NO313154B1 - Combined milling tools and drill bit - Google Patents
Combined milling tools and drill bit Download PDFInfo
- Publication number
- NO313154B1 NO313154B1 NO19982372A NO982372A NO313154B1 NO 313154 B1 NO313154 B1 NO 313154B1 NO 19982372 A NO19982372 A NO 19982372A NO 982372 A NO982372 A NO 982372A NO 313154 B1 NO313154 B1 NO 313154B1
- Authority
- NO
- Norway
- Prior art keywords
- cutting
- insert
- casing
- cutting structure
- milling
- Prior art date
Links
- 238000003801 milling Methods 0.000 title claims description 33
- 229910003460 diamond Inorganic materials 0.000 claims description 41
- 239000010432 diamond Substances 0.000 claims description 41
- 238000005553 drilling Methods 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 230000015572 biosynthetic process Effects 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 24
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 23
- 239000002131 composite material Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 239000011435 rock Substances 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B29/00—Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
- E21B29/06—Cutting windows, e.g. directional window cutters for whipstock operations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
- E21B10/54—Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
- E21B10/56—Button-type inserts
- E21B10/567—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
- E21B10/5676—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts having a cutting face with different segments, e.g. mosaic-type inserts
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
- E21B10/56—Button-type inserts
- E21B10/567—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
- E21B10/5671—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts with chip breaking arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Earth Drilling (AREA)
- Drilling Tools (AREA)
- Shovels (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Description
OPPFINNELSENS BAKGRUNN BACKGROUND OF THE INVENTION
Foreliggende oppfinnelse gjelder verktøy som brukes til boring av olje- og gassbrenner. Særlig angår denne oppfinnelse boring av en ny brønnboring som avgrener fra en eksisterende brønnboring som er blitt boret og foret. The present invention relates to tools used for drilling oil and gas burners. In particular, this invention relates to the drilling of a new well bore that branches off from an existing well bore that has been drilled and lined.
Meget ofte hender det at etter at en brønnboring er blitt boret og forings-røret installert, oppstår det et behov for boring av en ny brønnboring ut til siden, eller i vinkel med den opprinnelige brønnboring. Den nye brønnboring kan være en sideboring som strekker seg utad fra den opprinnelige vertikale brønnboring. Arbeidet med å påbegynne en ny brønnboring fra den eksisterende boring blir ofte kalt «avgrening» (engelsk: «kicking off») fra den opprinnelige boring. Avgrening fra en eksisterende brønnboring hvor metall-foringsrør er installert, krever at foringsrøret først gjennomtrenges ved ønsket dybde. Very often it happens that after a wellbore has been drilled and the casing installed, there is a need to drill a new wellbore to the side, or at an angle with the original wellbore. The new well bore may be a side bore that extends outwards from the original vertical well bore. The work of starting a new well drilling from the existing drilling is often called "kicking off" from the original drilling. Branching from an existing wellbore where metal casing is installed requires that the casing is first penetrated at the desired depth.
Typisk anvendes en seksjonsfres eller vindusfres til å gjennomtrenge metall-foringsrøret, hvoretter vind usfresen og borestrengen trekkes utfra brønn-boringen. Etter boringen av vinduet blir en borkrone montert på borestrengen, ført tilbake inn i brønnen, og brukt til å bore side-brønnboringen. Innkjøring og uttrek-king av borestrengen i brønnboringen forsinker boreoperasjonen og fører til at det blir dyrere å komplettere brønnen. Grunnen til å bruke to forskjellige verktøy til tross for dette, er at vindusfresen må trenge gjennom metallforingen, mens bor-kronen må trenge gjennom undergrunnsformasjonen, som ofte inneholder sterkt abrasive bestanddeler. Typically, a section cutter or winder is used to penetrate the metal casing, after which the winder and the drill string are pulled out from the wellbore. After the window is drilled, a drill bit is mounted on the drill string, fed back into the well, and used to drill the side wellbore. Driving in and pulling out the drill string in the well bore delays the drilling operation and makes it more expensive to complete the well. The reason for using two different tools despite this is that the window cutter must penetrate the metal liner, while the drill bit must penetrate the subsurface formation, which often contains highly abrasive constituents.
Fresing av metall krever en skjærekonstruksjon, såsom en skjæreinnsats, som er utformet av et materiale som er hardt nok til å skjære metallet, men holdbar nok til å unngå for stor brekkasje eller kjemisk nedbryting av innsatsen. Hvis innsatsen smuldrer eller nedbrytes i for stor grad, vil innsatsen miste den skarpe fremre kant eller egg som ansees meget ønskelig for effektiv fresing av metall. Både hardhet og fasthet er viktig. En har funnet at et materiale såsom wolframkarbid er tilstrekkelig hardt til å frese typisk foringsrørstål, samtidig som det er konstruksjonsmessig holdbart og kjemisk bestandig overfor foringsrørstålet det utsettes for, hvorved innsatsen slites gradvis bort istedenfor å smuldre, og derved opprettholder sin skarpe fremre egg. Milling metal requires a cutting structure, such as a cutting insert, that is formed from a material that is hard enough to cut the metal but durable enough to avoid excessive breakage or chemical degradation of the insert. If the insert crumbles or degrades too much, the insert will lose the sharp leading edge or egg which is considered highly desirable for efficient milling of metal. Both hardness and firmness are important. It has been found that a material such as tungsten carbide is sufficiently hard to mill typical casing steel, while being structurally durable and chemically resistant to the casing steel it is exposed to, whereby the insert gradually wears away instead of crumbling, thereby maintaining its sharp front edge.
Boring gjennom en bergart-formasjon krever en skjærekonstruksjon eller Drilling through a rock formation requires a cutting structure or
-struktur som er utformet av et hardest mulig materiale, for at innsatsen skal kunne uthule eller skrape skiver ut av bergarten uten for stor slitasje eller abrasjon -structure that is designed from the hardest possible material, so that the insert can hollow out or scrape discs out of the rock without too much wear or abrasion
på innsatsen. Derved kan boreoperatøren bore større borehull-lengder med en enkelt borkrone, og derved begrense antall enkeltturer inn i og ut av brønnen. En har funnet at et materiale såsom polykrystallinsk diamant er et utmerket valg for boring gjennom en bergart-formasjon, på grunn av dens ekstreme hardhet og abrasjonsbestandighet. on the effort. Thereby, the drilling operator can drill larger borehole lengths with a single drill bit, thereby limiting the number of single trips into and out of the well. A material such as polycrystalline diamond has been found to be an excellent choice for drilling through a rock formation, due to its extreme hardness and abrasion resistance.
Wolframkarbid er ikke så egnet for boring gjennom en bergart-formasjon som polykrystallinsk diamant, ettersom diamanten er hardere og derfor vil vare lenger og derved kreve færre antall enkeltturer. Polykrystallinsk diamant er ikke så egnet for fresing gjennom metall-foringsrør som wolframkarbid, ettersom diamanten ikke er så konstruksjonsmessig holdbar, men lettere smuldrer slik at dens skarpe fremre egg blir ødelagt. Dessuten har polykrystallinsk diamant en tendens til å nedbrytes gjennom en kjemisk reaksjon med foringsrørstålet. Det foregår en kjemisk reaksjon mellom jernet i foringsrøret og diamant-legemet, som opptrer når stålet maskineres med en diamantinnsats. Som følge av denne kjemiske reaksjon, omdannes karbonet i diamanten til grafitt, og diamant-legemets skjæreegg nedbrytes hurtig. Dette hindrer effektiv maskinering av stål-foringsrøret med diamant. Derfor er wolframkarbid det beste valg for fresing gjennom metall-forings-røret, og polykrystallinsk diamant er det beste valg for boring gjennom bergart-formasjonen. Tungsten carbide is not as suitable for drilling through a rock formation as polycrystalline diamond, as the diamond is harder and will therefore last longer and therefore require fewer single trips. Polycrystalline diamond is not as suitable for milling through metal casing as tungsten carbide, as the diamond is not as structurally durable, but crumbles more easily so that its sharp front edge is destroyed. Also, polycrystalline diamond tends to degrade through a chemical reaction with the casing steel. A chemical reaction takes place between the iron in the casing and the diamond body, which occurs when the steel is machined with a diamond insert. As a result of this chemical reaction, the carbon in the diamond is converted to graphite, and the cutting edge of the diamond body breaks down rapidly. This prevents efficient machining of the steel casing with diamond. Therefore, tungsten carbide is the best choice for milling through the metal casing, and polycrystalline diamond is the best choice for drilling through the rock formation.
Dessverre krever bruk av hver type skjærinnsats der den er best egnet, at et første verktøy benyttes til avgrening fra den opprinnelige boring, og et andre verktøy anvendes til å bore den nye boring, etter avgrening. Følgelig er det nød-vendig med to enkeltturer for avgrenings- og boreoperasjonen. Det ville være meget ønskelig å kunne utføre en avgrenings- og boreoperasjon under en enkelttur, for derved å eliminere i det minste én tur inn i og ut av borehullet. Unfortunately, the use of each type of cutting insert where it is most suitable requires that a first tool be used for branching from the original bore, and a second tool be used to drill the new bore, after branching. Consequently, two single trips are necessary for the branching and drilling operation. It would be very desirable to be able to carry out a branching and drilling operation during a single trip, thereby eliminating at least one trip into and out of the borehole.
KORT SAMMENFATNING AV OPPFINNELSEN BRIEF SUMMARY OF THE INVENTION
Foreliggende oppfinnelse er et kombinert frese- og boreverktøy for bruk ved utførelse av en enkelttur-avgrenings- og boreoperasjon. Verktøyet har en første type skjærstruktur egnet for metallfresing, for utførelse av avgreningsoperasjonen, og en andre type skjærstruktur egnet for bergart-boring, for boring gjennom undergrunnsformasjonen, etter avgrening. Den første og andre type skjærstruktur er anordnet i forhold til hverandre på verktøyet, slik at bare den første type skjærstruktur kommer i berøring med metall-foringsrøret under freseoperasjonen, hvoretter den andre type skjærstruktur utsettes for kontakt med undergrunnsformasjonen under boreoperasjonen. Den første skjærstruktur-type kan utgjøres av et forholdsvis mer holdbart materiale enn den andre skjærstruktur-type, ettersom den må opprettholde sin skarpe fremre egg under metallfresing. Den andre type skjærstruktur kan utgjøres av et forholdsvis hardere materiale enn den første type skjærstruktur, fordi det må motstå slitasje og abrasjon under bergart-boring. Den første skjærstruktur-type kan utgjøres av wolframkarbid, AI2O3, TiC, TiCN, eller TiN, eller et annet materiale som er sterkt nok til å frese foringsrørstål, men forholdsvis holdbart og kjemisk inaktivt overfor stål. Den andre type skjærstruktur kan utgjøres av polykrystallinsk diamant eller et annet materiale av tilsvarende hardhet, for å lette boring gjennom en bergart-formasjon. The present invention is a combined milling and drilling tool for use when performing a single-pass branching and drilling operation. The tool has a first type of cutting structure suitable for metal milling, for performing the branching operation, and a second type of cutting structure suitable for rock drilling, for drilling through the underground formation, after branching. The first and second type of cutting structure are arranged in relation to each other on the tool, so that only the first type of cutting structure comes into contact with the metal casing during the milling operation, after which the second type of cutting structure is exposed to contact with the underground formation during the drilling operation. The first cutting structure type can be made of a relatively more durable material than the second cutting structure type, as it must maintain its sharp front edge during metal milling. The second type of shear structure can be made of a relatively harder material than the first type of shear structure, because it must resist wear and abrasion during rock drilling. The first cutting structure type can be made of tungsten carbide, AI2O3, TiC, TiCN, or TiN, or another material that is strong enough to mill casing steel, but relatively durable and chemically inactive to steel. The second type of cutting structure can be made of polycrystalline diamond or another material of similar hardness, to facilitate drilling through a rock formation.
To forskjellige, generelle opplegg kan benyttes til å plassere den første type skjærstruktur i forhold til den andre type skjærstruktur slik at den andre type skjærstruktur beskyttes mot å komme i kontakt med stål-foringsrøret under fresing. Hver type plasseringsopplegg kan ha flere forskjellige utføringsformer. Den første type opplegg er å bruke to forskjellige typer skjærinnsatser, hvor en type er laget av et forholdsvis mer holdbart materiale, såsom wolframkarbid, mens den andre type er laget av et forholdsvis hardere materiale, som polykrystallinsk diamant. De mer holdbare innsatser anbringes på verktøyet slik at de strekker seg lengre utad enn de hardere innsatser, f.eks. ved å anbringe en rad av hardere innsatser bak en rad av mer holdbare innsatser. Uttrykket «lengre utad» brukes her i betydnin-gen lengre mot verktøyets ytre ende, i en gitt retning. Det kan bety «nederst» på den nedre ende av verktøyet, eller «radialt ytterst» på verktøyets sider. F.eks. ville en rad av mer holdbare innsatser bli plassert nederst på verktøyets bunn-ende, med en rad av de hardere innsatser anbrakt like over. Størrelsen og anbrin-gelsen av de mer holdbare innsatser er konstruert til å la disse innsatser slites full-stendig bort på tilnærmet det tidspunkt hvor foringsrøret er blitt gjennomskåret. Derved utsettes de hardere innsatser for kontakt med bergart-formasjonen for boring. Two different, general schemes can be used to place the first type of shear structure in relation to the second type of shear structure so that the second type of shear structure is protected from coming into contact with the steel casing during milling. Each type of placement scheme can have several different execution forms. The first type of arrangement is to use two different types of cutting inserts, where one type is made of a relatively more durable material, such as tungsten carbide, while the other type is made of a relatively harder material, such as polycrystalline diamond. The more durable inserts are placed on the tool so that they extend further outwards than the harder inserts, e.g. by placing a row of harder inserts behind a row of more durable inserts. The expression "further outward" is used here in the sense further towards the outer end of the tool, in a given direction. It can mean "bottom" of the lower end of the tool, or "radial outermost" of the sides of the tool. For example a row of more durable inserts would be placed at the bottom of the bottom end of the tool, with a row of the harder inserts placed just above. The size and placement of the more durable inserts are designed to allow these inserts to be completely worn away at approximately the time when the casing has been cut through. Thereby, the harder inserts are exposed to contact with the rock formation for drilling.
Denne relative plassering av to typer innsatser kan oppnås ved deres relative plassering på et gitt verktøyblad, med passende rad-plassering som beskrevet ovenfor. Alternativt kan den mer holdbare innsats-type anbringes på et første blad og den hardere innsats-type kan anbringes på et andre blad. Deretter kan de to blad plasseres på verktøyet, slik at det første blad strekker seg ytterligere, nedad eller radialt utad eller begge deler, enn det andre blad. This relative placement of two types of inserts can be achieved by their relative placement on a given tool blade, with appropriate row placement as described above. Alternatively, the more durable insert type can be placed on a first blade and the harder insert type can be placed on a second blade. Then the two blades can be placed on the tool, so that the first blade extends further, downwards or radially outwards or both, than the second blade.
En annen type opplegg for relativ plassering av de to typer skjærstrukturer innebærer bruk av kompositt-skjærinnsatser. Hver slik innsats er utformet som en sammensetning av flere forskjellige typer materialer, hvor det i det minste anvendes ett mer holdbart materiale til å skjerme det mindre holdbare, men hardere materiale. Dette kan gjøres på mange måter. En sylindrisk innsats kan ha en massiv indre kjerne av polykrystallinsk diamant og et ytterlag om sin omkrets av wolframkarbid. Alternativt kan en sylindrisk wolframkarbid-innsats ha en knapp eller lomme av polykrystallinsk diamant innleiret i en endeflate. Ifølge enda et annet alternativ kan en polykrystallinsk diamant-innsats være belagt med ett eller flere holdbare belegg, såsom M2O3, TiC, TiCN, eller TiN. Kompositt-innsatsene blir så anbrakt på verktøybladene. Ytterlaget eller belegget av mer holdbart materiale er konstruert til å slites bort etterhvert som freseoperasjonen fullføres, slik at det hardere materialets indre legeme blottlegges for bergartformasjonen. Another type of scheme for relative placement of the two types of shear structures involves the use of composite shear inserts. Each such insert is designed as a composition of several different types of materials, where at least one more durable material is used to shield the less durable but harder material. This can be done in many ways. A cylindrical insert may have a solid inner core of polycrystalline diamond and an outer layer around its circumference of tungsten carbide. Alternatively, a cylindrical tungsten carbide insert may have a button or pocket of polycrystalline diamond embedded in an end face. According to yet another alternative, a polycrystalline diamond insert may be coated with one or more durable coatings, such as M 2 O 3 , TiC, TiCN, or TiN. The composite inserts are then placed on the tool blades. The outer layer or coating of more durable material is designed to wear away as the milling operation is completed, so that the inner body of the harder material is exposed to the rock formation.
De nye trekk ved denne oppfinnelse, såvel som selve oppfinnelsen, vil bli best forstått ut fra de vedlagte tegninger, betraktet i sammenheng med den føl-gende beskrivelse, hvor like henvisningstegn betegner like deler, og hvor: The new features of this invention, as well as the invention itself, will be best understood from the attached drawings, considered in the context of the following description, where like reference signs denote like parts, and where:
KORT BESKRIVELSE AV TEGNINGENE BRIEF DESCRIPTION OF THE DRAWINGS
Figur 1 er et snitt av en utføringsform av det kombinerte frese- og boreverk-tøy ifølge foreliggende oppfinnelse; Figur 2 er et sideriss av verktøyet vist i figur 1; Figur 3 er et snitt av en andre utføringsform av verktøyet ifølge foreliggende oppfinnelse; Figur 4 er et sideriss av verktøyet vist i figur 3; Figur 5 er et grunnriss av en utføringsform av en kompositt-skjærinnsats for bruk i et verktøy ifølge foreliggende oppfinnelse; Figur 6 er snitt av innsatsen vist i figur 5; Figur 7 er et grunnriss av en andre utføringsform av en kompositt-skjærinnsats for bruk i et verktøy ifølge foreliggende oppfinnelse; Figur 8 er et snitt av innsatsen vist i figur 7; Figur 9 er et grunnriss av en tredje utføringsform av en kompositt-skjærinnsats for bruk i et verktøy ifølge foreliggende oppfinnelse; Figur 10 er et snitt av innsatsen vist i figur 9; Figur 11 er et snitt av en fjerde utføringsform av en kompositt-skjærinnsats for bruk i et verktøy ifølge foreliggende oppfinnelse; og Figur 12 er et snitt i større målestokk av et parti av innsatsen vist i figur 11. Figure 1 is a section of an embodiment of the combined milling and drilling tool according to the present invention; Figure 2 is a side view of the tool shown in Figure 1; Figure 3 is a section of a second embodiment of the tool according to the present invention; Figure 4 is a side view of the tool shown in Figure 3; Figure 5 is a plan view of an embodiment of a composite cutting insert for use in a tool according to the present invention; Figure 6 is a section of the insert shown in Figure 5; Figure 7 is a plan view of a second embodiment of a composite cutting insert for use in a tool according to the present invention; Figure 8 is a section of the insert shown in Figure 7; Figure 9 is a plan view of a third embodiment of a composite cutting insert for use in a tool according to the present invention; Figure 10 is a section of the insert shown in Figure 9; Figure 11 is a section of a fourth embodiment of a composite cutting insert for use in a tool according to the present invention; and Figure 12 is a section on a larger scale of part of the insert shown in Figure 11.
NÆRMERE BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION
Som vist i figur 1 har verktøyet 10 ifølge foreliggende oppfinnelse en gene-relt sylindrisk hoveddel 12, med en nedre ende 14 og en omkrets 16. Ett eller flere blad 18 er montert på verktøy-hoveddelens 12 nedre ende 14 og omkrets 16. Utformingen av verktøyet 10 er ikke begrenset til det her viste verktøy, idet andre utforminger like gjerne kan tilpasses. As shown in Figure 1, the tool 10 according to the present invention has a generally cylindrical main part 12, with a lower end 14 and a circumference 16. One or more blades 18 are mounted on the tool main part 12's lower end 14 and circumference 16. The design of the tool 10 is not limited to the tool shown here, as other designs can just as easily be adapted.
En eller flere skjærstrukturer i form av skjærinnsatser (hardmetallknapper) 20 er festet til flere av bladene 18, f.eks. ved slaglodding eller på annen hensikts-messig måte. Skjærinnsatsene 20 kan være av forskjellige typer, slik det skal for-klares, avhengig av hvilken type plasseringsopplegg som anvendes for å bringe en forholdsvis mer holdbar skjærstruktur i kontakt med foringsrøret, og for å bringe en forholdsvis hardere skjærstruktur i kontakt med bergart-formasjonen. I en type plasseringsopplegg, som vist i figur 2, kan et første antall av skjærinnsatsene 20a utformes av et forholdsvis mer holdbart materiale såsom wolframkarbid, og et andre antall av skjærinnsatsene 20b kan utformes av et forholdsvis hardere materiale såsom polykrystallinsk diamant. Det første antall wolframkarbid-innsatser 20a er anbrakt på et første blad 18a, mens det andre antall innsatser 20b av polykrystallinsk diamant er plassert på et andre blad 18b. Det første bladets 18a nederste ende 19a strekker seg under den nederste ende 19b av det andre blad 18b. Likeledes strekker det første bladets 18a ytre omkrets seg radialt lengre utad enn det andre bladets 18b ytre omkrets. Når verktøyet 10 ifølge denne utførings-form roteres i et metall-foringsrør, vil wolframkarbid-innsatsene 20a komme i kontakt med foringsrøret ved en freseoperasjon, mens diamant-innsatsene 20b ikke vil komme i berøring med foringsrøret. Verktøyet kunne også vært bygget med sikte på å la det andre blad 18b ha en liten eller tilfeldig berøring med foringsrøret, uten påføring av nevneverdig kraft, for derved å hindre skjærekontakt mellom diamant-innsatsene 20b og foringsrøret. Som det vil bli vist i senere utføringsfor-mer, kan wolframkarbidet også faktisk være utformet rundt diamantmaterialet for fysisk å skjerme sistnevnte fra berøring med foringsrøret. Alle disse løsninger faller innenfor oppfinnelsestanken. I den viste utføringsform er det første blad 18a konstruert til å strekke seg lengre utad enn det andre blad 18b i tilstrekelig grad til at det første blad 18a kan trenge gjennom metall-foringsrøret omtrent på det tidspunkt hvor det er tilstrekkelig avslitt til at det andre blad 18b kommer i berøring med den omgivende formasjon. One or more cutting structures in the form of cutting inserts (hard metal buttons) 20 are attached to several of the blades 18, e.g. by soldering or in another appropriate way. The cutting inserts 20 can be of different types, as will be explained, depending on the type of placement scheme used to bring a relatively more durable cutting structure into contact with the casing, and to bring a relatively harder cutting structure into contact with the rock formation. In one type of placement arrangement, as shown in Figure 2, a first number of the cutting inserts 20a can be made of a relatively more durable material such as tungsten carbide, and a second number of the cutting inserts 20b can be made of a relatively harder material such as polycrystalline diamond. The first number of tungsten carbide inserts 20a are placed on a first blade 18a, while the second number of polycrystalline diamond inserts 20b are placed on a second blade 18b. The lower end 19a of the first blade 18a extends below the lower end 19b of the second blade 18b. Likewise, the outer circumference of the first blade 18a extends radially further outwards than the outer circumference of the second blade 18b. When the tool 10 according to this embodiment is rotated in a metal casing, the tungsten carbide inserts 20a will come into contact with the casing during a milling operation, while the diamond inserts 20b will not come into contact with the casing. The tool could also have been built with the aim of allowing the second blade 18b to have a slight or random contact with the casing, without the application of significant force, thereby preventing cutting contact between the diamond inserts 20b and the casing. As will be shown in later embodiments, the tungsten carbide may also actually be formed around the diamond material to physically shield the latter from contact with the casing. All these solutions fall within the scope of the invention. In the embodiment shown, the first blade 18a is designed to extend further outward than the second blade 18b sufficiently so that the first blade 18a can penetrate the metal casing at about the time when it is sufficiently worn that the second blade 18b comes into contact with the surrounding formation.
Figur 3 og 4 viser en annen utføringsform av verktøyet 10, som anvender dette samme type plasseringsopplegg, men på en annen måte. Ifølge denne utføringsform bærer hvert blad 18 en første, ytterste, rad av wolframkarbid-innsatser 20a, en andre, indre rad av diamant-innsatser 20b. En tredje rad av innsatser kan også være tilføyet som vist. Denne utføringsform av denne type plasseringsopplegg kan også benytte andre plasseringsmønstre, innbefattende f.eks. kaliber-skjærinnsatser, eller innbefattende større avstand mellom innsatsene. Det vesentlige er at wolframkarbid-innsatsene 20a er plassert slik at de freser gjennom metall-foringsrøret samtidig som de beskytter diamant-innsatsene 20b mot kontakt med foringsrøret. Omtrent på det tidspunkt hvor foringsrøret er blitt gjennomhullet, er wolframkarbid-innsatsene konstruert til å slites bort tilstrekkelig til at diamant-innsatsene 20b kan komme i kontakt med bergart-formasjonen. Ifølge denne utføringsform strekker hvert blad 18 seg nedad eller utad i samme grad som de andre blad 18, ettersom hvert blad 18 har en ytterste rad av wolframkarbid-innsatser 20a og en indre rad av diamant-innsatser 20b. Figures 3 and 4 show another embodiment of the tool 10, which uses this same type of placement scheme, but in a different way. According to this embodiment, each blade 18 carries a first, outermost row of tungsten carbide inserts 20a, a second, inner row of diamond inserts 20b. A third row of inserts can also be added as shown. This embodiment of this type of placement scheme can also use other placement patterns, including e.g. caliber cutting inserts, or including a greater distance between the inserts. The essential thing is that the tungsten carbide inserts 20a are placed so that they mill through the metal casing while simultaneously protecting the diamond inserts 20b from contact with the casing. At about the time the casing has been pierced, the tungsten carbide inserts are designed to wear away sufficiently for the diamond inserts 20b to contact the rock formation. According to this embodiment, each blade 18 extends downwards or outwards to the same extent as the other blades 18, as each blade 18 has an outer row of tungsten carbide inserts 20a and an inner row of diamond inserts 20b.
Ifølge en andre type plasseringsopplegg, kan minst noen av skjærinnsatsene 20 være kompositt-innsatser som er identiske med hverandre, idet det på hvert blad 18 er montert innsatser 20, som vist i figur 1. Ved denne andre type plasseringsopplegg er imidlertid den relative plassering av de to typer skjærstrukturer oppnådd ved å anvende kompositt-innsatser såsom utføringsformen vist i figur 5 og 6. En skjærinnsats 20c er utformet som et kompositt av to materialer, hvor det ene materiale er forholdsvis hardere, og det andre materiale er forholdsvis mer holdbart. En i det vesentlige sylindrisk innerdel 24 av polykrystallinsk diamant har minst en frilagt ende 21 med et ytterlag 22 av wolframkarbid utformet rundt sin omkrets 23. Den frilagte ende av ytterlaget 22 har en avfaset kant 26 og et ring-formet sponbryterspor 28. Kanten 26 og sponbrytersporet 28 kommer i berøring med metall-foringsrøret under freseoperasjonen, for derved å utskjære korte, tykke spon fra foringsrøret. Derved kan metallsponene fjernes fra brønnboringen ved sirkulering av borefluidet uten sammenfiltring og uten at hullet gjentettes. Ved omtrent det tidspunkt hvor metall-foringsrøret er blitt gjennomhullet, er ytterlaget 22 konstruert til å slites bort tilstrekkelig til å la innerdelen 24 komme i berøring med bergart-formasjonen i boreøyemed. According to a second type of placement arrangement, at least some of the cutting inserts 20 can be composite inserts that are identical to each other, as inserts 20 are mounted on each blade 18, as shown in Figure 1. In this second type of placement arrangement, however, the relative placement of the two types of cutting structures obtained by using composite inserts such as the embodiment shown in Figures 5 and 6. A cutting insert 20c is designed as a composite of two materials, where one material is relatively harder, and the other material is relatively more durable. A substantially cylindrical inner portion 24 of polycrystalline diamond has at least one exposed end 21 with an outer layer 22 of tungsten carbide formed around its circumference 23. The exposed end of the outer layer 22 has a chamfered edge 26 and an annular chip breaker groove 28. The edge 26 and the chip breaker groove 28 comes into contact with the metal casing during the milling operation, thereby cutting short, thick chips from the casing. Thereby, the metal shavings can be removed from the wellbore by circulating the drilling fluid without tangling and without the hole being resealed. At about the time the metal casing has been pierced, the outer layer 22 is designed to wear away sufficiently to allow the inner part 24 to come into contact with the rock formation for drilling purposes.
En andre utføringsform av en kompositt-innsats 20d som kan brukes i denne andre type plasseringsopplegg, er vist i figur 7 og 8. Her omgir et ytre wolframkarbidlag 22 den indre diamantdelens 24 omkrets 23, som ovenfor omtalt. I denne utføringsform er imidlertid innerdelen 24 utformet ned en avfaset kant 25 rundt sin frilagte øvre ende 21, hvilket gir diamant-innerdelen 24 øket fasthet etterhvert som gjennomtrengning av metall-foringsrøret fullføres og boringen av bergart-formasjonen begynner. Ytterlaget 22 har en avfaset kant 26 og et sponbryterspor 28 som før. A second embodiment of a composite insert 20d which can be used in this second type of placement scheme is shown in Figures 7 and 8. Here, an outer tungsten carbide layer 22 surrounds the circumference 23 of the inner diamond part 24, as discussed above. In this embodiment, however, the inner part 24 is formed down a chamfered edge 25 around its exposed upper end 21, which gives the diamond inner part 24 increased firmness as penetration of the metal casing is completed and the drilling of the rock formation begins. The outer layer 22 has a chamfered edge 26 and a chip breaker groove 28 as before.
En tredje utføringsform av en kompositt-innsats 20e som kan brukes i denne andre type plasseringsopplegg, er vist i figur 9 og 10. I denne utførings-form er et skålformet, ytre wolframkarbidlag 22 utformet rundt omkretsen og en ende av en knappformet innerdel 24 av polykrystallinsk diamant. Også her har ytterlaget 22 en avfaset kant 26 og et sponbryterspor 28. Bruk av det skålformete ytterlag 22 gir innsatsen 20e en nedre wolframkarbid-ende 29 som kan lette lod-ding av innsatsen 20e til et blad 18. A third embodiment of a composite insert 20e which can be used in this second type of placement scheme is shown in Figures 9 and 10. In this embodiment, a cup-shaped, outer tungsten carbide layer 22 is formed around the circumference and one end of a button-shaped inner part 24 of polycrystalline diamond. Here, too, the outer layer 22 has a chamfered edge 26 and a chip breaker groove 28. Using the bowl-shaped outer layer 22 gives the insert 20e a lower tungsten carbide end 29 which can facilitate soldering of the insert 20e to a blade 18.
En fjerde utføringsform av kompositt-innsatsen 20f som kan brukes i denne andre type plasseringsopplegg, er vist i figur 11 og 12. Ifølge denne utføringsform er en polykrystallinsk diamantdel 24 montert på et wolframkarbid-underlag 22, med et tynt, holdbart belegg 30 avsatt over diamantdelen 24. Hovedhensikten med å bruke belegg-utføringsformen, er å anbringe et kjemisk bestandig belegg over diamantdelen. Dette hindrer den normale kjemiske reaksjon mellom jernet i foringsrøret og diamantdelen, som opptrer når stål maskineres med en diamant-innsats. Som følge av denne kjemiske reaksjon, omdannes karbonet i diamanten til grafitt, og diamantdelens skjæreegg nedbrytes hurtig. Dette hindrer effektiv maskinering av stål-foringsrøret med diamant. Belegget 30 kan avsettes i flere lag for å lette fasthefting til diamantdelen 24. Fremgangsmåten for avsetning av disse lag 30 kan være fysisk dampavsetning (FDA) eller kjemisk dampavsetning (KDA), idet FDA foretrekkes. Eller, et wolframkarbid-belegg kan påføres i et apparat under høy temperatur, høyt trykk (HTHT). Eksempler på materialer som kan brukes i FDA eller KDA-prosessene er AI2O3, TiC, TiCN, eller TiN. Kombinasjoner av FDA-, KDA-, og HTHT-prosessene kan også brukes, for å danne en «sandwich» av holdbare, kjemisk motstandsdyktige belegg. Dette belegg beskytter diamanten under freseprosessen, men det slites hurtig bort når det utsettes for bergart-formasjonen. A fourth embodiment of the composite insert 20f which can be used in this second type of placement scheme is shown in Figures 11 and 12. According to this embodiment, a polycrystalline diamond part 24 is mounted on a tungsten carbide substrate 22, with a thin, durable coating 30 deposited over the diamond part 24. The main purpose of using the coating embodiment is to apply a chemically resistant coating over the diamond part. This prevents the normal chemical reaction between the iron in the casing and the diamond part, which occurs when steel is machined with a diamond insert. As a result of this chemical reaction, the carbon in the diamond is converted to graphite, and the cutting edge of the diamond part breaks down quickly. This prevents efficient machining of the steel casing with diamond. The coating 30 can be deposited in several layers to facilitate attachment to the diamond part 24. The method for depositing these layers 30 can be physical vapor deposition (FDA) or chemical vapor deposition (KDA), FDA being preferred. Or, a tungsten carbide coating can be applied in a high temperature, high pressure (HTHT) apparatus. Examples of materials that can be used in the FDA or KDA processes are AI2O3, TiC, TiCN, or TiN. Combinations of the FDA, KDA, and HTHT processes can also be used to form a "sandwich" of durable, chemically resistant coatings. This coating protects the diamond during the milling process, but it quickly wears away when exposed to the rock formation.
Selv om den spesielle oppfinnelse som her er vist og beskrevet nærmere er helt i stand til å oppnå de formål og skaffe de fordeler som ovenfor er nevnt, skal det forstås at denne fremstilling bare er illustrerende for de fortiden foretrukne utføringsformer av oppfinnelsen. Although the particular invention which is here shown and described in more detail is fully capable of achieving the purposes and obtaining the advantages mentioned above, it should be understood that this presentation is only illustrative of the previously preferred embodiments of the invention.
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2738696P | 1996-09-27 | 1996-09-27 | |
US08/936,056 US5979571A (en) | 1996-09-27 | 1997-09-23 | Combination milling tool and drill bit |
PCT/US1997/017170 WO1998013572A1 (en) | 1996-09-27 | 1997-09-24 | Combination milling tool and drill bit |
Publications (3)
Publication Number | Publication Date |
---|---|
NO982372D0 NO982372D0 (en) | 1998-05-26 |
NO982372L NO982372L (en) | 1998-07-24 |
NO313154B1 true NO313154B1 (en) | 2002-08-19 |
Family
ID=26702406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO19982372A NO313154B1 (en) | 1996-09-27 | 1998-05-26 | Combined milling tools and drill bit |
Country Status (6)
Country | Link |
---|---|
US (1) | US5979571A (en) |
AU (1) | AU731033B2 (en) |
CA (1) | CA2238628C (en) |
GB (1) | GB2323112B (en) |
NO (1) | NO313154B1 (en) |
WO (1) | WO1998013572A1 (en) |
Families Citing this family (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6648068B2 (en) | 1996-05-03 | 2003-11-18 | Smith International, Inc. | One-trip milling system |
GB9714651D0 (en) | 1997-07-12 | 1997-09-17 | Petroline Wellsystems Ltd | Downhole tubing |
GB9723031D0 (en) | 1997-11-01 | 1998-01-07 | Petroline Wellsystems Ltd | Downhole tubing location method |
US7025156B1 (en) * | 1997-11-18 | 2006-04-11 | Douglas Caraway | Rotary drill bit for casting milling and formation drilling |
CA2261495A1 (en) * | 1998-03-13 | 1999-09-13 | Praful C. Desai | Method for milling casing and drilling formation |
US6131675A (en) * | 1998-09-08 | 2000-10-17 | Baker Hughes Incorporated | Combination mill and drill bit |
GB0224807D0 (en) | 2002-10-25 | 2002-12-04 | Weatherford Lamb | Downhole filter |
AU766437B2 (en) | 1998-12-22 | 2003-10-16 | Weatherford/Lamb Inc. | Downhole sealing for production tubing |
EP1147287B1 (en) * | 1998-12-22 | 2005-08-17 | Weatherford/Lamb, Inc. | Procedures and equipment for profiling and jointing of pipes |
GB9921557D0 (en) | 1999-09-14 | 1999-11-17 | Petroline Wellsystems Ltd | Downhole apparatus |
CA2288494C (en) | 1999-10-22 | 2008-01-08 | Canadian Downhole Drill Systems Inc. | One trip milling system |
US6325148B1 (en) | 1999-12-22 | 2001-12-04 | Weatherford/Lamb, Inc. | Tools and methods for use with expandable tubulars |
US6598678B1 (en) | 1999-12-22 | 2003-07-29 | Weatherford/Lamb, Inc. | Apparatus and methods for separating and joining tubulars in a wellbore |
US6708769B2 (en) | 2000-05-05 | 2004-03-23 | Weatherford/Lamb, Inc. | Apparatus and methods for forming a lateral wellbore |
US9199315B2 (en) | 2000-06-02 | 2015-12-01 | Kennametal Inc. | Twist drill and method for producing a twist drill which method includes forming a flute of a twist drill |
DE10042990A1 (en) * | 2000-09-01 | 2002-03-28 | Kennametal Inc | Run-out cutting tool, e.g. B. drills |
DE60140617D1 (en) * | 2000-09-20 | 2010-01-07 | Camco Int Uk Ltd | POLYCRYSTALLINE DIAMOND WITH A SURFACE ENRICHED ON CATALYST MATERIAL |
US6568492B2 (en) * | 2001-03-02 | 2003-05-27 | Varel International, Inc. | Drag-type casing mill/drill bit |
US6732806B2 (en) | 2002-01-29 | 2004-05-11 | Weatherford/Lamb, Inc. | One trip expansion method and apparatus for use in a wellbore |
CA2504518C (en) * | 2002-10-30 | 2011-08-09 | Element Six (Proprietary) Limited | Tool insert |
DE60335415D1 (en) * | 2002-10-30 | 2011-01-27 | Element Six Pty Ltd | COMPOSITE TOOL USE |
US7178609B2 (en) * | 2003-08-19 | 2007-02-20 | Baker Hughes Incorporated | Window mill and drill bit |
US7306056B2 (en) | 2003-11-05 | 2007-12-11 | Baker Hughes Incorporated | Directional cased hole side track method applying rotary closed loop system and casing mill |
US7395882B2 (en) | 2004-02-19 | 2008-07-08 | Baker Hughes Incorporated | Casing and liner drilling bits |
US7370702B2 (en) * | 2004-01-08 | 2008-05-13 | Baker Hughes Incorporated | Single mill casing window cutting tool and method |
US7954570B2 (en) | 2004-02-19 | 2011-06-07 | Baker Hughes Incorporated | Cutting elements configured for casing component drillout and earth boring drill bits including same |
US7624818B2 (en) | 2004-02-19 | 2009-12-01 | Baker Hughes Incorporated | Earth boring drill bits with casing component drill out capability and methods of use |
US7455125B2 (en) * | 2005-02-22 | 2008-11-25 | Baker Hughes Incorporated | Drilling tool equipped with improved cutting element layout to reduce cutter damage through formation changes, methods of design and operation thereof |
US7753139B2 (en) | 2005-07-06 | 2010-07-13 | Smith International, Inc. | Cutting device with multiple cutting structures |
US8186458B2 (en) | 2005-07-06 | 2012-05-29 | Smith International, Inc. | Expandable window milling bit and methods of milling a window in casing |
GB0521693D0 (en) * | 2005-10-25 | 2005-11-30 | Reedhycalog Uk Ltd | Representation of whirl in fixed cutter drill bits |
US7571780B2 (en) | 2006-03-24 | 2009-08-11 | Hall David R | Jack element for a drill bit |
US8528664B2 (en) | 2005-11-21 | 2013-09-10 | Schlumberger Technology Corporation | Downhole mechanism |
US7424922B2 (en) | 2005-11-21 | 2008-09-16 | Hall David R | Rotary valve for a jack hammer |
US8522897B2 (en) | 2005-11-21 | 2013-09-03 | Schlumberger Technology Corporation | Lead the bit rotary steerable tool |
US7559379B2 (en) | 2005-11-21 | 2009-07-14 | Hall David R | Downhole steering |
US8225883B2 (en) | 2005-11-21 | 2012-07-24 | Schlumberger Technology Corporation | Downhole percussive tool with alternating pressure differentials |
US8316964B2 (en) | 2006-03-23 | 2012-11-27 | Schlumberger Technology Corporation | Drill bit transducer device |
US8297378B2 (en) | 2005-11-21 | 2012-10-30 | Schlumberger Technology Corporation | Turbine driven hammer that oscillates at a constant frequency |
US8130117B2 (en) * | 2006-03-23 | 2012-03-06 | Schlumberger Technology Corporation | Drill bit with an electrically isolated transmitter |
US7591327B2 (en) | 2005-11-21 | 2009-09-22 | Hall David R | Drilling at a resonant frequency |
US7753144B2 (en) | 2005-11-21 | 2010-07-13 | Schlumberger Technology Corporation | Drill bit with a retained jack element |
US7617886B2 (en) | 2005-11-21 | 2009-11-17 | Hall David R | Fluid-actuated hammer bit |
US7419016B2 (en) | 2006-03-23 | 2008-09-02 | Hall David R | Bi-center drill bit |
US7641002B2 (en) | 2005-11-21 | 2010-01-05 | Hall David R | Drill bit |
US8205688B2 (en) | 2005-11-21 | 2012-06-26 | Hall David R | Lead the bit rotary steerable system |
US8267196B2 (en) | 2005-11-21 | 2012-09-18 | Schlumberger Technology Corporation | Flow guide actuation |
US7549489B2 (en) | 2006-03-23 | 2009-06-23 | Hall David R | Jack element with a stop-off |
US7600586B2 (en) | 2006-12-15 | 2009-10-13 | Hall David R | System for steering a drill string |
US7497279B2 (en) | 2005-11-21 | 2009-03-03 | Hall David R | Jack element adapted to rotate independent of a drill bit |
US7533737B2 (en) | 2005-11-21 | 2009-05-19 | Hall David R | Jet arrangement for a downhole drill bit |
US7484576B2 (en) | 2006-03-23 | 2009-02-03 | Hall David R | Jack element in communication with an electric motor and or generator |
US8360174B2 (en) | 2006-03-23 | 2013-01-29 | Schlumberger Technology Corporation | Lead the bit rotary steerable tool |
US8297375B2 (en) | 2005-11-21 | 2012-10-30 | Schlumberger Technology Corporation | Downhole turbine |
US7762353B2 (en) | 2006-03-23 | 2010-07-27 | Schlumberger Technology Corporation | Downhole valve mechanism |
US7419018B2 (en) | 2006-11-01 | 2008-09-02 | Hall David R | Cam assembly in a downhole component |
US7641003B2 (en) | 2005-11-21 | 2010-01-05 | David R Hall | Downhole hammer assembly |
US7900720B2 (en) | 2006-01-18 | 2011-03-08 | Schlumberger Technology Corporation | Downhole drive shaft connection |
US7694756B2 (en) | 2006-03-23 | 2010-04-13 | Hall David R | Indenting member for a drill bit |
US7661487B2 (en) | 2006-03-23 | 2010-02-16 | Hall David R | Downhole percussive tool with alternating pressure differentials |
USD620510S1 (en) | 2006-03-23 | 2010-07-27 | Schlumberger Technology Corporation | Drill bit |
US7621351B2 (en) | 2006-05-15 | 2009-11-24 | Baker Hughes Incorporated | Reaming tool suitable for running on casing or liner |
US7424910B2 (en) * | 2006-06-30 | 2008-09-16 | Baker Hughes Incorporated | Downhole abrading tools having a hydrostatic chamber and uses therefor |
US7404457B2 (en) * | 2006-06-30 | 2008-07-29 | Baker Huges Incorporated | Downhole abrading tools having fusible material and methods of detecting tool wear |
US7484571B2 (en) * | 2006-06-30 | 2009-02-03 | Baker Hughes Incorporated | Downhole abrading tools having excessive wear indicator |
US7464771B2 (en) * | 2006-06-30 | 2008-12-16 | Baker Hughes Incorporated | Downhole abrading tool having taggants for indicating excessive wear |
US7363992B2 (en) * | 2006-07-07 | 2008-04-29 | Baker Hughes Incorporated | Cutters for downhole cutting devices |
US8590644B2 (en) | 2006-08-11 | 2013-11-26 | Schlumberger Technology Corporation | Downhole drill bit |
US7669674B2 (en) | 2006-08-11 | 2010-03-02 | Hall David R | Degradation assembly |
US20080035389A1 (en) | 2006-08-11 | 2008-02-14 | Hall David R | Roof Mining Drill Bit |
US8122980B2 (en) | 2007-06-22 | 2012-02-28 | Schlumberger Technology Corporation | Rotary drag bit with pointed cutting elements |
US8215420B2 (en) | 2006-08-11 | 2012-07-10 | Schlumberger Technology Corporation | Thermally stable pointed diamond with increased impact resistance |
US7637574B2 (en) | 2006-08-11 | 2009-12-29 | Hall David R | Pick assembly |
US8240404B2 (en) | 2006-08-11 | 2012-08-14 | Hall David R | Roof bolt bit |
US8596381B2 (en) * | 2006-08-11 | 2013-12-03 | David R. Hall | Sensor on a formation engaging member of a drill bit |
US7886851B2 (en) * | 2006-08-11 | 2011-02-15 | Schlumberger Technology Corporation | Drill bit nozzle |
US9316061B2 (en) | 2006-08-11 | 2016-04-19 | David R. Hall | High impact resistant degradation element |
US8616305B2 (en) | 2006-08-11 | 2013-12-31 | Schlumberger Technology Corporation | Fixed bladed bit that shifts weight between an indenter and cutting elements |
US8567532B2 (en) | 2006-08-11 | 2013-10-29 | Schlumberger Technology Corporation | Cutting element attached to downhole fixed bladed bit at a positive rake angle |
US20100059289A1 (en) * | 2006-08-11 | 2010-03-11 | Hall David R | Cutting Element with Low Metal Concentration |
US8714285B2 (en) | 2006-08-11 | 2014-05-06 | Schlumberger Technology Corporation | Method for drilling with a fixed bladed bit |
US9145742B2 (en) | 2006-08-11 | 2015-09-29 | Schlumberger Technology Corporation | Pointed working ends on a drill bit |
US9051795B2 (en) | 2006-08-11 | 2015-06-09 | Schlumberger Technology Corporation | Downhole drill bit |
US8622155B2 (en) | 2006-08-11 | 2014-01-07 | Schlumberger Technology Corporation | Pointed diamond working ends on a shear bit |
US7527110B2 (en) | 2006-10-13 | 2009-05-05 | Hall David R | Percussive drill bit |
US9068410B2 (en) | 2006-10-26 | 2015-06-30 | Schlumberger Technology Corporation | Dense diamond body |
US8960337B2 (en) | 2006-10-26 | 2015-02-24 | Schlumberger Technology Corporation | High impact resistant tool with an apex width between a first and second transitions |
US7954401B2 (en) | 2006-10-27 | 2011-06-07 | Schlumberger Technology Corporation | Method of assembling a drill bit with a jack element |
US7392857B1 (en) | 2007-01-03 | 2008-07-01 | Hall David R | Apparatus and method for vibrating a drill bit |
USD674422S1 (en) | 2007-02-12 | 2013-01-15 | Hall David R | Drill bit with a pointed cutting element and a shearing cutting element |
US8839888B2 (en) | 2010-04-23 | 2014-09-23 | Schlumberger Technology Corporation | Tracking shearing cutters on a fixed bladed drill bit with pointed cutting elements |
USD678368S1 (en) | 2007-02-12 | 2013-03-19 | David R. Hall | Drill bit with a pointed cutting element |
US7866416B2 (en) | 2007-06-04 | 2011-01-11 | Schlumberger Technology Corporation | Clutch for a jack element |
US7836978B2 (en) * | 2007-06-15 | 2010-11-23 | Baker Hughes Incorporated | Cutting elements for casing component drill out and subterranean drilling, earth boring drag bits and tools including same and methods of use |
US7721826B2 (en) | 2007-09-06 | 2010-05-25 | Schlumberger Technology Corporation | Downhole jack assembly sensor |
US7967083B2 (en) | 2007-09-06 | 2011-06-28 | Schlumberger Technology Corporation | Sensor for determining a position of a jack element |
US7954571B2 (en) | 2007-10-02 | 2011-06-07 | Baker Hughes Incorporated | Cutting structures for casing component drillout and earth-boring drill bits including same |
US8245797B2 (en) | 2007-10-02 | 2012-08-21 | Baker Hughes Incorporated | Cutting structures for casing component drillout and earth-boring drill bits including same |
KR100942983B1 (en) * | 2007-10-16 | 2010-02-17 | 주식회사 하이닉스반도체 | Semiconductor device and method for manufacturing the same |
US8540037B2 (en) | 2008-04-30 | 2013-09-24 | Schlumberger Technology Corporation | Layered polycrystalline diamond |
US8020641B2 (en) * | 2008-10-13 | 2011-09-20 | Baker Hughes Incorporated | Drill bit with continuously sharp edge cutting elements |
US20100089661A1 (en) * | 2008-10-13 | 2010-04-15 | Baker Hughes Incorporated | Drill bit with continuously sharp edge cutting elements |
US20100089658A1 (en) * | 2008-10-13 | 2010-04-15 | Baker Hughes Incorporated | Drill bit with continuously sharp edge cutting elements |
US8720609B2 (en) * | 2008-10-13 | 2014-05-13 | Baker Hughes Incorporated | Drill bit with continuously sharp edge cutting elements |
US20100108402A1 (en) * | 2008-10-31 | 2010-05-06 | Baker Hughes Incorporated | Downhole cutting tool and method of making |
US9683415B2 (en) | 2008-12-22 | 2017-06-20 | Cutting & Wear Resistant Developments Limited | Hard-faced surface and a wear piece element |
GB2466466B (en) | 2008-12-22 | 2013-06-19 | Cutting & Wear Resistant Dev | Wear piece element and method of construction |
GB0900606D0 (en) | 2009-01-15 | 2009-02-25 | Downhole Products Plc | Tubing shoe |
US20100252331A1 (en) * | 2009-04-01 | 2010-10-07 | High Angela D | Methods for forming boring shoes for wellbore casing, and boring shoes and intermediate structures formed by such methods |
US8701799B2 (en) | 2009-04-29 | 2014-04-22 | Schlumberger Technology Corporation | Drill bit cutter pocket restitution |
CA2760613C (en) * | 2009-05-04 | 2016-10-11 | Smith International, Inc. | Milling system and method of milling |
US8327944B2 (en) * | 2009-05-29 | 2012-12-11 | Varel International, Ind., L.P. | Whipstock attachment to a fixed cutter drilling or milling bit |
US8517123B2 (en) * | 2009-05-29 | 2013-08-27 | Varel International, Ind., L.P. | Milling cap for a polycrystalline diamond compact cutter |
CN102414393B (en) * | 2009-06-05 | 2014-09-10 | 维拉国际工业有限公司 | Casing bit and casing reamer designs |
US20110209922A1 (en) * | 2009-06-05 | 2011-09-01 | Varel International | Casing end tool |
US8887839B2 (en) | 2009-06-25 | 2014-11-18 | Baker Hughes Incorporated | Drill bit for use in drilling subterranean formations |
BR112012000535A2 (en) | 2009-07-08 | 2019-09-24 | Baker Hughes Incorporatled | cutting element for a drill bit used for drilling underground formations |
RU2012103935A (en) | 2009-07-08 | 2013-08-20 | Бейкер Хьюз Инкорпорейтед | CUTTING ELEMENT AND METHOD FOR ITS FORMATION |
WO2011017115A2 (en) | 2009-07-27 | 2011-02-10 | Baker Hughes Incorporated | Abrasive article and method of forming |
US9022117B2 (en) | 2010-03-15 | 2015-05-05 | Weatherford Technology Holdings, Llc | Section mill and method for abandoning a wellbore |
US8550190B2 (en) | 2010-04-01 | 2013-10-08 | David R. Hall | Inner bit disposed within an outer bit |
US8418784B2 (en) | 2010-05-11 | 2013-04-16 | David R. Hall | Central cutting region of a drilling head assembly |
US8333254B2 (en) | 2010-10-01 | 2012-12-18 | Hall David R | Steering mechanism with a ring disposed about an outer diameter of a drill bit and method for drilling |
US8820440B2 (en) | 2010-10-01 | 2014-09-02 | David R. Hall | Drill bit steering assembly |
US9199312B2 (en) * | 2011-03-07 | 2015-12-01 | Kennametal Inc. | Cutting insert with discrete cutting tip and chip control structure |
US8342266B2 (en) | 2011-03-15 | 2013-01-01 | Hall David R | Timed steering nozzle on a downhole drill bit |
US8807247B2 (en) | 2011-06-21 | 2014-08-19 | Baker Hughes Incorporated | Cutting elements for earth-boring tools, earth-boring tools including such cutting elements, and methods of forming such cutting elements for earth-boring tools |
US9169697B2 (en) | 2012-03-27 | 2015-10-27 | Baker Hughes Incorporated | Identification emitters for determining mill life of a downhole tool and methods of using same |
US9493991B2 (en) | 2012-04-02 | 2016-11-15 | Baker Hughes Incorporated | Cutting structures, tools for use in subterranean boreholes including cutting structures and related methods |
US9151120B2 (en) * | 2012-06-04 | 2015-10-06 | Baker Hughes Incorporated | Face stabilized downhole cutting tool |
US9376866B2 (en) | 2013-08-23 | 2016-06-28 | Varel International Ind., L.P. | Hybrid rotary cone drill bit |
US20150233187A1 (en) * | 2013-08-23 | 2015-08-20 | Varel International Ind., L.P. | Frac plug mill bit |
US9938781B2 (en) | 2013-10-11 | 2018-04-10 | Weatherford Technology Holdings, Llc | Milling system for abandoning a wellbore |
KR101519247B1 (en) * | 2013-11-29 | 2015-05-11 | 현대자동차주식회사 | Apparatus of slide door for vehicle |
WO2015120326A1 (en) | 2014-02-07 | 2015-08-13 | Varel International Ind., L.P. | Mill-drill cutter and drill bit |
CA2942666C (en) | 2014-04-17 | 2019-07-02 | Halliburton Energy Services, Inc. | Bottom hole assembly with wearable stabilizer pad for directional steering |
US10260302B2 (en) | 2014-06-25 | 2019-04-16 | Schlumberger Technology Corporation | Cutting insert for initiating a cutout |
WO2016133978A1 (en) | 2015-02-18 | 2016-08-25 | Weatherford Technology Holdings, Llc | Cutting tool |
WO2016172500A1 (en) | 2015-04-24 | 2016-10-27 | Weatherford Technology Holdings, Llc | Tubular cutting tool |
WO2016191720A1 (en) | 2015-05-28 | 2016-12-01 | Weatherford Technology Holdings, Llc | Cutter assembly for cutting a tubular, bottom hole assembly comprising such a cutter assembly and method of cutting a tubular |
US10392868B2 (en) | 2015-09-30 | 2019-08-27 | Schlumberger Technology Corporation | Milling wellbore casing |
GB2569330B (en) | 2017-12-13 | 2021-01-06 | Nov Downhole Eurasia Ltd | Downhole devices and associated apparatus and methods |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2819043A (en) * | 1955-06-13 | 1958-01-07 | Homer I Henderson | Combination drilling bit |
US3066749A (en) * | 1959-08-10 | 1962-12-04 | Jersey Prod Res Co | Combination drill bit |
US3765493A (en) * | 1971-12-01 | 1973-10-16 | E Rosar | Dual bit drilling tool |
US3908759A (en) * | 1974-05-22 | 1975-09-30 | Standard Oil Co | Sidetracking tool |
US4255165A (en) * | 1978-12-22 | 1981-03-10 | General Electric Company | Composite compact of interleaved polycrystalline particles and cemented carbide masses |
DE3039632C2 (en) * | 1980-10-21 | 1982-12-16 | Christensen, Inc., 84115 Salt Lake City, Utah | Rotary bit for deep drilling |
US4690228A (en) * | 1986-03-14 | 1987-09-01 | Eastman Christensen Company | Changeover bit for extended life, varied formations and steady wear |
US5025874A (en) * | 1988-04-05 | 1991-06-25 | Reed Tool Company Ltd. | Cutting elements for rotary drill bits |
US5027912A (en) * | 1988-07-06 | 1991-07-02 | Baker Hughes Incorporated | Drill bit having improved cutter configuration |
GB2234542B (en) * | 1989-08-04 | 1993-03-31 | Reed Tool Co | Improvements in or relating to cutting elements for rotary drill bits |
US5025873A (en) * | 1989-09-29 | 1991-06-25 | Baker Hughes Incorporated | Self-renewing multi-element cutting structure for rotary drag bit |
US5248006A (en) * | 1991-03-01 | 1993-09-28 | Baker Hughes Incorporated | Rotary rock bit with improved diamond-filled compacts |
US5423387A (en) * | 1993-06-23 | 1995-06-13 | Baker Hughes, Inc. | Method for sidetracking below reduced-diameter tubulars |
GB9314954D0 (en) * | 1993-07-16 | 1993-09-01 | Camco Drilling Group Ltd | Improvements in or relating to torary drill bits |
US5887668A (en) * | 1993-09-10 | 1999-03-30 | Weatherford/Lamb, Inc. | Wellbore milling-- drilling |
US5887655A (en) * | 1993-09-10 | 1999-03-30 | Weatherford/Lamb, Inc | Wellbore milling and drilling |
-
1997
- 1997-09-23 US US08/936,056 patent/US5979571A/en not_active Expired - Lifetime
- 1997-09-24 AU AU45932/97A patent/AU731033B2/en not_active Expired
- 1997-09-24 WO PCT/US1997/017170 patent/WO1998013572A1/en active Application Filing
- 1997-09-24 CA CA002238628A patent/CA2238628C/en not_active Expired - Fee Related
- 1997-09-24 GB GB9811105A patent/GB2323112B/en not_active Expired - Lifetime
-
1998
- 1998-05-26 NO NO19982372A patent/NO313154B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2238628C (en) | 2003-12-02 |
GB9811105D0 (en) | 1998-07-22 |
GB2323112A (en) | 1998-09-16 |
NO982372L (en) | 1998-07-24 |
AU731033B2 (en) | 2001-03-22 |
WO1998013572A1 (en) | 1998-04-02 |
US5979571A (en) | 1999-11-09 |
GB2323112B (en) | 2000-07-05 |
AU4593297A (en) | 1998-04-17 |
NO982372D0 (en) | 1998-05-26 |
CA2238628A1 (en) | 1998-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO313154B1 (en) | Combined milling tools and drill bit | |
US4553615A (en) | Rotary drilling bits | |
US4006788A (en) | Diamond cutter rock bit with penetration limiting | |
US6390210B1 (en) | Rolling cone bit with gage and off-gage cutter elements positioned to separate sidewall and bottom hole cutting duty | |
US5407022A (en) | Free cutting gage insert with relief angle | |
US5752573A (en) | Earth-boring bit having shear-cutting elements | |
US7527110B2 (en) | Percussive drill bit | |
EP2118431B1 (en) | Rotary drag bit | |
US6105693A (en) | Partially enhanced percussive drill bit | |
SE508952C2 (en) | Rock drill tip with rotating cone for drilling holes in a soil formation as well as a method for breaking up and spreading accumulated formation gravel using such rock drill tip | |
CA2753854C (en) | Milling cap for a polycrystalline diamond compact cutter | |
US9828810B2 (en) | Mill-drill cutter and drill bit | |
CA2504523C (en) | Composite tool insert | |
GB2281330A (en) | Core cutting rock bit | |
US10612311B2 (en) | Earth-boring tools utilizing asymmetric exposure of shaped inserts, and related methods | |
US7025155B1 (en) | Rock bit with channel structure for retaining cutter segments | |
US10392867B2 (en) | Earth-boring tools utilizing selective placement of shaped inserts, and related methods | |
US10012029B2 (en) | Rolling cones with gage cutting elements, earth-boring tools carrying rolling cones with gage cutting elements and related methods | |
US20180328116A1 (en) | Drag bit with wear-resistant cylindrical cutting structure | |
AU752097B2 (en) | Drill bit | |
GB2349405A (en) | Rolling cone bit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK1K | Patent expired |