside befris for bindemiddel ved frilegging av bærefiberoverflater, eksempelvis ved at lamellen opprues eller slipepåvirkes. In order to improve the connection between the flat tape lamella and the adhesive consisting, for example, of epoxy resin, it can be advantageous if the flat tape lamella on its adhesive side is freed from binder by exposing carrier fiber surfaces, for example by roughening or sanding the lamella.

Oppfinnelsen skal nå forklares nærmere med henvisning til de skjematiske tegninger, hvor The invention will now be explained in more detail with reference to the schematic drawings, where

Figur la viser et grunnriss av et utsnitt av en forsterkningslamell, Figure la shows a ground plan of a section of a reinforcement lamella,

Figur lb viser et snitt etter snittlinjen B-B i figur la, i større målestokk, Figure lb shows a section along the section line B-B in figure la, on a larger scale,

Figur 2 viser et snitt gjennom en stålbetong-platebjelke med bøyleformet tilbøyet forsterkningslamell, Figur 3 viser en ende av forsterkningslamellen som kan føres inn i den i figur 2 viste byggedel-utsparing, Figur 4 viser en spenninnretning for forspent anbringelse av forsterkningslamellen på en byggedel, og Figur 5 viser et utsnitt av en søyleformet byggedel som er spiralomviklet med en forsterkningslamell. Figure 2 shows a section through a steel-concrete plate beam with a hoop-shaped bent reinforcement lamella, Figure 3 shows an end of the reinforcement lamella that can be inserted into the building part recess shown in Figure 2, Figure 4 shows a clamping device for prestressed placement of the reinforcement lamella on a building part, and Figure 5 shows a section of a column-shaped building part which is spirally wrapped with a reinforcing lamella.

De i tegningsfigurene viste flatbåndlameller 10 er beregnet for etterforsterkning av byggedeler 12, så som stålbetongkonstruksjoner og murverk. De er festet til byggedelens overflate med sin ene bredside 14 ved hjelp av et fortrinnsvis av epoksyharpiks bestående klebemiddel 16. I tillegg er flatbåndlamellens frie ender 32,34 forankret i byggedelen 12 (figur 2). The flat band slats 10 shown in the drawings are intended for post-reinforcement of building parts 12, such as reinforced concrete structures and masonry. They are attached to the surface of the building part with their one broad side 14 using an adhesive 16, preferably consisting of epoxy resin. In addition, the free ends 32,34 of the flat band lamella are anchored in the building part 12 (figure 2).

Byggedelen 12 i figur 2 er eksempelvis utformet som en platebjelke av stålbetong, hvor lamellen 10 er lagt som en bøyle over byggedelens 12 steg 22 og i denne forbindelse er bøyet over stegets 22 hjørnekanter 24. The building part 12 in Figure 2 is, for example, designed as a plate beam of reinforced concrete, where the lamella 10 is placed as a hoop over the step 22 of the building part 12 and in this connection is bent over the corner edges 24 of the step 22.

Flatbåndlamellen 10 har en komposittstruktur, bestående av et antall innbyrdes parallelle, bøyelige eller bøyeslappe bærefibre 26 av karbon og en bindemiddelmatrise 28, som forbinder bærefibrene skyvefast med hverandre og er av et termoplastisk kunststoff. Den termoplastiske bindemiddelmatrise 28 sørger for at flatbåndlamellen er relativt stiv ved brukstemperaturen, men blir plastisk deformerbar ved oppvarming til en temperatur over glassomvandlingspunktet. For å kunne legge den i utgangspunktet langstrakte flatbåndlamell 10 over kantene 24, blir lamellen oppvarmet i mellomområdene 30, til en temperatur over glassomvandlingspunktet for den termoplastiske bindemiddelmatrise. Lamellen blir så bøyd i samsvar med den eventuelt avrundede hjømevinkel, på 90°. Denne bøyning blir igjen i lamellen etter en avkjøling til brukstemperaturen. The flat band lamella 10 has a composite structure, consisting of a number of mutually parallel, flexible or flexible carrier fibers 26 of carbon and a binder matrix 28, which connects the carrier fibers in a sliding manner and is made of a thermoplastic synthetic material. The thermoplastic binder matrix 28 ensures that the flat strip lamella is relatively rigid at the temperature of use, but becomes plastically deformable when heated to a temperature above the glass transition point. In order to be able to lay the initially elongated flat strip lamella 10 over the edges 24, the lamella is heated in the intermediate areas 30, to a temperature above the glass transition point of the thermoplastic binder matrix. The slat is then bent in accordance with the possibly rounded height angle, of 90°. This bending remains in the lamella after cooling to the operating temperature.

I utførelseseksempelet i figur 2 utnyttes også den plastiske deformering under temperaturøkning for forankring av flatbåndlamellens ene ende 32. Den tilbøyde ende 32 er klebet til byggedelen 12 ved hjelp av et klebemiddel 16. I den andre, frie enden 34 har flatbåndlamellen en sikk-sakk-deformering, tilveiebrakt ved hjelp av trykk og varme. Med denne ende 34 føres flatbåndlamellen 10 inn i en med klebemiddel fylt utsparing 35 i byggedelen 10. Når klebemiddelet herder, vil det dannes en formsluttende forankring i denne utsparing. In the design example in Figure 2, the plastic deformation during temperature rise is also used to anchor one end 32 of the flat band lamella. The bent end 32 is glued to the building part 12 by means of an adhesive 16. At the other, free end 34, the flat band lamella has a zig-zag deformation, brought about by pressure and heat. With this end 34, the flat band lamella 10 is guided into an adhesive-filled recess 35 in the building part 10. When the adhesive hardens, a shape-locking anchor will be formed in this recess.

I utførelseseksempelet i figur 4 blir flatbåndlamellens 10 frie ender 36 i oppvarmet, plastisk deformerbar tilstand lagt på trommelformede spennelementer 38 og forankret der. Spennelementene 38 kan ved hjelp av en egnet spennmekanisme skyves fra hverandre som antydet med dobbeltpilen 39, slik at flatbåndlamellen 10 ved påklebingen på byggedelen 12 vil være forspent. Bibeholdes forspenningen mens klebemiddelet 16 herder, oppnås en bedring av forsterkningsvirkningen. In the embodiment in Figure 4, the free ends 36 of the flat strip lamella 10 are placed in a heated, plastically deformable state on drum-shaped clamping elements 38 and anchored there. The tensioning elements 38 can be pushed apart by means of a suitable tensioning mechanism as indicated by the double arrow 39, so that the flat strip lamella 10 will be pre-tensioned when it is attached to the building part 12. If the pretension is maintained while the adhesive 16 hardens, an improvement in the strengthening effect is achieved.

I utførelseseksempelet i figur 5 er en flatbåndlamell 10 spiral viklet på en søyleformet byggedel 12 og er klebet til denne. For å lette omviklingen er flatbåndlamellen brakt til en høyere temperatur, slik at den lettere kan gis spiralformen under omviklingen. In the design example in figure 5, a flat band lamella 10 is spirally wound on a columnar building part 12 and is glued to this. To make wrapping easier, the flat strip lamella has been brought to a higher temperature, so that it can more easily be given the spiral shape during wrapping.

Oppfinnelsen vedrører således en flatbåndlamell 10 for forsterkning av lastopptagende eller lastoverførende byggedeler 12, eksempelvis av betong, tre, stål, natursten eller murverk. Flatbåndlamellen 10 har en komposittstruktur bestående av et antall parallelt innrettede, bøyelige eller bøyeslappe bærefibre 26 og en bindemiddelmatrise 28, som forbinder bærefibrene skyvefast med hverandre. The invention thus relates to a flat strip lamella 10 for strengthening load-absorbing or load-transmitting building parts 12, for example of concrete, wood, steel, natural stone or masonry. The flat band lamella 10 has a composite structure consisting of a number of parallel aligned, flexible or flexible support fibers 26 and a binder matrix 28, which connects the support fibers to each other in a sliding manner.

Lamellen kan festes med sin bredside på overflaten til den byggedel som skal forsterkes, under utnyttelse av et klebemiddel 16. For å kunne bøye flatbåndlamellen over byggedel-kanter, er det ifølge oppfinnelsen foreslått at bindemiddelmatrisen 28 skal bestå av et termoplastisk kunststoff. The lamella can be fixed with its broad side on the surface of the building part to be reinforced, using an adhesive 16. In order to be able to bend the flat strip lamella over building part edges, according to the invention, it is proposed that the binder matrix 28 should consist of a thermoplastic synthetic material.

Claims (10)

1. Flatbåndlamell for forsterkning av lastopptagende eller lastoverførende byggedeler (12), fortrinnsvis av betong, hvilken lamell har en komposittstruktur bestående av et antall parallelt innrettede, bøyelige eller bøyeslappe bærefibre (26) og en bindemiddelmatrise (28), som forbinder bærefibrene (26) med hverandre på en skyvefast måte, og som ved hjelp av et klebemiddel (16) kan festes med bredsiden til overflaten på byggedelen (12) som skal forsterkes, karakterisert ved at bindemiddelmatrisen (28) består av et termoplastisk kunststoff.1. Flat band lamella for strengthening load-absorbing or load-transmitting building parts (12), preferably made of concrete, which lamella has a composite structure consisting of a number of parallel aligned, flexible or flexible carrier fibers (26) and a binder matrix (28), which connects the carrier fibers (26) to each other in a slide-resistant manner, and which can be attached with the broad side to the surface of the building part (12) to be reinforced by means of an adhesive (16), characterized in that the binder matrix (28) consists of a thermoplastic synthetic material. 2. Flatbåndlamell ifølge krav 1, karakterisert ved at glassomvandlingspunktet til det termoplastiske kunststoff utgjør minst 100°C og at flyte-overgangspunktet utgjør minst 160°C.2. Flat strip lamella according to claim 1, characterized in that the glass transition point of the thermoplastic plastic is at least 100°C and that the flow transition point is at least 160°C. 3. Flatbåndlamell ifølge krav 1 eller 2, karakterisert ved at det benyttes et termoplastisk kunststoff fra gruppen polyolefiner, vinylpolymerer, polyamider, polyester, polyacetaler, polykarbonater, polyuretaner og ionomerer.3. Flat strip lamella according to claim 1 or 2, characterized in that a thermoplastic synthetic material from the group of polyolefins, vinyl polymers, polyamides, polyester, polyacetals, polycarbonates, polyurethanes and ionomers is used. 4. Flatbåndlamell ifølge et av kravene 1 til 3, karakterisert v e d at bærefibrene (26) inneholder karbonfibre eller er utformet som karbonfibre.4. Flat band lamella according to one of claims 1 to 3, characterized in that the carrier fibers (26) contain carbon fibers or are designed as carbon fibers. 5. Flatbåndlamell ifølge et av kravene 1 til 4, karakterisert v e d at bærefibrene (26) inneholder eller er utformet som aramidfibre, glassfibre eller polypropylenfibre.5. Flat strip lamella according to one of claims 1 to 4, characterized in that the carrier fibers (26) contain or are designed as aramid fibers, glass fibers or polypropylene fibers. 6. Fremgangsmåte for anbringelse av en prefabrikert langstrakt flatbåndlamell (10) ifølge et av kravene 1 - 5 på en byggedel (12) som skal forsterkes over minst en byggedelkant (24), karakterisert ved at flatbåndlamellen (10) i det mellomområdet (30) som skal ligge over byggedelkanten (24) oppvarmes til en over glassomvandlingspunktet til det termoplastiske bindemiddel liggende temperatur og som i oppvarmet tilstand bøyes i en vinkel svarende til byggedelens (12) kantvinkel, og før eller etter avkjølingen klebes på byggedelen (12), over byggedelkanten (24), ved hjelp av et klebemiddelsjikt (16).6. Method for placing a prefabricated elongated flat band lamella (10) according to one of claims 1 - 5 on a building part (12) which is to be reinforced over at least one building part edge (24), characterized in that the flat band lamella (10) in the intermediate area (30) which is to lying over the building part edge (24) is heated to a temperature above the glass transition point of the thermoplastic binder and which in the heated state is bent at an angle corresponding to the building part (12) edge angle, and before or after cooling is glued to the building part (12), above the building part edge (24 ), by means of an adhesive layer (16). 7. Fremgangsmåte for anbringelse av en prefabrikert flatbåndlamell ifølge et av kravene 1 - 5 på en byggedeloverflate, karakterisert ved at flatbåndlamellen (10) med sine frie ender i oppvarmet tilstand legges på eller bøyes på et respektivt spennelement (38) og fikseres relativt dette, og at spennelementene (38) beveges fra hverandre med tilhørende forspenning av flatbåndlamellen (10) og at flatbåndlamellen klebes på byggedeloverflaten i den forspente tilstand.7. Method for placing a prefabricated flat band lamella according to one of the claims 1 - 5 on a construction part surface, characterized in that the flat band lamella (10) with its free ends in a heated state is placed on or bent onto a respective tension element (38) and fixed relative to this, and that the clamping elements (38) are moved apart with associated pre-tensioning of the flat band lamella (10) and that the flat band lamella is glued to the building part surface in the pre-tensioned state. 8. Fremgangsmåte for anbringelse av en flatbåndlamell ifølge et av kravene 1 - 5 på en byggedel (12) ved hjelp av et klebemiddel (16), karakterisert ved at flatbåndlamellens (10) frie ender (34) under påvirkning av trykk og varme presses til en bølge- eller sikk-sakkform, og at de bølge- eller sikk-sakkformede områder utfylles med klebemiddel ved en innføring av lamellendene (34) i en byggedel-utsparing, for fremstilling av en forsluttende forbindelse.8. Method for placing a flat band lamella according to one of claims 1 - 5 on a building part (12) using an adhesive (16), characterized in that the free ends (34) of the flat band lamella (10) are pressed into a wave under the influence of pressure and heat - or zig-zag shape, and that the wave- or zig-zag-shaped areas are filled with adhesive by inserting the lamella ends (34) into a building part recess, to produce a closing connection. 9. Fremgangsmåte for anbringelse av en flatbåndlamell ifølge et av kravene 1 - 5 på en byggedel (12) ved hjelp av et klebemiddel (16), karakterisert ved at den til en temperatur over glassovergangsområdet til bindemiddelet (28) oppvarmede flatbåndlamell spiralvikles på den med et flytende reaksjonsklebemiddel belagte overflate på en søyleformet byggedel (12) og i oppviklet tilstand avkjøles med samtidig herding av klebemiddelet (16) til brukstemperaturen.9. Method for placing a flat band lamella according to one of claims 1 - 5 on a building part (12) using an adhesive (16), characterized in that the flat band lamella heated to a temperature above the glass transition region of the adhesive (28) is spirally wound on it with a liquid reaction adhesive coated surface of a columnar building part (12) and in the coiled state is cooled with simultaneous hardening of the adhesive (16) to the use temperature. 10. Fremgangsmåte ifølge et av kravene 6 - 9, karakterisert v e d at bærefibrene (26) i det minste delvis frilegges ved fjerning av bindemiddel (28) på de sideflater som skal forbindes med byggedelen (12).10. Method according to one of claims 6 - 9, characterized in that the carrier fibers (26) are at least partially exposed by removing the binder (28) on the side surfaces to be connected to the building part (12).
NO19994733A 1997-07-31 1999-09-29 Flat ribbon lamella for reinforcing building components and method of applying the flat ribbon lamella to a building component NO314002B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19733067A DE19733067A1 (en) 1997-07-31 1997-07-31 Ribbon slat for reinforcing components and method for attaching the ribbon slat to a component
PCT/EP1998/004383 WO1999006651A1 (en) 1997-07-31 1998-07-15 Flat strip lamella for reinforcing building components and method for placing a flat strip lamella on a component

Publications (3)

Publication Number Publication Date
NO994733L NO994733L (en) 1999-09-29
NO994733D0 NO994733D0 (en) 1999-09-29
NO314002B1 true NO314002B1 (en) 2003-01-13

Family

ID=7837538

Family Applications (1)

Application Number Title Priority Date Filing Date
NO19994733A NO314002B1 (en) 1997-07-31 1999-09-29 Flat ribbon lamella for reinforcing building components and method of applying the flat ribbon lamella to a building component

Country Status (20)

Country Link
US (1) US20020124930A1 (en)
EP (1) EP1000208B1 (en)
JP (1) JP2001512200A (en)
KR (1) KR100417892B1 (en)
CN (1) CN1127603C (en)
AT (1) ATE208852T1 (en)
AU (1) AU738490B2 (en)
BR (1) BR9811578A (en)
CA (1) CA2278650C (en)
DE (2) DE19733067A1 (en)
DK (1) DK1000208T3 (en)
ES (1) ES2166612T3 (en)
HK (1) HK1024039A1 (en)
HU (1) HU223369B1 (en)
IL (1) IL134118A (en)
NO (1) NO314002B1 (en)
NZ (1) NZ336978A (en)
PL (1) PL335439A1 (en)
PT (1) PT1000208E (en)
WO (1) WO1999006651A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2397103A1 (en) * 2000-01-13 2001-07-19 Dow Global Technologies Inc. Composites of reinforcing fibers and thermoplastic resins as external structural supports
DE10032595A1 (en) * 2000-07-07 2002-01-17 Josef Scherer Reinforcement for building surfaces
US20020170651A1 (en) * 2001-05-15 2002-11-21 Edwards Christopher M. Method for reinforcing cementitious structures
FI20011069A (en) * 2001-05-22 2002-11-23 Patenttitoimisto T Poutanen Oy New drives for wood construction
KR100471509B1 (en) * 2001-06-11 2005-03-08 고조 힌시츠 호쇼켄큐쇼 가부시키가이샤 Method, material and construction for reinforcing a structure
JPWO2003027416A1 (en) * 2001-09-25 2005-01-06 構造品質保証研究所株式会社 Structure reinforcement structure, reinforcement material, seismic isolation device, and reinforcement method
EP1331327A1 (en) 2002-01-29 2003-07-30 Sika Schweiz AG Reinforcing device
KR20030070251A (en) * 2002-02-23 2003-08-30 윤미숙 Fiber reinforced permeating concrete block and method for manufacturing same
JP3903314B2 (en) * 2002-10-25 2007-04-11 清水建設株式会社 Repair and reinforcement method for long wooden members
WO2006039755A1 (en) * 2004-10-12 2006-04-20 The University Of Southern Queensland A strengthening system
KR100894492B1 (en) * 2008-04-23 2009-05-07 (주)희상리인포스 Reinforcing method of ferroconcrete using aramid strip members
IT1399040B1 (en) * 2010-01-27 2013-04-05 Fidia Srl PROCEDURE FOR THE REINFORCEMENT OF STRUCTURAL ELEMENTS
CN101929254B (en) * 2010-09-01 2011-09-28 中南大学 Method for lapping and anchoring fiber sheet around rod to reinforce structural component
CN102121316B (en) * 2011-01-12 2012-12-12 北京交通大学 Construction method for reinforcing circular structures by pre-tensioned high-strength fiber cloth
US9085898B2 (en) * 2013-03-04 2015-07-21 Fyfe Co. Llc System and method of reinforcing a column positioned proximate a blocking structure
JP6220542B2 (en) * 2013-04-15 2017-10-25 ファイベックス株式会社 Fixing structure of tension member
AU2014276778B2 (en) * 2013-06-06 2017-10-12 Sika Technology Ag Arrangement and method for reinforcing supporting structures
ITMI20131316A1 (en) * 2013-08-02 2015-02-03 Interbau S R L ANTI-SEISMIC CONNECTION BETWEEN TWO STRUCTURAL ELEMENTS, PARTICULARLY BETWEEN TWO PREFABRICATED STRUCTURAL ELEMENTS, OF THE BEAM-PILLAR TYPE, BEAM-BEAM, BEAM-TILE OR LIKE.
CH710538B1 (en) * 2014-12-18 2018-09-28 Re Fer Ag Method for creating prestressed structures or components by means of tension elements made of shape memory alloys and building or component equipped therewith.
DE102017126447A1 (en) 2017-11-10 2019-05-16 CHT Germany GmbH Coating of fiber products with aqueous polymer dispersions
CN109457992B (en) * 2018-10-30 2021-10-08 兰州大学 Method for sticking reinforced concrete structure outside body with anchor
CN110453621B (en) * 2019-07-31 2021-06-11 湖州泰益智能科技有限公司 Prevent empting road hard shoulder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318901A1 (en) * 1983-05-25 1984-11-29 Gustav 5140 Erkelenz Stange Process for reliable fastening of a support attached to an exterior surface of a flat moulding in the region of the surface edges and mould for this
DE3843535A1 (en) * 1988-12-23 1990-06-28 Elastogran Kunststoff Technik Use of semifinished products of fibre-reinforced plastic for the production of mouldings, in particular bumper brackets
ES2122696T3 (en) * 1995-01-09 1998-12-16 Empa FASTENING OF REINFORCEMENT SHEETS.
DE19634840A1 (en) * 1995-08-29 1997-03-06 Erhard Vesper Mfr. of shaped decorative parts for car interiors etc. reducing waste

Also Published As

Publication number Publication date
ES2166612T3 (en) 2002-04-16
KR20000070791A (en) 2000-11-25
AU8975298A (en) 1999-02-22
WO1999006651A1 (en) 1999-02-11
EP1000208A1 (en) 2000-05-17
HK1024039A1 (en) 2000-09-29
CA2278650C (en) 2003-01-21
IL134118A0 (en) 2001-04-30
IL134118A (en) 2003-05-29
KR100417892B1 (en) 2004-02-11
CA2278650A1 (en) 1999-02-11
JP2001512200A (en) 2001-08-21
AU738490B2 (en) 2001-09-20
EP1000208B1 (en) 2001-11-14
US20020124930A1 (en) 2002-09-12
BR9811578A (en) 2000-08-29
ATE208852T1 (en) 2001-11-15
NZ336978A (en) 2001-08-31
HUP0004549A3 (en) 2002-01-28
HUP0004549A2 (en) 2001-04-28
DE19733067A1 (en) 1999-02-04
CN1127603C (en) 2003-11-12
NO994733L (en) 1999-09-29
DK1000208T3 (en) 2002-02-25
PT1000208E (en) 2002-05-31
CN1251152A (en) 2000-04-19
NO994733D0 (en) 1999-09-29
WO1999006651A8 (en) 1999-08-12
HU223369B1 (en) 2004-06-28
DE59802160D1 (en) 2001-12-20
PL335439A1 (en) 2000-04-25

Similar Documents

Publication Publication Date Title
NO314002B1 (en) Flat ribbon lamella for reinforcing building components and method of applying the flat ribbon lamella to a building component
EP0645239B1 (en) Reinforcing fiber sheet and structure reinforced thereby
US6219991B1 (en) Method of externally strengthening concrete columns with flexible strap of reinforcing material
JP3489839B2 (en) Angle thin plate for reinforcing structural members, method for producing and using the same
CA3126621C (en) Method for strengthening concrete or timber structures using cfrp strips and concrete or timber structures strengthened by this method
US20040154263A1 (en) Method for strengthening or repairing an existing reinforced concrete structural element
AU771559B2 (en) External reinforcement for beams, columns, plates and the like
JPH11507113A (en) Multi-layer annular tensile material
JP3350447B2 (en) Fiber sheet for reinforcement and repair
KR20000070408A (en) Concrete pillar
JP7080154B2 (en) Reinforcement structure of the inner peripheral surface of the tunnel and reinforcement method of the inner peripheral surface of the tunnel
EP0474310A1 (en) Method for the production of a steel plate concrete floor
JPH04189977A (en) Reinforcing structure of already existing concrete body
MXPA00001007A (en) Flat strip lamella for reinforcing building components and method forplacing a flat strip lamella on a component
EP0138165A2 (en) Load-bearing mantle for bearing structures
KR100402367B1 (en) Steel wire for retension of bridge and its retension method
KR100726387B1 (en) Composite deck plate using concrete filled tube
GB2334743A (en) System for prestressing structures
RU1791581C (en) Building panel and method of its manufacture
WO1998022670A1 (en) Bracing truss for concrete or masoned structural layers and method for manufacturing the same
SU1742436A1 (en) Wooden three-hinged arch
CN116591500A (en) Prefabricated high-strength stainless steel stranded wire mesh reinforced ECC component for reinforcing RC column and construction method
JP2022071305A (en) Reinforcing member and reinforcing structure
KR20050024109A (en) Structure for debonding of prestressed concrete beam member with prestressing tendon and manufacturing method of prestressed concrete beam member thereby
NL9200853A (en) DEVICE FOR MANUFACTURING A COVER COMPOSITE

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees