NO312072B1 - Process for Preparation of Highly Active, Stable Metallocene Catalyst Systems and Formulation Prepared by the Process - Google Patents

Process for Preparation of Highly Active, Stable Metallocene Catalyst Systems and Formulation Prepared by the Process Download PDF

Info

Publication number
NO312072B1
NO312072B1 NO19971254A NO971254A NO312072B1 NO 312072 B1 NO312072 B1 NO 312072B1 NO 19971254 A NO19971254 A NO 19971254A NO 971254 A NO971254 A NO 971254A NO 312072 B1 NO312072 B1 NO 312072B1
Authority
NO
Norway
Prior art keywords
bis
zirconium dichloride
indenyl
dichloride
metallocene
Prior art date
Application number
NO19971254A
Other languages
Norwegian (no)
Other versions
NO971254L (en
NO971254D0 (en
Inventor
Rainer Rieger
Hans-Guenter Volland
Wolfram Uzick
Original Assignee
Crompton Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8222573&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO312072(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Crompton Gmbh filed Critical Crompton Gmbh
Publication of NO971254D0 publication Critical patent/NO971254D0/en
Publication of NO971254L publication Critical patent/NO971254L/en
Publication of NO312072B1 publication Critical patent/NO312072B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for the production of homogeneous mixtures (I)containing (a) metallocene(s), (b) co-catalyst(s) and (c) formulation media, in which the preparation of the catalyst system (a + b) comprises: (A) direct preparation by known methods in the hydrocarbon used (HC), or (B) suspending, dispersing or dissolving the isolated metallocene-based catalyst components in HC, or (C) adding a solution of the components in low-boiling solvent (made by known methods) to HC and then removing the low-boiling solvent, optionally with the use of (D) conventional inorganic or organic support materials, auxiliary substances and/or additives etc. Also claimed is a formulation obtained by this process.

Description

Den foreliggende oppfinnelse angår en fremgangsmåte for fremstilling av høyaktive, stabile metallocen-katalysatorsystemer og formulering fremstilt ved fremgangsmåten. The present invention relates to a method for producing highly active, stable metallocene catalyst systems and formulation produced by the method.

Metallocen-katalysatorsystemer vinner økende betydning som en ny generasjon katalysatorsystemer for fremstilling av polyolefiner ("Single Site Catalysts"). Disse nye katalysatorer består i det vesentlige, som allerede kjent fra klassisk Ziegler-Natta-katalyse, av en overgangsmetallforbindelse som katalysator samt en kokatalysator-bestanddel, eksempelvis et alkylaluminoksan, særlig metylaluminoksan. Som overgangsmetallforbindelse foretrekkes syklopentadienyl-, indenyl-eller fiuorenyl-derivater fra gruppe IVa i det periodiske system av grunnstoffene. I motsetning til konvensjonelle Ziegler-Natta-katalysatorer gir slike katalysatorsystemer foruten høy aktivitet og produktivitet også mulighet til målrettet styring av produkt-egenskaper avhengig av anvendte bestanddeler og reaksjonsbetingelser, og dessuten tilgang til hittil ukjente polymerstrukturer med lovende egenskaper når det gjelder tek-niske anvendelser. Metallocene catalyst systems are gaining increasing importance as a new generation of catalyst systems for the production of polyolefins ("Single Site Catalysts"). These new catalysts essentially consist, as already known from classic Ziegler-Natta catalysis, of a transition metal compound as catalyst and a co-catalyst component, for example an alkylaluminoxane, especially methylaluminoxane. Cyclopentadienyl, indenyl or fluorenyl derivatives from group IVa in the periodic table of the elements are preferred as transition metal compounds. In contrast to conventional Ziegler-Natta catalysts, in addition to high activity and productivity, such catalyst systems also provide the opportunity for targeted control of product properties depending on the components used and reaction conditions, and also access to hitherto unknown polymer structures with promising properties in terms of technical applications .

I litteraturen har det dukket opp mange publikasjoner som gjelder fremstilling av spesielle polyolefiner ved bruk av slike katalysatorsystemer. En ulempe i nesten alle tilfeller er imidlertid det faktum at for å oppnå akseptabel produktivitet, behøves et høyt overskudd av alkylaluminoksaner i forhold til overgangsmetall-komponentene (vanligvis er forholdet mellom aluminium i form av alkylaluminoksaner, og overgangsmetall på ca. 1000:1). På grunn av høy pris på alkylaluminoksaner på den ene side, og i mange tilfeller nødvendige ekstra polymer-rensetrinn ("deashing steps") på den annen side, så er en polymerproduksjon i teknisk målestokk på basis av slike katalysatorsystemer ofte uøkonomisk. Dertil kommer at for formuleringen med alkylaluminoksaner, særlig metylaluminoksan, anvendes ofte løsnings-midlet toluen for å oppnå lagringsstabilitet av de høykonsentrerte formuleringer (sterk tendens til geldannelse i aluminoksanløsningen), og med henblikk på anvendelses-området for de endelig resulterende polyolefiner er dette av toksikologiske årsaker i stigende grad uønsket. Many publications have appeared in the literature relating to the production of special polyolefins using such catalyst systems. A disadvantage in almost all cases, however, is the fact that in order to achieve acceptable productivity, a high excess of alkylaluminoxanes in relation to the transition metal components is needed (usually the ratio between aluminum in the form of alkylaluminoxanes and transition metal is about 1000:1). Due to the high price of alkylaluminoxanes on the one hand, and in many cases necessary additional polymer purification steps ("deashing steps") on the other hand, polymer production on a technical scale on the basis of such catalyst systems is often uneconomical. In addition, for the formulation with alkylaluminoxanes, especially methylaluminoxane, the solvent toluene is often used to achieve storage stability of the highly concentrated formulations (strong tendency to gel in the aluminoxane solution), and with regard to the area of application for the final resulting polyolefins, this is of toxicological causes increasingly undesirable.

Med disse katalysatorsystemer, eller formuleringer for slike, dreier det seg om svært ømfintlige stoffer som i løpet i av noen timer eller døgn kan få redusert polymerisasj onsakti vitet. With these catalyst systems, or formulations for such, we are dealing with very sensitive substances that can have their polymerization activity reduced within a few hours or days.

På grunn av høy pris på disse moderne katalysatorsystemer, er slike aktivitetsreduksjoner ikke akseptable. Av økonomiske årsaker er det derfor et behov for katalysatorer eller katalysatorsystemer som etter fremstilling forblir høyaktive i et lengre tidsrom, eller sågar får øket aktivitet. Due to the high cost of these modern catalyst systems, such activity reductions are not acceptable. For economic reasons, there is therefore a need for catalysts or catalyst systems which, after manufacture, remain highly active for a longer period of time, or even have increased activity.

Ifølge WO 93/23439 skal det oppnås stabilitet hos metallocenkata-lysatorsystemer gjennom omfattende variasjoner i fremstillingsbetingelser, særlig temperaturbehandling. According to WO 93/23439, stability is to be achieved in metallocene catalyst systems through extensive variations in manufacturing conditions, especially temperature treatment.

Denne fremgangsmåte er på den ene side arbeidskrevende, og på den annen side ikke generelt anvendelig på grunn av systemets ømfintlighet. This method is, on the one hand, labor-intensive and, on the other hand, not generally applicable due to the sensitivity of the system.

Målet med den foreliggende oppfinnelse er å overvinne disse ulemper og utvikle homogene formuleringer av metallocenbaserte katalysatorsystemer som minst bibeholder sin høye polymerisasjonsaktivitet over et lengre tidsrom. The aim of the present invention is to overcome these disadvantages and develop homogeneous formulations of metallocene-based catalyst systems which at least retain their high polymerization activity over a longer period of time.

Uventet er det nå funnet at polymerisasjonsaktiviteten av metallocenkata-lysatorsystemer i form av flytende eller faste formuleringer inneholdt i parafin, lar seg varig stabilisere. Definisjonen "formulering" omfatter her katalysator-systemer i høyt-kokende hydrokarboner (parafiner) som ved romtemperatur har oljeaktig eller voksaktig konsistens, og hvori komponentene er løst, suspendert eller dispergert ved hjelp av en egnet blandeinnretning. Unexpectedly, it has now been found that the polymerization activity of metallocene catalyst systems in the form of liquid or solid formulations contained in paraffin can be permanently stabilized. The definition "formulation" here includes catalyst systems in high-boiling hydrocarbons (paraffins) which at room temperature have an oily or waxy consistency, and in which the components are dissolved, suspended or dispersed by means of a suitable mixing device.

En gjenstand for oppfinnelsen er derved en fremgangsmåte for fremstilling av homogene blandinger bestående i det vesentlige av minst ett metallocen, minst en kokatalysator og dispersjons/suspensjons-medier eller løsningsmidler, hvor den homogene blanding er fremstilt ved å A) fremstille de metallocen-baserte katalysatorsystemer direkte i dispersjons/ suspensjons-mediet eller løsningsmidlene, eller ved å B) oppløse, suspendere eller dispergere de isolerte metallocen-baserte katalysatorkomponenter i dispersjons/suspensjons-mediet eller An object of the invention is thereby a method for producing homogeneous mixtures consisting essentially of at least one metallocene, at least one cocatalyst and dispersion/suspension media or solvents, where the homogeneous mixture is produced by A) producing the metallocene-based catalyst systems directly in the dispersion/suspension medium or solvents, or by B) dissolving, suspending or dispersing the isolated metallocene-based catalyst components in the dispersion/suspension medium or

løsningsmidlet, eller ved å the solvent, or by

C) blande oppløsningen av den metallocenbaserte katalysatorkomponent, fremstilt i henhold til kjente metoder, i et lavtkokende løsningsmiddel sammen med dispersjons/suspensjons-mediet eller løsningsmidlet i et første trinn, og deretter fjerne det lavtkokende løsningsmiddel ved C) mixing the solution of the metallocene-based catalyst component, prepared according to known methods, in a low-boiling solvent together with the dispersion/suspension medium or the solvent in a first step, and then removing the low-boiling solvent by

destillasjon, eventuelt med anvendelse av distillation, possibly with the use of

D) vanlige organiske eller uorganiske bærermaterialer, hjelpestoffer og/eller additiver, samt tilsetningsstoffer, kjennetegnet ved at det som dispersjons/suspensjons-medium eller løsningsmiddel anvendes naturlige eller syntetiske, kommersielt tilgjengelige, langkjedede, eventuelt forgrenede, flytende eller faste ikke-aromatiske hydrokarboner med kokepunkt over 150 °C og viskositeter på minst 1 Pa.s ved 25 °C. D) common organic or inorganic carrier materials, auxiliaries and/or additives, as well as additives, characterized by the fact that natural or synthetic, commercially available, long-chain, optionally branched, liquid or solid non-aromatic hydrocarbons are used as dispersion/suspension medium or solvent boiling point above 150 °C and viscosities of at least 1 Pa.s at 25 °C.

En ytterligere gjenstand for oppfinnelsen er en formulering fremstilt ved fremgangsmåten ifølge oppfinnelsen. A further object of the invention is a formulation produced by the method according to the invention.

Dispersjons- eller suspensjonsmediene anvendt ved fremgangsmåten ifølge oppfinnelsen er alle naturlige eller syntetiske, kommersielt vanlige, langkjedede, eventuelt forgrenede, flytende eller faste hydrokarboner med kokepunkt over 150 °C, fortrinnsvis over 200 °C, og med viskositet på minst 1 Pa.s ved 25 °C. The dispersion or suspension media used in the method according to the invention are all natural or synthetic, commercially common, long-chain, optionally branched, liquid or solid hydrocarbons with a boiling point above 150 °C, preferably above 200 °C, and with a viscosity of at least 1 Pa.s at 25 °C.

Til disse forbindelser hører produktgruppen med de såkalte hvitoljer, f.eks. Witco White Mineral Oil Parol® (varemerke tilhørende Witco Polymers + Resins B.V., Nederland), vaseliner samt parafiniske vokser, f.eks. Terhell® (firma Schumann). These compounds belong to the product group with the so-called white oils, e.g. Witco White Mineral Oil Parol® (trademark of Witco Polymers + Resins B.V., The Netherlands), vaselines as well as paraffinic waxes, e.g. Terhell® (company Schumann).

Det anvendte hydrokarbon er uavhengig av den metallorganiske for-bindelse og retter seg i første rekke mot de praktiske krav angående den senere anvendelse. The hydrocarbon used is independent of the organometallic compound and is aimed primarily at the practical requirements regarding the subsequent use.

Som kokatalysatorer anvendt ved fremgangsmåten ifølge oppfinnelsen anvendes forbindelser av grunnstoffene i grupper II A, III A og IV A i det periodiske system av grunnstoffene, fortrinnsvis aluminiumorganiske, bororganiske, sink-organiske eller magnesiumorganiske stoffer, alene eller i blandinger, eller som kom-plekssalt, eksempelvis PjR^Al, R^Vb og R<*>R<2>Mg, hvor <R1,> R<2> og R<3>, eventuelt uavhengig av hverandre, er eventuelt alkylrester som inneholder heteroatomer, f.eks.: tributylaluminium, triisobutylaluminium, triheksylaluminium, trioktylaluminium, dietylaluminiumklorid, etylaluminiumseskiklorid, etylaluminiumdiklorid, diisobutylal-uminiumklorid, isobutylaluminiumdiklorid, dietylaluminiumjodid, diisobutyl-aluminiumhydrid, dietylaluminiumetoksid, isoprenylaluminium, dimetylalu-miniumklorid, metylaluminoksan, metylaluminiumseskiklorid, tetraisobutyl-dialuminoksan, trimetylaluminium og/eller trietylaluminium, fortrinnsvis i blanding med minst én av de nevnte forbindelser dietylaluminiumhydrid, heksaisobutyltetra-aluminoksan, dietyl(dimetyletylsilanolato)-aluminium, dietyl-(etylmetylsilanolato)-aluminium, diisobutyl-(metylsilanolato)-aluminium, tridodecylaluminium, tripropylal-uminium, dipropylaluminiumklorid, dibutylmagnesium, butyletyl-magnesium, butyloktylmagnesium, butyloktylmagnesiumetoksid, etylaluminium-propoksyklorid, trietylbor, tris[pentafluorfenyl]boran og salter av disse. As cocatalysts used in the method according to the invention, compounds of the elements in groups II A, III A and IV A in the periodic table of the elements are used, preferably organo-aluminum, organo-boron, organo-zinc or organo-magnesium substances, alone or in mixtures, or as complex salts , for example PjR^Al, R^Vb and R<*>R<2>Mg, where <R1,> R<2> and R<3>, optionally independently of each other, are optionally alkyl residues containing heteroatoms, e.g. .: tributylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diisobutylaluminum chloride, isobutylaluminum dichloride, diethylaluminum iodide, diisobutylaluminum hydride, diethylaluminum ethoxide, isoprenylaluminum, dimethylaluminum chloride, methylaluminoxane, methylaluminum sesquichloride, tetraisobutyldialuminoxane, trimethylaluminum and/or triethylaluminum, preferably in admixture with at least one of the aforementioned compounds diethyl aluminum hydride, hexaisobutyltetraaluminoxane, diethyl(dimethylethylsilanolato)aluminum, diethyl-(ethylmethylsilanolato)aluminum, diisobutyl-(methylsilanolato)aluminum, tridodecyl aluminum, tripropylaluminium, dipropylaluminum chloride, dibutylmagnesium, butylethylmagnesium, butyloctylmagnesium, butyloctylmagnesium ethoxide, ethylaluminum propoxychloride , triethylboron, tris[pentafluorophenyl]borane and salts thereof.

Som katalysatorbestanddeler kan anvendes metallocenforbindelser beskrevet i EP-A-0 480 390, EP-A-0 413 326, EP-A-0 530 908, EP-A-0 344 887, EP-A-0 420 436, EP-A-0 416 815 og EP-A-0 520 732. Metallocene compounds described in EP-A-0 480 390, EP-A-0 413 326, EP-A-0 530 908, EP-A-0 344 887, EP-A-0 420 436, EP-A -0 416 815 and EP-A-0 520 732.

Dette er særlig forbindelser med den generelle formel These are particularly compounds with the general formula

hvor where

Cp = syklopentadienyl-, indenyl-, fluorenylrest, Cp = cyclopentadienyl, indenyl, fluorenyl residue,

R,R' = like eller ulike alkyl-, fosfin-, amin-, alkyleter- eller aryl-etergrupper med R,R' = same or different alkyl, phosphine, amine, alkyl ether or aryl ether groups with

0<a<4,0<a'<4, 0<a<4,0<a'<4,

Cp' = en av gruppene Cp, eller Cp' = one of the groups Cp, or

Cp' = -NR"- med R" = alkyl- eller arylrest med a=l, og Cp' = -NR"- with R" = alkyl or aryl residue with a=1, and

Q = en én- eller flerleddet bro Q = a single or multi-link bridge

mellom Cp og Cp', hvor R<1> og R2 er like eller ulike og er et hydrogenatom, en CMo-alkylgruppe eller en C6-io-arylgruppe, og Z betegner between Cp and Cp', where R<1> and R2 are the same or different and are a hydrogen atom, a C10-alkyl group or a C6-10-aryl group, and Z denotes

karbon, silisium eller germanium og b = 0, 1,2 eller 3, carbon, silicon or germanium and b = 0, 1,2 or 3,

M = et overgangsmetall fra grupper 3 til 6 (IUPAC Notation), særlig Zr eller M = a transition metal from groups 3 to 6 (IUPAC Notation), especially Zr or

Hf, hf

X = halogen, særlig Cl eller Br, og X = halogen, especially Cl or Br, and

n = oksidasjonstallet for M redusert med 2. n = oxidation number of M reduced by 2.

Som brosammenknyttede ligander - Q(CpRa)(Cp'R'a') i den generelle formel (1) - kan særlig følgende forbindelser anvendes: dimetylsilyl-bis( 1 -inden), dimetylsilyl-bis( 1 -syklopentadien), 2,2-propyl-bis( 1 -inden), 2,2-propyl-bis(trimetyl-syklopentadien), 2,2-propyl-bis(5-dimetylamino-1 -inden), 2,2-propyl-bis(6-dipropylamino-1 -inden), 2,2-propyl-bis(4,7-bis(dimetyl-amino-1 - inden), 2,2-propyl-bis(5-difenylfosfmo-1 -inden), 2,2-propyl-bis(4,5,6,7-tetrahydro-1 - inden), 2,2-propyl-bis(4-metyl-l-inden), 2,2-propyl-bis(5-metyl-l-inden), 2,2-propyl-bis(6-metyl-1 -inden), 2,2-propyl-bis(7-metyl-1 -inden), 2,2-propyl-bis(5-metoksy-1 - inden), 2,2-propyl-bis(4,7-dimetoksy-l-inden), 2,2-propyl-bis(2,3-dimetyl-l-inden), 2,2-propyl-bis(4,7-dimetyl-1 -inden), 2,2-propyl-bis( 1 -syklopentadien), 2,2-propyl-bis(l -inden), difenylmetyl-bis(l-inden), difenylmetyl-bis(l-syklopentadien), difenyl-metyl-bis(l-inden), difenylsilyl-bis( 1 -inden), difenylsilyl-bis( 1 -syklopentadien), difenylsilyl-bis( 1 -inden), etylen-bis( 1 -inden), etylen-bis(trimetylsyklopentadien), etylen-bis(5-dimetylamino-1 -inden), etylen-bis(6-dipropylamino-1 -inden), etylen-bis(4,7-bis(dimetylamino)-1 -inden), etylen-bis(5-difenylfosfino-1 -inden), etylen-bis(4,5,6,7-tetra-hydro-1 -inden), etylen-bis(6-metyl-1 -inden), etylen-bis(7-metyl-1 - inden), etylen-bis(5-metoksy-l -inden), etylen-bis(4,7-dimetoksy-l-inden), etylen-bis(2,3-dimetyl-1 -inden), etylen-bis(4,7-dimetyl-1 -inden), etylen-bis(9-fluoren), etylen-bis( 1 -syklopentadien), etylen-bis( 1 -inden). As bridged ligands - Q(CpRa)(Cp'R'a') in the general formula (1) - the following compounds can in particular be used: dimethylsilyl-bis(1-indene), dimethylsilyl-bis(1-cyclopentadiene), 2, 2-propyl-bis(1-indene), 2,2-propyl-bis(trimethylcyclopentadiene), 2,2-propyl-bis(5-dimethylamino-1-indene), 2,2-propyl-bis(6 -dipropylamino-1 -indene), 2,2-propyl-bis(4,7-bis(dimethylamino-1 - indene), 2,2-propyl-bis(5-diphenylphosphmo-1 -indene), 2, 2-propyl-bis(4,5,6,7-tetrahydro-1-indene), 2,2-propyl-bis(4-methyl-1-indene), 2,2-propyl-bis(5-methyl- 1-indene), 2,2-propyl-bis(6-methyl-1-indene), 2,2-propyl-bis(7-methyl-1-indene), 2,2-propyl-bis(5-methoxy -1 - indene), 2,2-propyl-bis(4,7-dimethoxy-1-indene), 2,2-propyl-bis(2,3-dimethyl-1-indene), 2,2-propyl- bis(4,7-dimethyl-1-indene), 2,2-propyl-bis(1-cyclopentadiene), 2,2-propyl-bis(l-indene), diphenylmethyl-bis(l-indene), diphenylmethyl- bis(l-cyclopentadiene), diphenyl-methyl-bis(l-indene), diphenylsilyl-bis(1-indene), diphenylsilyl-bis(1-cyclopentadiene), diphenylsilyl-bis( 1-indene), ethylene-bis(1-indene), ethylene-bis(trimethylcyclopentadiene), ethylene-bis(5-dimethylamino-1-indene), ethylene-bis(6-dipropylamino-1-indene), ethylene-bis (4,7-bis(dimethylamino)-1-indene), ethylene-bis(5-diphenylphosphino-1-indene), ethylene-bis(4,5,6,7-tetra-hydro-1-indene), ethylene -bis(6-methyl-1-indene), ethylene-bis(7-methyl-1-indene), ethylene-bis(5-methoxy-1-indene), ethylene-bis(4,7-dimethoxy-1- indene), ethylene-bis(2,3-dimethyl-1-indene), ethylene-bis(4,7-dimethyl-1-indene), ethylene-bis(9-fluorene), ethylene-bis(1-cyclopentadiene) , ethylene-bis( 1 -indene).

Som ikke brosammenknyttede ligander (formel (1) med b = 0) kan fortrinnsvis følgende forbindelser anvendes: syklopentadien, fluoren, inden samt deres mono- eller fler-alkylerte derivater, hvor alkylresten kan inneholde 1-10 C-atomer. As non-bridged ligands (formula (1) with b = 0), the following compounds can preferably be used: cyclopentadiene, fluorene, indene and their mono- or multi-alkylated derivatives, where the alkyl residue can contain 1-10 C atoms.

I henhold til oppfinnelsen foretrekkes According to the invention is preferred

[bis(syklopentadienyl)]zirkoniumdiklorid, [bis(cyclopentadienyl)]zirconium dichloride,

[bis(metylsyklopentadienyl)]zirkoniumdiklorid, [bis(methylcyclopentadienyl)]zirconium dichloride,

[bis(n-propylsyklopentadienyl)]zirkoniumdiklorid, [bis(n-propylcyclopentadienyl)]zirconium dichloride,

[bis(iso-butylsyklopentadienyl)]zirkoniumdiklorid, [bis(iso-butylcyclopentadienyl)]zirconium dichloride,

[bis(syklopentylsyklopentadienyl)]zirkoniumdiklorid, [bis(cyclopentylcyclopentadienyl)]zirconium dichloride,

[bis(benzylsyklopentadienyl)]zirkoniumdiklorid, [bis(benzylcyclopentadienyl)]zirconium dichloride,

[bis(oktadecylsyklopentadienyl)]zirkoniumdiklorid, [bis(octadecylcyclopentadienyl)]zirconium dichloride,

[bis(n-butylsyklopentadienyl)]titandiklorid, [bis(n-butylcyclopentadienyl)]titanium dichloride,

[bis(n-butylsyklopentadienyl)]zirkoniumdiklorid, [bis(n-butylcyclopentadienyl)]zirconium dichloride,

[bis(n-butylsyklopentadienyl)]hafhiumdiklorid, [bis(n-butylcyclopentadienyl)]halium dichloride,

[bis(indenyl)]zirkoniumdiklorid, [bis(indenyl)]zirconium dichloride,

[bis(indenyl)]zirkoniumdimetyl, [bis(indenyl)]zirconium dimethyl,

[bis(tetrahydro-indenyl)]zirkoniumdiklorid, [bis(tetrahydro-indenyl)]zirconium dichloride,

[ 1,2-etylen-bis(indenyl)]zirkoniumdiklorid, [ 1,2-ethylene-bis(indenyl)]zirconium dichloride,

[ 1,2-etylen-bis(indenyl)]hamiumdiklorid, [ 1,2-ethylene-bis(indenyl)]hamium dichloride,

[ 1,2-etylen-bis(tetrahydroindenyl)]zirkoniumdiklorid, [ 1,2-ethylene-bis(tetrahydroindenyl)]zirconium dichloride,

[dimetylsilyl-bis( 1 H-inden-1 -yl)]zirkoniumdiklorid, [Dimethylsilyl-bis(1H-inden-1-yl)]zirconium dichloride,

[dimetylsilyl-bis( 1 H-inden-1 -yl)]hafhiumdiklorid. [Dimethylsilyl-bis(1H-inden-1-yl)]halium dichloride.

Som uorganiske bærermaterialer anvendt ved fremgangsmåten ifølge oppfinnelsen anvendes porøse oksider av ett eller flere av grunnstoffene i grupper II A, III A eller IV A i det periodiske system av grunnstoffene, som Zr02, Ti02, B203, CaO, ZnO, BaO, for-trinnsvis aluminiumsilikater (zeolitt) A1203 og MgO, og særlig Si02 (DE 44 09 249). As inorganic carrier materials used in the method according to the invention, porous oxides of one or more of the elements in groups II A, III A or IV A in the periodic table of the elements are used, such as ZrO2, TiO2, B2O3, CaO, ZnO, BaO, preferably aluminum silicates (zeolite) A1203 and MgO, and especially SiO2 (DE 44 09 249).

Som organiske bærermaterialer anvendt ved fremgangsmåten ifølge oppfinnelsen kommer i betraktning eksempelvis porøse, delvis polymere forbindelser som polyetylen, poly-propylen, polystyren og sukkerderivater (stivelse, amylose, syklodekstrin). As organic carrier materials used in the method according to the invention, for example porous, partially polymeric compounds such as polyethylene, polypropylene, polystyrene and sugar derivatives (starch, amylose, cyclodextrin) come into consideration.

Til fremstilling av formuleringen ifølge oppfinnelsen, er det i utgangs-punktet forskjellige muligheter, f.eks.: Ml) fremstilling av de metallocenbaserte katalysatorsystemer i dispersjons- /suspensjonsmediet eller løsningsmiddel (parafin) ifølge oppfinnelsen M2) oppløse, suspendere eller dispergere isolerte metallocenbaserte kata lysatorbestanddeler i dispersjohs-/suspensjonsmediet eller løsningsmiddel For the preparation of the formulation according to the invention, there are initially different possibilities, e.g.: M1) preparation of the metallocene-based catalyst systems in dispersion /the suspension medium or solvent (paraffin) according to the invention M2) dissolve, suspend or disperse isolated metallocene-based cata lysator components in the dispersion/suspension medium or solvent

(parafin) ifølge oppfinnelsen (kerosene) according to the invention

M3) blande ikke-aromatiske løsnings- eller dispergeirngsmidler med løsninger av de metallocenbaserte katalysatorsystemer og etterfølgende fraskillelse av løsningsmidlet ved destillasjon slik at løsningen, suspensjonen eller dispersjonen ifølge oppfinnelsen blir tilbake. M3) mixing non-aromatic solvents or dispersants with solutions of the metallocene-based catalyst systems and subsequent separation of the solvent by distillation so that the solution, suspension or dispersion according to the invention remains.

For fremstillingen av formuleringen kan katalysatorbestanddelene anvendes i ren form, så vel som i en båret form på et egnet bærermateriale. Blir katalysatorbestanddelene anvendt i ren form, kan bærermaterialet samt hjelpestoffer, additiver og tilsetningsstoffer tilsettes ved de mulige fremgangsmåter M1-M3 på ønsket tidspunkt. For the preparation of the formulation, the catalyst components can be used in pure form, as well as in a supported form on a suitable carrier material. If the catalyst components are used in pure form, the carrier material as well as auxiliaries, additives and additives can be added by the possible methods M1-M3 at the desired time.

Følgende eksempler belyser syntesen av metallocen-katalysatorsystemet ifølge kravene, samt prøvingen av disse ved polymerisasjon. The following examples illustrate the synthesis of the metallocene catalyst system according to the requirements, as well as the testing of these by polymerization.

Eksempel 1 Example 1

Metylaluminoksan i Witco Parol® (varemerke tilhørende Witco, Nederland). Methylaluminoxane in Witco Parol® (trademark of Witco, The Netherlands).

I en 1 1 kolbe utstyrt med termometer og vegg-nærgående rører ble det under nitrogen som beskyttende gassatmosfære fylt 402 g toluenisk MAO-løsning (Al tot. 13,2%; Al som TMA 3,19%) og 219 g Witco Parol®. Kolbeinnholdet ble var-met til maksimalt 32 °C i et oljebad og vakuum ble påført. Det avdestillerte toluen ble kondensert i en frysefelle. Med avtagende tolueninnhold i suspensjonen kunne vakuumet forsterkes. Toluenresten ble avdestillert i løpet av 3 timer ved < 1 mbar. 402 g of toluene MAO solution (Al tot. 13.2%; Al as TMA 3.19%) and 219 g of Witco Parol® were filled into a 1 L flask equipped with a thermometer and wall-close stirrer under nitrogen as a protective gas atmosphere . The flask contents were heated to a maximum of 32°C in an oil bath and vacuum was applied. The distilled toluene was condensed in a freezer trap. With decreasing toluene content in the suspension, the vacuum could be strengthened. The toluene residue was distilled off within 3 hours at < 1 mbar.

Det ble oppnådd en viskøs og melkeaktig, uklar suspensjon. A viscous and milky, cloudy suspension was obtained.

Suspensjonen var hverken pyrofor eller selvantennelig, og med vann skjedde en lett gassutvikling. The suspension was neither pyrophoric nor self-igniting, and with water a slight evolution of gas occurred.

Al totalt: 13,4% Al total: 13.4%

Al som TMA: 1,5% Al as TMA: 1.5%

Eksempel 2 Example 2

Metylaluminoksan i Witco Petroleum Jelly Snowwhite MD® (vaselin, Witco, Nederland). Methylaluminoxane in Witco Petroleum Jelly Snowwhite MD® (Vaseline, Witco, The Netherlands).

Under nitrogen som beskyttende gassatmosfære ble det i et 500 ml sleng-rør utstyrt med rører, fylt 130,1 g toluenisk MAO-løsning (Al tot. 13,2%; Al som TMA 3,19%) og 85,1 g Witco Petroleum Jelly Snowwhite MD®. Etter oppvarming til 55-60 °C i et oljebad ble blandingen homogen. Toluen ble avdestillert i vakuum og kondensert i en frysefelle. Vakuumet ble kontinuerlig økt til under 1 mbar og bad-temperaturen ble holdt på maksimalt 65 °C. Etter fullstendig fjerning av toluenet ble det oppnådd en fargeløs, homogen, voksaktig masse som var flytende fra ca. 60 °C. Under nitrogen as a protective gas atmosphere, 130.1 g of toluene MAO solution (Al tot. 13.2%; Al as TMA 3.19%) and 85.1 g of Witco were filled into a 500 ml shot tube equipped with a stirrer Petroleum Jelly Snowwhite MD®. After heating to 55-60 °C in an oil bath, the mixture became homogeneous. The toluene was distilled off in vacuum and condensed in a freezer trap. The vacuum was continuously increased to below 1 mbar and the bath temperature was maintained at a maximum of 65 °C. After complete removal of the toluene, a colorless, homogeneous, waxy mass was obtained which was liquid from ca. 60 °C.

Suspensjonen var verken pyrofor eller selvantennelig, og med vann skjedde en lett gassutvikling. The suspension was neither pyrophoric nor self-igniting, and with water a slight evolution of gas occurred.

Al totalt: 12,0% Al total: 12.0%

Al som TMA: 1,9% Al as TMA: 1.9%

Eksempel 3 Example 3

Metylaluminoksan i parafmisk voks Methylaluminoxane in paraffinic wax

33,5 g metylaluminoksan (faststoff) og 16,8 g parafin (Terhell 5605®, firma Schumann) ble under nitrogen oppvarmet i en rundkolbe med vegg-nærgående rører. Ved en bad-temperatur på 65-70 °C ble det oppnådd en uklar smelte. Smeiten 33.5 g of methylaluminoxane (solid) and 16.8 g of paraffin (Terhell 5605®, company Schumann) were heated under nitrogen in a round bottom flask with wall-close stirrers. At a bath temperature of 65-70 °C, a cloudy melt was obtained. The forge

fikk stivne under omrøring og ble deretter løsnet fra kolbeveggen. Etter avkjøling under ytre kjøling med tørris kunne faststoffet oppdeles i et finkornet, hellbart, fast stoff. was allowed to solidify under stirring and was then detached from the flask wall. After cooling under external cooling with dry ice, the solid could be divided into a fine-grained, pourable solid.

Pulveret som inneholdt ca. 66% MAO, var ikke pyrofort eller selvantennelig. The powder which contained approx. 66% MAO, was not pyrophoric or self-igniting.

Al totalt: 26,1% Al total: 26.1%

Al som TMA: 3,5% Al as TMA: 3.5%

Eksempel 4 Example 4

Metylaluminoksan i Witco Parol® Methylaluminoxane in Witco Parol®

26,3 g av et finpulverisert MAO-faststoff (Al totalt 39,2%) ble under argon som beskyttelsesgassatmosfære rørt sammen med 7,3 g hvitolje (Witco Parol®). Det ble oppnådd en fargeløs, voksaktig masse. 26.3 g of a finely powdered MAO solid (Al total 39.2%) was stirred under argon as protective gas atmosphere with 7.3 g of white oil (Witco Parol®). A colorless, waxy mass was obtained.

Pulveret som inneholdt ca. 78% MAO var ikke pyrofort eller selvantennelig og viste ved kontakt med vann kun beskjeden gassutvikling. Ved anbringelse på fuktig filtrerpapir kunne det observeres forkulling uten selvantennelse. The powder which contained approx. 78% MAO was not pyrophoric or self-igniting and showed only moderate gas evolution when in contact with water. When placed on moist filter paper, charring without self-ignition could be observed.

Al totalt: 30,1% Al total: 30.1%

Al som TMA: 3,6% Al as TMA: 3.6%

Eksempel 5 Example 5

Dispersjon av metylaluminoksan i vaselin Dispersion of methylaluminoxane in petrolatum

I et 500 ml sleng-rør utstyrt med rører ble det under nitrogen som beskyttelsesgassatmosfære fylt 120 g toluenisk MAO-løsning (Al tot. 13,2%; Al som TMA 3,19%) og 78,5 g vaselin hvit DAB 10, VARH AB (firma Schumann). Etter oppvarming til 55-60 °C i et oljebad var blandingen homogen. Toluenet ble avdestillert i vakuum og kondensert i en frysefelle. Vakuumet ble kontinuerlig økt til under 1 mbar og bad-temperaturen ble holdt på maksimalt 65 °C. Etter fullstendig fjerning av toluenet ble det oppnådd en fargeløs, homogen dispersjon som var flytende fra ca. 60 °C. In a 500 ml shot tube equipped with a stirrer, 120 g of toluene MAO solution (Al tot. 13.2%; Al as TMA 3.19%) and 78.5 g of vaseline white DAB 10 were filled under nitrogen as a protective gas atmosphere. VARH AB (company Schumann). After heating to 55-60 °C in an oil bath, the mixture was homogeneous. The toluene was distilled off in vacuum and condensed in a freezer trap. The vacuum was continuously increased to below 1 mbar and the bath temperature was maintained at a maximum of 65 °C. After complete removal of the toluene, a colourless, homogeneous dispersion was obtained which was liquid from approx. 60 °C.

Suspensjonen var hverken pyrofor eller selvantennelig, og med vann skjedde en lett gassutvikling. The suspension was neither pyrophoric nor self-igniting, and with water a slight evolution of gas occurred.

Al totalt: 12,3% Al total: 12.3%

Al som TMA: 1,6% Al as TMA: 1.6%

Eksempel 6 Example 6

Suspensjon av metylaluminoksan og metallocen i hvitolje Suspension of methylaluminoxane and metallocene in white oil

I et røreapparat ble det under argon som beskyttelsesgassatmosfære fylt 60,5 g av en toluenisk MAO-løsning (Al-innhold 13,2%; Al som TMA 3,19%). Til denne løsning ble det tilsatt 2,0 g EURECEN® 5036 (varemerke tilhørende Witco GmbH, Bergkamen - l,2-etylen-bis-(l-indenyl)zirkoniumdiklorid) og omrørt i 30 minutter. Til denne mørkebrune løsning ble det tilsatt 39 g hvitolje Witco Parol® og oppvarmet til 40 °C. Toluenet ble avdestillert i vakuum på inntil 0,1 mbar og kondensert i en frysefelle. In a stirrer, 60.5 g of a toluene MAO solution (Al content 13.2%; Al as TMA 3.19%) was filled under argon as a protective gas atmosphere. To this solution was added 2.0 g of EURECEN® 5036 (trademark of Witco GmbH, Bergkamen - 1,2-ethylene-bis-(1-indenyl)zirconium dichloride) and stirred for 30 minutes. 39 g of white oil Witco Parol® was added to this dark brown solution and heated to 40 °C. The toluene was distilled off in a vacuum of up to 0.1 mbar and condensed in a freezer trap.

Det ble oppnådd 56,6 g av en brun, voksaktig katalysatormasse. 56.6 g of a brown, waxy catalyst mass were obtained.

Suspensjonen var verken pyrofor eller selvantennelig, og med vann skjedde en lett gassutvikling. The suspension was neither pyrophoric nor self-igniting, and with water a slight evolution of gas occurred.

Al totalt: 14,11% Al total: 14.11%

Zr: 0,77% Zr: 0.77%

Eksempel 7 Example 7

Gjennomføring som i eksempel 6. Før anvendelse ved polymerisasjon ble blandingen underkastet en 24 timers aldringsprosess i toluen. Implementation as in example 6. Before use in polymerization, the mixture was subjected to a 24-hour aging process in toluene.

Eksempel 8 Example 8

Gjennomføring som i eksempel 6. Før anvendelse ved polymerisasjon ble blandingen underkastet en 48 timers aldringsprosess i toluen. Implementation as in example 6. Before use in polymerization, the mixture was subjected to a 48-hour aging process in toluene.

Eksempel 9 Example 9

Suspensjon av båret MAO/metallocen/silika-katalysatorsystem i Witco Parol® Suspension of supported MAO/metallocene/silica catalyst system in Witco Parol®

Under argon som beskyttelsesgassatmosfære ble det i et rørekar rørt sammen 23 g båret katalysatorsystem (TA 02954, forskningsprodukt fra firma Witco GmbH; Al-innhold 23,9%, Zr-innhold 1,1%) og 53,7 g hvitolje Witco Parol®. Det ble oppnådd en mørkebrun suspensjon. Under argon as a protective gas atmosphere, 23 g of supported catalyst system (TA 02954, research product from the company Witco GmbH; Al content 23.9%, Zr content 1.1%) and 53.7 g white oil Witco Parol® were mixed in a stirring vessel. . A dark brown suspension was obtained.

Suspensjonen var verken pyrofor eller selvantennelig, og med vann skjedde en lett gassutvikling. The suspension was neither pyrophoric nor self-igniting, and with water a slight evolution of gas occurred.

Al totalt: 7,17% Al total: 7.17%

Zr: 0,33% Zr: 0.33%

Eksempel 10 Example 10

Metallocen/metylaluminoksan/silika-suspensjon i hvitolje Metallocene/methylaluminoxane/silica suspension in white oil

I en apparatur egnet for arbeidet, utstyrt med rører, termometer, tilbake-løpskjøler og doseringsanordning for fast stoff, ble det under argonbeskyttelsesgass-atmosfære fylt 203,5 g av en 10%-ig metylaluminoksan-løsning i toluen (Al-innhold 5,0%). 203.5 g of a 10% methylaluminoxane solution in toluene (Al content 5, 0%).

18,8 g silika (SYLOPOL 2104®, firma Grace, med 5% vanninnhold) ble skylt med 1,5 g destillert vann i ca. 10 min, fylt i doseringsanordningen for fast stoff og langsomt tilsatt til den omrørte metylaluminoksan-løsning. Under gassutvikling 18.8 g of silica (SYLOPOL 2104®, company Grace, with 5% water content) was rinsed with 1.5 g of distilled water for approx. 10 min, filled in the dosing device for solids and slowly added to the stirred methylaluminoxane solution. During gas development

(metangass) steg temperaturen derved til 65 °C. Etter endt tilsetning ble omrøringen fortsatt inntil romtemperatur var nådd, og det ble deretter tilsatt 2,44 g EURECEN® 5036 (varemerke tilhørende Witco GmbH, Bergkamen - l,2-etylen-bis-(l-indenyl)-zirkoniumdiklorid). Det ble nå omrørt i 1,5 h, hvorved kolbeinnholdet ble farget rødbrunt. Deretter ble 121,2 g hvitolje Witco Parol® tilsatt, og det ble oppnådd en ca. 25%-ig suspensjon. (methane gas) the temperature thereby rose to 65 °C. After the addition was finished, stirring was continued until room temperature was reached, and 2.44 g EURECEN® 5036 (trademark of Witco GmbH, Bergkamen - 1,2-ethylene-bis-(1-indenyl)-zirconium dichloride) was then added. It was now stirred for 1.5 h, whereby the contents of the flask were colored reddish brown. Then 121.2 g of white oil Witco Parol® was added, and an approx. 25% suspension.

Nå ble toluen fullstendig avdestillert ved maksimalt 45 °C og et vakuum på inntil 0,1 mbar i 6 h. Det ble oppnådd en rødbrun, høyviskøs suspensjon. Now the toluene was completely distilled off at a maximum of 45 °C and a vacuum of up to 0.1 mbar for 6 h. A red-brown, highly viscous suspension was obtained.

Suspensjonen var hverken pyrofor eller selvantennelig, og med vann skjedde en lett gassutvikling. The suspension was neither pyrophoric nor self-igniting, and with water a slight evolution of gas occurred.

Al totalt: 5,25% Al total: 5.25%

Zr: 0,27% Zr: 0.27%

Eksempel 11 Example 11

Metallocen/metylaluminoksan/silika-suspensjon i hvitolje Metallocene/methylaluminoxane/silica suspension in white oil

Under nitrogen-beskyttelsesgassatmosfære ble det til 52,4 g metylaluminoksan båret på silika (SYLOPOL 2104®) med et aluminiuminnhold på 23,8% tilsatt 3,14 g EURECEN® 5036. Til denne faststoffblanding ble det tilsatt 111,1 g hvitolje Witco Parol® og omrørt i et tidsrom på 2 h. Det ble oppnådd en vis-køs, karry-farget, 33%-ig suspensjon. Under a nitrogen protective gas atmosphere, to 52.4 g of methylaluminoxane supported on silica (SYLOPOL 2104®) with an aluminum content of 23.8% was added 3.14 g of EURECEN® 5036. To this solid mixture was added 111.1 g of white oil Witco Parol ® and stirred for a period of 2 h. A clear, curry-coloured, 33% suspension was obtained.

Suspensjonen var verken pyrofor eller selvantennelig, og med vann skjedde en lett gassutvikling. The suspension was neither pyrophoric nor self-igniting, and with water a slight evolution of gas occurred.

Al totalt: 7,48% Al total: 7.48%

Zr: 0,38% Zr: 0.38%

Sammenligningseksempler 12 og 13 Comparative examples 12 and 13

I sammenligningseksemplene 12 og 13 ble det anvendt en MAO-løsning som er vanlig i handelen og som selges av Witco GmbH, Bergkamen under vare-merket EURECEN® Al 5100/1 OT og sammen med de andre katalysatorbestanddeler dosert direkte inn i polymerisasjonsreaktoren. Konsentrasjon av det aktive katalysator-materiale er gitt i tabeller 1 og 2. In comparative examples 12 and 13, an MAO solution which is common in the trade and which is sold by Witco GmbH, Bergkamen under the trade mark EURECEN® Al 5100/1 OT was used and, together with the other catalyst components, was dosed directly into the polymerization reactor. Concentration of the active catalyst material is given in tables 1 and 2.

Polymerisasjonsresultater: Polymerization results:

Claims (8)

1. Fremgangsmåte for fremstilling av homogene blandinger bestående i det vesentlige av minst ett metallocen, minst en kokatalysator og dispersjons/suspensjons-medier eller løsningsmidler, hvor den homogene blanding er fremstilt ved å A) fremstille de metallocen-baserte katalysatorsystemer direkte i dispersjons /suspensjons-mediet eller løsningsmidlene, eller ved å B) oppløse, suspendere eller dispergere de isolerte metallocen-baserte katalysatorkomponenter i dispersjons/suspensjons-mediet eller løsningsmidlet, eller ved å C) blande oppløsningen av den metallocenbaserte katalysatorkomponent, fremstilt i henhold til kjente metoder, i et lavtkokende løsningsmiddel sammen med dispersjons/suspensjons-mediet eller løsningsmidlet i et første trinn, og deretter fjerne det lavtkokende løsningsmiddel ved destillasjon, eventuelt med anvendelse av D) vanlige organiske eller uorganiske bærermaterialer, hjelpestoffer og/eller additiver, samt tilsetningsstoffer, karakterisert ved at det som dispersjons/suspensjons-medium eller løsnings-middel anvendes naturlige eller syntetiske, kommersielt tilgjengelige, langkjedede, eventuelt forgrenede, flytende eller faste ikke-aromatiske hydrokarboner med kokepunkt over 150 °C og viskositeter på minst 1 Pa.s ved 25 °C.1. Method for producing homogeneous mixtures consisting essentially of at least one metallocene, at least one cocatalyst and dispersion/suspension media or solvents, where the homogeneous mixture is prepared by A) producing the metallocene-based catalyst systems directly in dispersion/suspension -the medium or the solvents, or by B) dissolving, suspending or dispersing the isolated metallocene-based catalyst components in the dispersion/suspension medium or the solvent, or by C) mixing the solution of the metallocene-based catalyst component, prepared according to known methods, in a low-boiling solvent together with the dispersion/suspension medium or the solvent in a first step, and then remove the low-boiling solvent by distillation, possibly using D) common organic or inorganic carrier materials, auxiliaries and/or additives, as well as additives, characterized in that natural or synthetic, commercially available, long-chain, optionally branched, liquid or solid non-aromatic hydrocarbons with a boiling point above 150 °C and viscosities of at least 1 Pa.s at 25 °C. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det som kokatalysatorer anvendes aluminiumorganiske forbindelser.2. Method according to claim 1, characterized in that organic aluminum compounds are used as cocatalysts. 3. Fremgangsmåte ifølge krav 1 og 2, karakterisert ved at det som kokatalysatorer anvendes aluminoksaner.3. Method according to claims 1 and 2, characterized in that aluminoxanes are used as cocatalysts. 4. Fremgangsmåte ifølge krav 1, karakterisert ved at det som kokatalysatorer anvendes bororganiske forbindelser.4. Method according to claim 1, characterized in that organic boron compounds are used as cocatalysts. 5. Fremgangsmåte ifølge krav 2 og 3, karakterisert ved at det som kokatalysatorer anvendes metylaluminoksaner.5. Method according to claims 2 and 3, characterized in that methylaluminoxanes are used as cocatalysts. 6. Fremgangsmåte ifølge krav 1, karakterisert ved at det som katalysatorbestanddeler anvendes ett eller flere metallocener med den generelle formel (1) hvor Cp er et syklopentadienyl-, indenyl-, fluorenylradikal, R,R' er like eller ulike og er alkyl-, fosfin-, amin-, alkyleter- eller aryletergrupper med 0<a<4, 0<a'<4, Cp' er en av gruppene Cp, eller Cp' er -NR"- hvor R" er et alkyl- eller arylradikal med a=l, og Q er en én- eller flerleddet bro mellom Cp og Cp', hvor R<1> og R2 er like eller ulike og er hydrogenatom, en Ci.io-alkylgruppe eller en C6-io-arylgruppe, Z er karbon, silisium eller germanium, og b er 0, 1,2 eller 3, M er et overgangsmetall fra grupper 3 til 6 (IUPAC Notation), særlig Zr eller Hf, X er halogen, særlig Cl eller Br, og n er oksidasjonstallet for M redusert med 2.6. Method according to claim 1, characterized in that one or more metallocenes with the general formula (1) are used as catalyst components where Cp is a cyclopentadienyl, indenyl, fluorenyl radical, R,R' are the same or different and are alkyl, phosphine, amine, alkyl ether or aryl ether groups with 0<a<4, 0<a'<4, Cp' is one of the groups Cp, or Cp' is -NR"- where R" is an alkyl or aryl radical with a=1, and Q is a single or multi-link bridge between Cp and Cp', where R<1> and R2 are the same or different and are a hydrogen atom, a C1-10 alkyl group or a C6-10 aryl group, Z is carbon, silicon or germanium, and b is 0, 1, 2 or 3, M is a transition metal from groups 3 to 6 (IUPAC Notation), especially Zr or hf X is halogen, especially Cl or Br, and n is the oxidation number of M reduced by 2. 7. Fremgangsmåte ifølge krav 1 og 6, karakterisert ved at det som katalysatorbestanddel anvendes ett eller flere metallocener valgt blant [bis(syklopentadienyl)]zirkoniumdiklorid, [bis(metylsyklopentadienyl)]zirkoniumdiklorid, [bis(n-propylsyklopentadienyl)]zirkoniumdiklorid, [bis(iso-butylsyklopentadienyl)]zirkoniumdiklorid, [bis(syklopentylsyklopentadienyl)]zirkoniumdiklorid, [bis(benzylsyklopentadienyl)]zirkoniumdiklorid, [bis(oktadecylsyklopentadienyl)]zirkoniumdiklorid, [bis(n-butylsyklopentadienyl)]titandiklorid, [bis(n-butylsyklopentadienyl)]zirkoniumdiklorid, [bis(n-butylsyklopentadienyl)]hafhiumdiklorid, [bis(indenyl)]zirkoniumdiklorid, [bis(indenyl)]zirkoniumdimetyl, [bis(tetrahydro-indenyl)]zirkoniumdiklorid, [ 1,2-etylen-bis(indenyl)]zirkoniumdiklorid, [ 1,2-etylen-bis(indenyl)]hafniumdiklorid, [ 1,2-etylen-bis(tetrahydroindenyl)]zirkoniumdiklorid, [dimetylsilyl-bis( 1 H-inden-1 -yl)]zirkoniumdiklorid, [dimetylsilyl-bis( 1 H-inden-1 -yl)]hafniumdiklorid.7. Method according to claims 1 and 6, characterized in that one or more metallocenes selected from among are used as catalyst component [bis(cyclopentadienyl)]zirconium dichloride, [bis(methylcyclopentadienyl)]zirconium dichloride, [bis(n-propylcyclopentadienyl)]zirconium dichloride, [bis(iso-butylcyclopentadienyl)]zirconium dichloride, [bis(cyclopentylcyclopentadienyl)]zirconium dichloride, [bis(benzylcyclopentadienyl)]zirconium dichloride Zirconium dichloride, [bis(octadecylcyclopentadienyl)]zirconium dichloride, [bis(n-butylcyclopentadienyl)]titanium dichloride, [bis(n-butylcyclopentadienyl)]zirconium dichloride, [bis(n-butylcyclopentadienyl)]halium dichloride, [bis(indenyl)]zirconium dichloride, [bis (indenyl)]zirconium dimethyl, [bis(tetrahydro-indenyl)]zirconium dichloride, [ 1,2-ethylene-bis(indenyl)]zirconium dichloride, [ 1,2-ethylene-bis(indenyl)]hafnium dichloride, [ 1,2-ethylene -bis(tetrahydroindenyl)]zirconium dichloride, [dimethylsilyl-bis(1H-inden-1-yl)]zirconium dichloride, [dimethylsilyl-bis(1H-inden-1-yl)]hafnium dichloride. 8. Formulering, karakterisert ved at den er fremstilt ved en fremgangsmåte ifølge krav 1.8. Formulation, characterized in that it is produced by a method according to claim 1.
NO19971254A 1996-03-19 1997-03-18 Process for Preparation of Highly Active, Stable Metallocene Catalyst Systems and Formulation Prepared by the Process NO312072B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96104295A EP0798315B1 (en) 1996-03-19 1996-03-19 Process for preparing highly active, stable metallocene catalyst systems, and catalyst compositions prepared according therewith

Publications (3)

Publication Number Publication Date
NO971254D0 NO971254D0 (en) 1997-03-18
NO971254L NO971254L (en) 1997-09-22
NO312072B1 true NO312072B1 (en) 2002-03-11

Family

ID=8222573

Family Applications (1)

Application Number Title Priority Date Filing Date
NO19971254A NO312072B1 (en) 1996-03-19 1997-03-18 Process for Preparation of Highly Active, Stable Metallocene Catalyst Systems and Formulation Prepared by the Process

Country Status (8)

Country Link
EP (1) EP0798315B1 (en)
JP (1) JP2941731B2 (en)
KR (1) KR100512507B1 (en)
AT (1) ATE159734T1 (en)
CA (1) CA2200243A1 (en)
DE (1) DE59600039D1 (en)
ES (1) ES2111407T3 (en)
NO (1) NO312072B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756265A1 (en) * 1997-12-18 1999-06-24 Targor Gmbh Polymerization process with a decomposition-insensitive metallocene catalyst
DE19826743A1 (en) * 1998-06-16 1999-12-23 Bayer Ag Process for the preparation of supported polymerization catalyst systems and use thereof for the homo- and copolymerization of unsaturated monomers
KR100304048B1 (en) * 1999-07-02 2001-11-14 유현식 Metallocene Catalysts for Polymerization of Styrene and Method of Polymerization Using the Same
BR0116320A (en) 2000-12-19 2004-01-13 Sunallomer Ltd Olefin polymerization catalyst, olefin polymerization catalyst components and process for their storage, olefin polymer production process
US6703458B2 (en) 2000-12-22 2004-03-09 Basell Polyolefine Gmbh Catalyst components for the polymerization of olefins
US6777367B2 (en) * 2001-02-13 2004-08-17 Fina Technology, Inc. Method for the preparation of metallocene catalysts
US6777366B2 (en) * 2001-02-13 2004-08-17 Fina Technology, Inc. Method for the preparation of metallocene catalysts
BRPI0508155A (en) * 2004-03-12 2007-08-07 Basell Polyolefine Gmbh catalytic system for olefin polymerization
CA2749835C (en) 2011-08-23 2018-08-21 Nova Chemicals Corporation Feeding highly active phosphinimine catalysts to a gas phase reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026797A (en) * 1987-10-22 1991-06-25 Mitsubishi Petrochemical Co., Ltd. Process for producing ethylene copolymers
ATE105844T1 (en) * 1989-09-08 1994-06-15 Fina Research CATALYST AND PROCESS FOR POLYMERIZATION OF OLEFINS.
TW337527B (en) * 1992-01-24 1998-08-01 Hoechst Ag Catalyst for the polymerization of olefins, process for the preparation thereof, and use thereof
US5393851A (en) * 1992-05-26 1995-02-28 Fina Technology, Inc. Process for using metallocene catalyst in a continuous reactor system

Also Published As

Publication number Publication date
DE59600039D1 (en) 1997-12-11
NO971254L (en) 1997-09-22
EP0798315A1 (en) 1997-10-01
ES2111407T3 (en) 1998-03-01
EP0798315B1 (en) 1997-10-29
JP2941731B2 (en) 1999-08-30
JPH09328508A (en) 1997-12-22
NO971254D0 (en) 1997-03-18
KR970065548A (en) 1997-10-13
ATE159734T1 (en) 1997-11-15
KR100512507B1 (en) 2006-02-08
CA2200243A1 (en) 1997-09-19

Similar Documents

Publication Publication Date Title
CA2001941C (en) Method for preparing polyethylene wax by gas phase polymerization
CA2279242C (en) New homogeneous olefin polymerization catalyst composition
CA2545604C (en) Catalyst compositions for producing polyolefins in the absence of cocatalysts
RU2382793C2 (en) Dual metallocene catalyst for producing film resins with good machine direction (md) elmendorf tear strength
US5780659A (en) Substituted indenyl unbridged metallocenes
TW505664B (en) Catalyst composition and its use in a process for producing a polymer in which the isotactic microstructure exceeds the atactic microstructure
JPH03501869A (en) Supported metallocene-alumoxane catalysts for high pressure polymerization of olefins and methods of making and using said catalysts
JPH03100004A (en) Preparation of polyolefin wax
CA2347732A1 (en) Compound comprising a transition metal cation linked to an aluminoxate anion and its use as catalyst components
JPH02158611A (en) Manufacture of ethylene/propylene
JPH04264110A (en) Polymerization of polyolefin
NO312072B1 (en) Process for Preparation of Highly Active, Stable Metallocene Catalyst Systems and Formulation Prepared by the Process
US5985784A (en) Catalyst and process for the polymerization and copolymerization of olefins
AU735109B2 (en) Preparation of supported catalyst using trialkylaluminum-metallocene contact products
CA2253576A1 (en) Process for the polymerisation of alpha-olefins
US6537943B1 (en) Catalyst system composed of metallocenes comprising substituents containing fluorine
JP2501865B2 (en) Hydrocarbon solution of aluminoxane compound
JP2004517161A (en) Stable catalyst and cocatalyst compositions formed from hydroxyaluminoxane and uses thereof
Kaminsky et al. Comparison of olefin polymerization processes with metallocene catalysts
JP3845532B2 (en) Olefin polymerization catalyst and process for producing olefin polymer using the same
JP3594205B2 (en) Olefin polymerization catalyst
US20100137532A1 (en) Catalyst to polymerize olefins and conjugated dienes in heterogeneous phase, process for obtaining and using the same
JPH05170822A (en) Solid catalyst for polymerization of olefin and polymerization of olefin
JP2010138257A (en) Terminating method of polymerization reaction, and method for manufacturing polyolefin
JP2003261610A (en) Method for producing olefin polymer by using olefin polymerization catalyst

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees