NO313857B1 - Method and materials for inhibiting gas silage development in fish silage - Google Patents

Method and materials for inhibiting gas silage development in fish silage Download PDF

Info

Publication number
NO313857B1
NO313857B1 NO19993610A NO993610A NO313857B1 NO 313857 B1 NO313857 B1 NO 313857B1 NO 19993610 A NO19993610 A NO 19993610A NO 993610 A NO993610 A NO 993610A NO 313857 B1 NO313857 B1 NO 313857B1
Authority
NO
Norway
Prior art keywords
agent
silage
acid
accordance
fish
Prior art date
Application number
NO19993610A
Other languages
Norwegian (no)
Other versions
NO313857B2 (en
NO993610L (en
NO993610D0 (en
Inventor
Harald Idar Hagen
Original Assignee
Hordaf R As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19903607&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO313857(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hordaf R As filed Critical Hordaf R As
Priority to NO19993610A priority Critical patent/NO313857B1/en
Publication of NO993610D0 publication Critical patent/NO993610D0/en
Priority to PCT/NO2000/000246 priority patent/WO2001006869A1/en
Priority to GB0201287A priority patent/GB2368258B/en
Priority to AU63241/00A priority patent/AU6324100A/en
Publication of NO993610L publication Critical patent/NO993610L/en
Publication of NO313857B2 publication Critical patent/NO313857B2/en
Publication of NO313857B1 publication Critical patent/NO313857B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K30/00Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs
    • A23K30/10Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder
    • A23K30/15Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder using chemicals or microorganisms for ensilaging
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K30/00Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fodder In General (AREA)

Description

Den foreliggende oppfinnelse vedrører en fremgangsmåte for å hindre gassutvikling i fiske-ensilasje, samt en fiske-ensileringsvæske. The present invention relates to a method for preventing gas development in fish silage, as well as a fish silage liquid.

Innen fiskeindustrien har det i lang tid vært et stort problem at det i forbindelse med produksjon og transport av fiske-ensilasje dannes til dels store mengder uidentifisert gass i ensilasjen. Within the fishing industry, it has for a long time been a major problem that, in connection with the production and transport of fish silage, large quantities of unidentified gas are formed in the silage.

Fiske-ensilasje er et produkt som fremstilles ved tilsetning av syrer til hel fisk eller deler av denne. Fish silage is a product made by adding acids to whole fish or parts thereof.

Produktet kan være renset eller fraksjonert for å høyne kvaliteten, samt at ensilasjen kan være avvannet til ulik grad. The product can be purified or fractionated to increase the quality, and the silage can be dewatered to varying degrees.

Problemet med gassdannelse forekommer hos flere ensilasje-leverandører. Problemet har vært størst og hyppigst i sommerhalvåret, og man har til nå vært av den oppfatning at gassdannelsen kunne ha sammenheng med hvor mye fiskebein som var innblandet i ensilasjen. The problem of gas formation occurs with several silage suppliers. The problem has been greatest and most frequent in the summer months, and until now it has been of the opinion that the gas formation could be related to how much fish bone was mixed in the silage.

Under sure betingelser og med benrikt avfall, vil man kunne risikere at karbonat i fiskebein løses opp under fri-givelse av CC>2 og forbruk av protoner (=syre) med derpå følgende pH-økning, i henhold til følgende reaksjon: Under acidic conditions and with bone-rich waste, there is a risk that carbonate in fish bones is dissolved during the release of CC>2 and the consumption of protons (=acid) with the subsequent increase in pH, according to the following reaction:

Oppfinnerne av foreliggende oppfinnelse har imidlertid studert problemet med gassdannelse i<*>fiske-ensilasje mere i detalj, og vår foreløpige konklusjon er at andre faktorer yter større bidrag til gassdannelsen. Som det fremgår av forsøkene nedenfor har vi konkludert med at mikroorganismer er opphav til gassdannelsen, og foreliggende oppfinnelse tilveiebringer således fremgangsmåter og materialer for å inhibere mikrobiell vekst i fiske-ensilasjen. However, the inventors of the present invention have studied the problem of gas formation in<*>fish silage in more detail, and our preliminary conclusion is that other factors make a greater contribution to gas formation. As can be seen from the experiments below, we have concluded that microorganisms are the origin of the gas formation, and the present invention thus provides methods and materials for inhibiting microbial growth in the fish silage.

Den foreliggende oppfinnelse omfatter således en fremgangsmåte for å hindre gassutvikling i fiske-ensilasje, kjennetegnet ved at det til fiske-ensilasjen tilsettes et anti-mikrobielt middel i en mengde fra 0,01 - 10 vekt%, mer fortrinnsvis i en mengde fra 0,1-1 vekt%, og mest fortrinnsvis ca 0,5 vekt%. The present invention thus includes a method for preventing gas development in fish silage, characterized in that an anti-microbial agent is added to the fish silage in an amount from 0.01 - 10% by weight, more preferably in an amount from 0, 1-1% by weight, and most preferably about 0.5% by weight.

Ytterligere utførelser av fremgangsmåten er angitt i kravene 2-10. Further embodiments of the method are specified in claims 2-10.

Videre omfatter foreliggende oppfinnelse en fiske-ensileringsvæske slik det er angitt i krav 11. Furthermore, the present invention comprises a fish ensiling liquid as stated in claim 11.

Det ble gjennomført en serie forsøk for å identifisere og løse problemet. Siden det ikke forelå noen klar oppfatning om hva som forårsaket gass-produksjonen, ble strate-gien å først karakterisere ensilasjen kjemisk, såvel som mikrobiologisk i tillegg til å bestemme hvilken gass som ble produsert. I oppdrag fra Hordafor AS har forsøkene blitt utført av Norconserv v/Torstein Skåra. A series of tests were carried out to identify and solve the problem. Since there was no clear understanding of what caused the gas production, the strategy was to first characterize the silage chemically, as well as microbiologically in addition to determining which gas was produced. On behalf of Hordafor AS, the tests have been carried out by Norconserv v/Torstein Skåra.

Eksempel 1 Example 1

Gassutvikling - ensilasje. Gas development - silage.

Prøver av beinrik ensilasje ble hentet fra Sotra Fiskeindustri, den 10. juni 1998. 3 prøver ble pakket i plastposer, og forseglet under vakuum. Samples of bone-rich silage were collected from Sotra Fiskeindustri on 10 June 1998. 3 samples were packed in plastic bags and sealed under vacuum.

En prøve (nr. 1) ble oppbevart ved romtemperatur, en (nr. 2) ble inkubert ved 20°C og en (nr. 2) ved 5°C. I prøvene nr. 1 og 2 var det tydelig gassutvikling (flere ganger ensilasjens volum) etter 2-3 dager. Innledende gassprøver tatt fra prøve nr. 1 indikerte at gassen ikke inneholdt CO2. Dette ble imidlertid avkreftet ved analyse av gass fra prøve nr. 2, på GC-MS, og et eksternt gass-analyseinstrument - som rapporterte >50% CO2. Vi har altså grunn til å tro at gassen i hovedsak består av CO2. One sample (No. 1) was stored at room temperature, one (No. 2) was incubated at 20°C and one (No. 2) at 5°C. In samples no. 1 and 2, there was clear gas development (several times the volume of the silage) after 2-3 days. Initial gas samples taken from sample No. 1 indicated that the gas did not contain CO2. However, this was disproved by analysis of gas from sample no. 2, on GC-MS, and an external gas analysis instrument - which reported >50% CO2. We therefore have reason to believe that the gas mainly consists of CO2.

Eksempel 2 Example 2

Sammensetning - Analyseresultater. Composition - Analysis results.

Ifølge resultatet fra eksempel 1 kunne vi ikke gi noen entydig forklaring på hva som utviklet gassen i ensilasjen. Det ble derfor utført en analyse av selve ensilasjen, som i prøve 2 ga følgende resultater: According to the result from example 1, we could not give a clear explanation of what developed the gas in the silage. An analysis of the silage itself was therefore carried out, which in sample 2 gave the following results:

Analyseresultatene viser at pH i ensilasjen er så lav at vi forventer at den er konserverende i seg selv. På den andre side vil man på grunn av den store mengde næring som finnes i ensilasje kunne forvente en mikrobiell vekst og aktivitet. På generell basis ville en forventet at melke-syrebakterier og/eller gjær kunne vokse ved lave pH-ver-dier. Resultatene viser at dette ikke er tilfelle for den analyserte prøvemengde. The analysis results show that the pH in the silage is so low that we expect it to be a preservative in itself. On the other hand, due to the large amount of nutrients found in silage, microbial growth and activity can be expected. On a general basis, one would expect that lactic acid bacteria and/or yeast could grow at low pH values. The results show that this is not the case for the analyzed sample quantity.

Imidlertid skal man ikke utelukke at spesialtilpassede bakterier vil kunne tilpasse seg dette sure miljø. However, it cannot be ruled out that specially adapted bacteria will be able to adapt to this acidic environment.

Eksempel 3 Example 3

Gassutvikling i ensilasje. Endring av lagringstemperatur. Gas development in silage. Change of storage temperature.

Prøve nr. 3 ble som angitt i eksempel 1 oppbevart ved 5°C. Etter 14 dagers lagring ved denne temperatur kunne vi fremdeles ikke observere gassutvikling. Sample no. 3 was, as indicated in example 1, stored at 5°C. After 14 days of storage at this temperature, we still could not observe gas evolution.

Etter 14 dager ble så temperaturen økt til 20°C. Etter noen timer forekom det en betydelig gassutvikling, idet det i posen ble dannet anslagsvis 3 ganger så mye gass (volum) som ensilasjens volum. Det ble antatt at denne gassdannelse var den kjemiske prosess som beskrevet ovenfor idet posen med prøvematerialet var forseglet slik at ingen nye mikroorganismer kunne opptas. At ensilasjen er pakket i tett emballasje kan bidra til å stabilisere likevekten: After 14 days the temperature was then increased to 20°C. After a few hours, a significant gas development occurred, as approximately 3 times as much gas (volume) as the volume of the silage was formed in the bag. It was assumed that this gas formation was the chemical process as described above, as the bag with the sample material was sealed so that no new microorganisms could be absorbed. The fact that the silage is packed in tight packaging can help to stabilize the equilibrium:

Vi kan imidlertid ikke ut fra dette forsøk utelukke at vekst av mikroorganismer er årsaken idet grunnen til lav eller ingen gassdannelse ved 5°C kan skyldes at de aktuelle mikroorganismer har lav aktivitet og vekstrate ved denne temperatur, selv om dette vil være noe overraskende. However, based on this experiment, we cannot exclude that the growth of microorganisms is the cause, as the reason for low or no gas formation at 5°C may be due to the microorganisms in question having a low activity and growth rate at this temperature, although this would be somewhat surprising.

Eksempel 4 Example 4

Tilsats av konserveringsmiddel - natriumbenzoat. Addition of preservative - sodium benzoate.

For å eventuelt ekskludere mikrobielle årsakssammen-henger ble det gjort et forsøk med tilsats av konserveringsmiddel til ensilasjen. Dersom konserveringsmidlet hadde en effekt på gassproduksjonen, ville det være en klar indikasjon på at problemene ble forårsaket av mikrobiell vekst. In order to possibly exclude microbial causes, an experiment was carried out with the addition of a preservative to the silage. If the preservative had an effect on gas production, it would be a clear indication that the problems were caused by microbial growth.

Det ble igjen hentet en prøve av ensilasje ved Sotra Fiskeindustri, den 22. september 1998. Prøven ble delt i 5 porsjoner a 200 ml og pakket i plastposer under mykvakuum. Til 2 av posene ble det tilsatt 5 g benzosyre. 2 poser, en med og en uten benzosyre ble så inkubert ved 20°C. Etter få dager kunne vi observere gassutvikling i posen uten tilsatt benzosyre. Det ble dannet anslagsvis 3 ganger så mye gass (volum) som ensilasjens volum. Det var derimot ingen gassutvikling i posene med tilsatt natriumbenzoat. Altså var det mye som tydet på at gassproduksjonen hadde sammenheng med mikrobiell vekst. A sample of silage was again collected at Sotra Fiskeindustri on 22 September 1998. The sample was divided into 5 portions of 200 ml and packed in plastic bags under soft vacuum. 5 g of benzoic acid was added to 2 of the bags. 2 bags, one with and one without benzoic acid were then incubated at 20°C. After a few days, we could observe gas development in the bag without added benzoic acid. Approximately 3 times as much gas (volume) was formed as the volume of the silage. However, there was no gas development in the bags with added sodium benzoate. In other words, there was much that indicated that the gas production was connected with microbial growth.

Eksempel 5 Example 5

Identifisering av gass- produserende organisme. Identification of gas-producing organism.

For å avklare om gassdannelsen virkelig kunne for-klares ut fra mikrobiell vekst ble det nå tatt direkte utstryk fra en av de posene som hadde gassutvikling. På grunn av den lave pH i ensilasjen ble prøver også utsådd på medier med pH 3,5 og 5,5. Undersøkelse av direkte utstryk i mikroskop ga ingen klare indikasjoner på årsaksforhold. Og dyrking på skåler ga ingen vekst av verken melkesyre-bakterier eller gjær. Utsåing på anaerobt medium ga imidlertid tydelig vekst av gram positive staver, og inn-ledningsvis antok vi at dette kunne være Clostridier eller Leuconostoc. Isolerte kolonier ble oppformert og arts-bestemt, og vi har i første omgang konkludert med at gassdannelsen forårsakes av bakterier av typen Clostridium, og sannsynligvis av Clostridium botulinum. In order to clarify whether the gas formation could really be explained on the basis of microbial growth, a smear was now taken directly from one of the bags that had developed gas. Due to the low pH in the silage, samples were also sown on media with pH 3.5 and 5.5. Examination of direct smears under a microscope gave no clear indications of causation. And cultivation on dishes gave no growth of either lactic acid bacteria or yeast. Sowing on anaerobic medium, however, gave a clear growth of gram positive rods, and initially we assumed that these could be Clostridia or Leuconostoc. Isolated colonies were propagated and species determined, and we have initially concluded that the gas formation is caused by bacteria of the Clostridium type, and probably by Clostridium botulinum.

Eksempel 6 Example 6

Effekt av forskjellige konsentrasjoner av natriumbenzoat på utvikling av gass i ensilasje. Effect of different concentrations of sodium benzoate on development of gas in silage.

Prøver av ensilasje ble hentet fra Sotra Fiskeindustri, den 26. april 1999. Prøvene ble pakket i porsjoner a 200 ml (95% vakuum). Det ble pakket 2 enheter av hver variant, i henhold til tabell 1. Samples of silage were collected from Sotra Fiskeindustri on 26 April 1999. The samples were packed in portions of 200 ml (95% vacuum). 2 units of each variant were packed, according to table 1.

Etter 2 døgn var det tydelig gassutvikling i prøvene uten tilsatt konserveringsmiddel, lagret ved 20°C. Også i prøven som var tilsatt henholdsvis lg/kg og 2g/kg var det tegn på gassdannelse (bobler), mens prøvene med mer natriumbenzoat var uten tegn på gassdannelse. After 2 days, there was clear gas evolution in the samples without added preservative, stored at 20°C. Also in the sample to which lg/kg and 2g/kg were added, respectively, there were signs of gas formation (bubbles), while the samples with more sodium benzoate were without signs of gas formation.

Etter 5 døgn var det dannet ca. 1 liter gass i begge posene med ensilasje uten tilsatt konserveringsmiddel, mens det var få eller ingen tegn til gassdannelse i noen av de andre posene. Vi kan dermed ikke utelukke at også lavere nivåer enn 1 g natriumbenzoat per kg ensilasje, kan være tilstrekkelig til å forhindre gassdannelse ved 20°C. After 5 days, approx. 1 liter of gas in both bags of silage without added preservative, while there was little or no sign of gas formation in any of the other bags. We therefore cannot rule out that even lower levels than 1 g of sodium benzoate per kg of silage may be sufficient to prevent gas formation at 20°C.

Konklusjonen er at både natriumbenzoat og kaliumsorbat inhiberer gassutvikling i ensilasjen. The conclusion is that both sodium benzoate and potassium sorbate inhibit gas development in the silage.

Ut fra forsøkene ovenfor har vi overraskende vist at gassdannelsen er mikrobielt betinget, og sannsynligvis forårsaket av den artsbestemte Clostridium-bakterien. Ut fra dette vil vi forvente at alle konserveringsmidler, dvs midler som forlenger næringsmidlets holdbarhet ved å hemme forringelse forårsaket av mikroorganismer, vil inhibere gassutvikling i ensilasje. Based on the experiments above, we have surprisingly shown that the gas formation is microbially conditioned, and probably caused by the species-specific Clostridium bacterium. Based on this, we would expect that all preservatives, i.e. agents that extend the food's shelf life by inhibiting deterioration caused by microorganisms, will inhibit gas development in silage.

Det ser videre ut til at gassdannelsen er temperaturavhengig, slik at problemer helst vil oppstå i sommerhalvåret. Og en mulighet for å redusere gassdannelse ville opplagt være å holde temperaturen ved for eksempel +5°C. Rent praktisk er dette ikke helt enkelt og det kan således synes enklere og mindre ressurskrevende å bruke konserveringsmiddel . It also appears that gas formation is temperature-dependent, so that problems will preferably arise in the summer months. And one possibility to reduce gas formation would obviously be to keep the temperature at, for example, +5°C. In practical terms, this is not entirely simple and it may thus seem simpler and less resource-intensive to use a preservative.

Natriumbenzoat finnes i «positiv-listen» til fisk og andre akvatiske forvarer fra 1991. Benzosyre er lite løse-lig, derfor brukes ofte salter, f.eks. benzoat. Benzosyre har bedre bakteriehemmende effekt enn sorbinsyre, fordi den bidrar til å hindre bakteriene i å utnytte vannfasen i produktene. Den virker også hemmende på gjær, men er mindre effektiv når det gjelder å hindre mugg. Benzosyre har størst effekt i pH-området 3-4, men kan også brukes i svakt sure produkter med pH opptil pH 6. I næringsmiddelsammen-heng er den godkjent til bruk i fisk-, sild- og skalldyr-produkter, syltetøy og marmelade, grønnsakprodukter, leske-drikk og saft. Sodium benzoate is in the "positive list" for fish and other aquatic products from 1991. Benzoic acid is poorly soluble, so salts are often used, e.g. benzoate. Benzoic acid has a better antibacterial effect than sorbic acid, because it helps to prevent the bacteria from utilizing the water phase in the products. It also has an inhibitory effect on yeast, but is less effective when it comes to preventing mould. Benzoic acid has the greatest effect in the pH range 3-4, but can also be used in slightly acidic products with a pH up to pH 6. In a food context, it is approved for use in fish, herring and shellfish products, jams and marmalades, vegetable products, soft drinks and juice.

Man kan således tenke seg flere» forskjellige løsninger: One can therefore think of several different solutions:

1. Etter at én ensilasje har startet å «koke», dvs. utvikle gass, vil tilsats av et middel som dreper mikroorganismer, så som et bakteriedrepende middel, stanse veksten av de gassproduserende bakteriene, og dermed gass-produksjonen. Dermed kan man tenke seg en beredskaps-situasjon, hvor anlegg tilsettes eksempelvis natriumbenzoat idet "koking" forekommer, dvs når det er nødvendig. 2. Man kan sikre seg mot fenomenet ved å tilsette natriumbenzoat direkte i ensileringsvæsken, slik at det hele tiden under fremstilling av ensilasjen er en mindre konsentrasjon av et bakteriedrepende middel i forrådet. Eksempelvis slik at konsentrasjonen av natriumbenzoat i ferdig ensilasje blir ca. 5 g/kg. 3. Videre har vi i forsøkene som er forklart ovenfor vist at gassutviklingen er temperaturavhengig, og fremstilling og transport av ensilasjen ved redusert temperatur vil således inhibere gassutviklingen. 4. Det kan benyttes en kombinasjon av (a) senket temperatur og (b) tilsetning av et middel som hindrer vekst av mikroorganismer. 1. After one silage has started to "boil", i.e. develop gas, adding an agent that kills microorganisms, such as a bactericide, will stop the growth of the gas-producing bacteria, and thus the gas production. Thus, one can imagine a contingency situation, where sodium benzoate, for example, is added to the plant when "boiling" occurs, i.e. when it is necessary. 2. You can protect yourself against the phenomenon by adding sodium benzoate directly to the ensiling liquid, so that there is a lower concentration of a bactericidal agent in the store all the time during the production of the silage. For example, so that the concentration of sodium benzoate in finished silage is approx. 5 g/kg. 3. Furthermore, in the experiments explained above, we have shown that gas development is temperature-dependent, and production and transport of the silage at a reduced temperature will thus inhibit gas development. 4. A combination of (a) lowered temperature and (b) addition of an agent that prevents the growth of microorganisms can be used.

Vi har startet testing av flere forskjellige konserveringsmidler for å finne ut hvilke som er best egnet, samt hvilke konsentrasjoner og temperaturer som mest hensiktsmessig bør benyttes. Forsøkene utføres både i laboratoriet og i storskala. Vi vil imidlertid bemerke at selve løsningen på problemet lå i identifisering av at mikroorganismer, og da sannsynligvis bakterier, er den egentlige årsak til gassdannelsen. Når årsakssammenhengen er påvist er det for fagmannen innen området forholdsvis enkelt å finne de konserveringsmidler som bør benyttes, samt konsentrasjonsområder, inkuberingsbetingelser mm. We have started testing several different preservatives to find out which ones are best suited, as well as which concentrations and temperatures should most appropriately be used. The experiments are carried out both in the laboratory and on a large scale. However, we would like to note that the actual solution to the problem lay in the identification that microorganisms, and then probably bacteria, are the real cause of the gas formation. Once the causal relationship has been proven, it is relatively easy for the person skilled in the field to find the preservatives that should be used, as well as concentration ranges, incubation conditions, etc.

Claims (13)

1. Fremgangsmåte for å hindre gassutvikling i fiske-ensilasje,karakterisert vedat det til fiske-ensilasjen tilsettes et anti-mikrobielt middel i en mengde fra 0,01 - 10 vekt%, mer fortrinnsvis i en mengde fra 0,1-1 vekt%, og mest fortrinnsvis ca 0,5 vekt%.1. Method for preventing gas development in fish silage, characterized in that an anti-microbial agent is added to the fish silage in an amount from 0.01-10% by weight, more preferably in an amount from 0.1-1% by weight , and most preferably about 0.5% by weight. 2. Fremgangsmåte i samsvar med krav 1,karakterisert vedat midlet er et bakteriedrepende middel.2. Method in accordance with claim 1, characterized in that the agent is a bactericidal agent. 3. Fremgangsmåte i samsvar med et av kravene 1-2,karakterisert vedat midlet er et konserveringsmiddel som er godkjent for anvendelse i for-produkter.3. Method in accordance with one of claims 1-2, characterized in that the agent is a preservative that is approved for use in pre-products. 4. Fremgangsmåte i samsvar med krav 3,karakterisert vedat midlet er et middel valgt fra gruppen som består av benzosyre og salter av denne så som natrium-, kalium- og kalsium-benzoat, kaliumsorbat, sorbinsyre, natriumsorbat, eddiksyre, kaliumacetat, natriumacetat, kalsiumacetat, melkesyre, sitronsyre, svovelsyre, saltsyre, fosforsyre, , p-hydroxybenzosyreestere, Na-, Ca-, og K-propionat.4. Method in accordance with claim 3, characterized in that the agent is an agent selected from the group consisting of benzoic acid and its salts such as sodium, potassium and calcium benzoate, potassium sorbate, sorbic acid, sodium sorbate, acetic acid, potassium acetate, sodium acetate, calcium acetate, lactic acid, citric acid, sulfuric acid, hydrochloric acid, phosphoric acid, , p-hydroxybenzoic acid esters, Na-, Ca-, and K-propionate. 5. Fremgangsmåte i samsvar med krav 1,karakterisert vedat midlet tilsettes til ensilasjen idet gassdannelse i fiske-ensilasjen er identifisert.5. Method in accordance with claim 1, characterized in that the agent is added to the silage as gas formation in the fish silage has been identified. 6. Fremgangsmåte i samsvar med kravene 5,karakterisert vedat midlet er natriumbenzoat.6. Method in accordance with claim 5, characterized in that the agent is sodium benzoate. 7. Fremgangsmåte i samsvar med krav 1,karakterisert vedat midlet tilsettes sammen med ensileringsvæsken.7. Method in accordance with claim 1, characterized in that the agent is added together with the ensiling liquid. 8. Fremgangsmåte i samsvar med et av kravene 1-7,karakterisert vedat fremstilling og lagring av fiske-ensilasjen foregår ved en redusert temperatur, fortrinnsvis ved ca. 5°C.8. Method in accordance with one of claims 1-7, characterized in that the production and storage of the fish silage takes place at a reduced temperature, preferably at approx. 5°C. 9. Fremgangsmåte i samsvar med et av kravene 1-8,karakterisert vedat det i forbindelse med produksjon eller lagring av fiske-ensilasje (a) tilsettes et middel som hindrer bakterievekst og (b) at ensilasjen oppbevares/inkuberes ved en redusert temperatur.9. Method in accordance with one of claims 1-8, characterized in that in connection with the production or storage of fish silage (a) an agent is added that prevents bacterial growth and (b) that the silage is stored/incubated at a reduced temperature. 10. Fremgangsmåte i samsvar med krav 9,karakterisert vedat midlet er natriumbenzoat i en konsentrasjon av 0,1 gram/kilo, mer fortrinnsvis 1 gram/kilo, og at temperaturen er i området 0-20°C, mer fortrinnsvis ca 5°C.10. Method in accordance with claim 9, characterized in that the agent is sodium benzoate in a concentration of 0.1 gram/kilogram, more preferably 1 gram/kilogram, and that the temperature is in the range 0-20°C, more preferably about 5°C . 11. Fiske-ensileringsvæske,karakterisertved at den omfatter (a) maursyre, (b) antioksidant og (c) et middel som inhiberer mikrobiell vekst.11. Fish ensiling liquid, characterized in that it comprises (a) formic acid, (b) antioxidant and (c) an agent that inhibits microbial growth. 12. Fiske-ensileringsvæske i samsvar med krav 11,karakterisert vedat midlet som inhiberer mikrobiell vekst er et bakteriedrepende middel.12. Fish silage liquid in accordance with claim 11, characterized in that the agent which inhibits microbial growth is a bactericidal agent. 13 Fiske-ensileringsvæske i samsvar med krav 11,karakterisert vedat midlet er valgt fra gruppen som består av natrium-, kalium- og kalsium-benzoat, kaliumsorbat, sorbinsyre, natriumsorbat, eddiksyre, kaliumacetat, natriumacetat, kalsiumacetat, melkesyre, sitronsyre, svovelsyre, saltsyre, fosforsyre, p-hydroxybenzosyreestere, Na-, Ca- og K-propionat.13 Fish ensiling liquid in accordance with claim 11, characterized in that the agent is selected from the group consisting of sodium, potassium and calcium benzoate, potassium sorbate, sorbic acid, sodium sorbate, acetic acid, potassium acetate, sodium acetate, calcium acetate, lactic acid, citric acid, sulfuric acid, hydrochloric acid, phosphoric acid, p-hydroxybenzoic acid esters, Na-, Ca- and K-propionate.
NO19993610A 1999-07-23 1999-07-23 Method and materials for inhibiting gas silage development in fish silage NO313857B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NO19993610A NO313857B1 (en) 1999-07-23 1999-07-23 Method and materials for inhibiting gas silage development in fish silage
PCT/NO2000/000246 WO2001006869A1 (en) 1999-07-23 2000-07-21 Process and material for the inhibition of gas formation in fish ensilage
GB0201287A GB2368258B (en) 1999-07-23 2000-07-21 Process and material for the inhibition of gas formation in fish ensilage
AU63241/00A AU6324100A (en) 1999-07-23 2000-07-21 Process and material for the inhibition of gas formation in fish ensilage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO19993610A NO313857B1 (en) 1999-07-23 1999-07-23 Method and materials for inhibiting gas silage development in fish silage

Publications (4)

Publication Number Publication Date
NO993610D0 NO993610D0 (en) 1999-07-23
NO993610L NO993610L (en) 2001-01-24
NO313857B2 NO313857B2 (en) 2002-12-16
NO313857B1 true NO313857B1 (en) 2002-12-16

Family

ID=19903607

Family Applications (1)

Application Number Title Priority Date Filing Date
NO19993610A NO313857B1 (en) 1999-07-23 1999-07-23 Method and materials for inhibiting gas silage development in fish silage

Country Status (4)

Country Link
AU (1) AU6324100A (en)
GB (1) GB2368258B (en)
NO (1) NO313857B1 (en)
WO (1) WO2001006869A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20024934D0 (en) * 2002-10-14 2002-10-14 Norsk Hydro As Fish silage and product to prevent gas formation in fish silage
CN105661046B (en) * 2016-02-23 2020-12-18 广州英赛特生物技术有限公司 Application of calcium benzoate in preparation of animal feed additive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1587601A (en) * 1968-04-29 1970-03-27
DK147992C (en) * 1982-02-18 1985-07-15 Bioteknisk Inst PROCEDURE FOR THE CONSERVATION OF STRONGLY WATERFUL ANIMAL FEED SUBSTANCES, SPECIFICALLY FISH SEALAGE, FOR USE IN FUR ANIMAL FEED AND CONSERVATOR FOR USE IN THE PROCEDURE
DE3701567A1 (en) * 1987-01-21 1988-08-04 Hoechst Ag METHOD FOR PRESERVING SOLID FEED
SU1595431A1 (en) * 1988-11-14 1990-09-30 Эстонская Сельскохозяйственная Академия Method of preserving feed meal
FI95195C (en) * 1992-02-27 1996-01-10 Kemira Oy preservative Mixes
NO305301B1 (en) * 1997-09-11 1999-05-10 Norsk Hydro As Aqueous preservative

Also Published As

Publication number Publication date
WO2001006869A1 (en) 2001-02-01
NO313857B2 (en) 2002-12-16
GB2368258B (en) 2003-05-21
NO993610L (en) 2001-01-24
GB0201287D0 (en) 2002-03-06
NO993610D0 (en) 1999-07-23
AU6324100A (en) 2001-02-13
GB2368258A (en) 2002-05-01

Similar Documents

Publication Publication Date Title
Golden et al. Growth of Salmonella spp. in cantaloupe, watermelon, and honeydew melons
Johnston et al. A field study of the microbiological quality of fresh produce
Alam et al. Microbiological contamination sources of freshly cultivated vegetables
Skandamis et al. Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157: H7
CN102669502A (en) Microbiological control in poultry processing
Minor et al. Loss of viability by Staphylococcus aureus in acidified media: I. Inactivation by several acids, mixtures of acids, and salts of acids
Lock et al. The fate of Salmonella enteritidis PT4 in home-made mayonnaise prepared from artificially inoculated eggs
NO313857B1 (en) Method and materials for inhibiting gas silage development in fish silage
CN112748078A (en) Solution for intelligent indication label of fish freshness and application thereof
CN101971996A (en) Meat product processing method
Hauschild et al. Effect of salt content and pH on toxigenesis by Clostridium botulinum in caviar
Hocking Media for preservative resistant yeasts: a collaborative study
Brocklehurst et al. The effect of pH on the initiation of growth of cottage cheese spoilage bacteria
El-Araby et al. Survey on technical management of strawberries in Morocco and evaluation of their post-harvest microbial load
Doyle et al. Fate of Salmonella typhimurium and Staphylococcus aureus in meat salads prepared with mayonnaise
Bevilacqua et al. Metabiotic effects of Fusarium spp. on Escherichia coli O157: H7 and Listeria monocytogenes on raw portioned tomatoes
Roome et al. Effect of dilution on the growth of bacteria from blood cultures
US3810990A (en) Inhibiting growth of bacteria
Begum et al. Comparative microbiological assessment of export oriented fishes and locally marketed fishes of Bangladesh
Barker Spore Research 1976 V2
KR890003731B1 (en) Method for preservation of pickled sea foods
Saraswat et al. The relationship between enterococcus, coliform and yeast and mold counts in butter
Biswas et al. A comparative study for the determination of efficacy of commonly used antimicrobials against specific bacterial strains in tomato (Solanum lycopersicum L.) juice
Druce et al. The microbiological examination of butter
Omoniyi et al. Effect of wrapping materials on mycoflora growth, proximate composition and shelf life of solid pap sold in lapai, Niger State, Nigeria

Legal Events

Date Code Title Description
CB Opposition filed (par. 26,5 patents act)

Opponent name: NORSK HYDRO ASA, 0240 OSLO, NO

Effective date: 20030915

PDP Decision of opposition (par. 25 patent act)

Free format text: "FORSTE AVDELINGS AVGJORELSE STADFESTES, OG PATENT NEKTES." AVGJORELSEN ER IKKE PAANKET, OG ER FOLGELIG RETTSKRAFTIG