NO311453B1 - Method and device for energy development - Google Patents

Method and device for energy development Download PDF

Info

Publication number
NO311453B1
NO311453B1 NO19983082A NO983082A NO311453B1 NO 311453 B1 NO311453 B1 NO 311453B1 NO 19983082 A NO19983082 A NO 19983082A NO 983082 A NO983082 A NO 983082A NO 311453 B1 NO311453 B1 NO 311453B1
Authority
NO
Norway
Prior art keywords
carbon dioxide
stream
rich
mol
exhaust gas
Prior art date
Application number
NO19983082A
Other languages
Norwegian (no)
Other versions
NO983082D0 (en
NO983082L (en
Inventor
Wolfgang Foerg
Rudolf Stockmann
Pentti Paurola
Original Assignee
Norske Stats Oljeselskap
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norske Stats Oljeselskap filed Critical Norske Stats Oljeselskap
Publication of NO983082D0 publication Critical patent/NO983082D0/en
Publication of NO983082L publication Critical patent/NO983082L/en
Publication of NO311453B1 publication Critical patent/NO311453B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/50Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

Foreliggende oppfinnelse angår en fremgangsmåte for å danne energi ved hjelp av gassturbinprinsippet, ifølge kravinnledningene. The present invention relates to a method for generating energy using the gas turbine principle, according to the claims.

På grunn av den politiske målsetningen som har som mål å redusere karbondioksidutviklingen har noen land i mellomtiden innført skatt på utvikling av karbondioksid. Slik har den norske regjeringen f.eks. fastsatt en karbondioksidskatt på ca. 50 USD/tonn karbondioksid. I EU-landene blir det for tiden diskutert en karbondioksidskatt på ca. 24 USD/tonn karbondioksid som dannes. Due to the political goal of reducing carbon dioxide development, some countries have in the meantime introduced taxes on carbon dioxide development. This is how the Norwegian government has e.g. established a carbon dioxide tax of approx. 50 USD/ton of carbon dioxide. In the EU countries, a carbon dioxide tax of approx. 24 USD/ton of carbon dioxide that is formed.

Karbondioksid finnes f.eks. i avgasser fra gassturbiner. Men denne karbondioksidholdige avgassen passer dårlig for gjenvinningen av karbondioksid da forholdet mellom den anvendte luftmengden til den forbrenningsluften som er nødvendig ligger i et område mellom 3,0 til 3,5. Resultatet av dette er en karbondioksidkonsentrasjon på bare 3,0 til 3,5 mol-%. For utskilling hhv gjenvinning av så små mengder karbondioksid passer f.eks. i den såkalte Econamine-prosessen, hvor karbondioksid blir absorbert ved hjelp av aminer, se f.eks. "The Fluor Daniel Econamine FG-Process, Past Experience ans Present Day Focus" av Sander M.T. og Mariz C.L., offentliggjort i Energy Convers Mgmt., bd. 33 nr. 5-8, side 341 til 348. For en slik absorpsjonsprosess som baserer på aminer, er gjenvinningsrater mellom 85 og 95 % typisk. Men det er en ulempe at det dannes en aminsaltreststrøm som må bortskaffes med stor innsats. Carbon dioxide is found e.g. in exhaust gases from gas turbines. But this carbon dioxide-containing exhaust gas is not suitable for the recovery of carbon dioxide since the ratio between the amount of air used and the combustion air required is in a range between 3.0 to 3.5. The result of this is a carbon dioxide concentration of only 3.0 to 3.5 mol%. For separation or recovery of such small amounts of carbon dioxide, e.g. in the so-called Econamine process, where carbon dioxide is absorbed with the help of amines, see e.g. "The Fluor Daniel Econamine FG-Process, Past Experience ans Present Day Focus" by Sander M.T. and Mariz C.L., published in Energy Convers Mgmt., Vol. 33 No. 5-8, pages 341 to 348. For such an absorption process based on amines, recovery rates between 85 and 95% are typical. But it is a disadvantage that a residual stream of amine salts is formed, which must be disposed of with great effort.

Oppgaven til den foreliggende oppfinnelsen er å angi en fremgangsmåte og en innretning til dannelse av energi, hvor det verken dannes gassformet karbondioksid eller NOx-skadestoffer. Videre skal bruken av adsorpsjonsstoffer som tjener som vaskemidler kunne utelates. The task of the present invention is to specify a method and a device for generating energy, where neither gaseous carbon dioxide nor NOx pollutants are formed. Furthermore, the use of adsorptive substances that serve as detergents must be able to be omitted.

Dette blir ifølge fremgangsmåten som angår oppfinnelsen oppnådd ved at a) en 95 til 99,5 mol-% oksygenrik strøm og en 90 til 99 mol-% karbondioksidrik strøm ved hjelp av en ejektor blandes til en strøm som deretter blir komprimert, b) den komprimerte strømmen blir forbrent med en hydrokarbonrik brenngasstrøm, c) avgasstrømmen som i alt vesentlig bare inneholder karbondioksid og vanndamp fra fremgangsmåtens trinn b) avspennes mens energi dannes, d) av den avspente avgasstrømmen blir vannet skilt ut, e) gjenværende karbondioksid blir så langt det er påkrevet igjen tilbakeført som karbondioksidrik strøm over ejektoren, f) karbondioksidresten, fortrinnsvis ved tilsetning av metanol og/eller glykol eller ved hjelp av adsorpsjon, tørket, pumpet til et trykk mellom 50 og 500 bar, fortrinnsvis mellom 250 og 350 bar, og ledet ned i havdypet til en "Aquifier" til et utnyttet olje/gassreservoar og/eller til et olje/gassreservoar som ennå befinner seg i drift. According to the method relating to the invention, this is achieved by a) mixing a 95 to 99.5 mol% oxygen-rich stream and a 90 to 99 mol-% carbon dioxide-rich stream with the aid of an ejector into a stream which is then compressed, b) the the compressed stream is combusted with a hydrocarbon-rich fuel gas stream, c) the exhaust gas stream, which essentially only contains carbon dioxide and water vapor from process step b) is de-stressed while energy is generated, d) the water is separated from the de-stressed exhaust gas stream, e) the remaining carbon dioxide is as far as is required again returned as a carbon dioxide-rich stream over the ejector, f) the carbon dioxide residue, preferably by adding methanol and/or glycol or by means of adsorption, dried, pumped to a pressure between 50 and 500 bar, preferably between 250 and 350 bar, and led down into the ocean depths to an "Aquifier" to an exploited oil/gas reservoir and/or to an oil/gas reservoir that is still in operation.

Innretningen som angår oppfinnelsen omfatter a) minst en ejektor hvor en 95 til 99,5 mol-% oksygenrik strøm og en 90 til 99 mol-% karbondioksidrik strøm blir blandet, The device relating to the invention comprises a) at least one ejector where a 95 to 99.5 mol% oxygen-rich stream and a 90 to 99 mol-% carbon dioxide-rich stream are mixed,

b) minst en komressor hvor strømmen blir komprimert, c) minst et brennkammer hvor den komprimerte strømmen med en hydrokarbonrik brenngasstrøm blir forbrent, d) b) at least one compressor where the flow is compressed, c) at least one combustion chamber where the compressed flow with a hydrocarbon-rich fuel gas flow is burned, d)

minst en avspenningsturbin hvor avgasstrømmen som bare inneholder karbondioksid og vanndamp fra brennkammeret hhv brennkammerne avspennes, e) middel til utskilling av vann fra den avspente avgasstrømmen, f) middel til tilbakeføring av karbondioksid til ejektoren, g) middel til tørking av karbondioksid som ikke er tilbakeført til ejektoren, pumper for å pumpe det tørrede karbondioksid til et trykk mellom 50 og 500 bar, fortrinnsvis mellom 250 og 350 bar og middel til å lagre den flytende karbondioksid. at least one depressurization turbine where the exhaust gas stream containing only carbon dioxide and water vapor from the combustion chamber or the combustion chambers is depressurized, e) means for separating water from the depressurized exhaust gas stream, f) means for returning carbon dioxide to the ejector, g) means for drying carbon dioxide that has not been returned to the ejector, pumps for pumping the dried carbon dioxide to a pressure between 50 and 500 bar, preferably between 250 and 350 bar and means for storing the liquid carbon dioxide.

Fremgangsmåten som angår oppfinnelsen, innretningen som angår oppfinnelsen og også andre utforminger av disse som er gjenstander i underkravene blir ved hjelp av figuren forklart nærmere. The method relating to the invention, the device relating to the invention and also other designs thereof which are objects of the subclaims are explained in more detail with the help of the figure.

Tilsvarende fremgangsmåten som angår oppfinnelsen blir forbrenningsluften som hittil er tilført gassturbinen erstattet med en 95 til 99,5 mol-% oksygenrik strøm. Passende til den nødvendige mengden av denne oksygenrike strømmen blir for klargjøringen av et kryogent luftfraksjoneringsanlegg forutsettes det et Pressure Swing adsorpsjons- eller et Temperature Swing Adsorpsjonsanlegg og/eller et membrananlegg. På grunn av en nærmest støkiometrisk forbrenning av den oksygenrike strømmen med en 90 til 99 mol-% karbondioksidrik strøm inneholder avgassene som forlater gassturbinen bare karbondioksid og vanndamp. Corresponding to the method relating to the invention, the combustion air which has hitherto been supplied to the gas turbine is replaced with a 95 to 99.5 mol-% oxygen-rich stream. Appropriate to the required quantity of this oxygen-rich stream, a Pressure Swing adsorption or a Temperature Swing Adsorption plant and/or a membrane plant is required for the preparation of a cryogenic air fractionation plant. Due to an almost stoichiometric combustion of the oxygen-rich stream with a 90 to 99 mol% carbon dioxide-rich stream, the exhaust gases leaving the gas turbine contain only carbon dioxide and water vapor.

Gjennom ledningen 1 blir den 95 til 99,5 mol-% oksygenrike strømmen tilført en ejektor 2. Gjennom ledningen 20 og reguleringsventilen a blir ejektoren i tillegg tilført en 90 til 99 mol-% karbondioksidrik strøm, hvis opprinnelse det blir gått nærmere inn på i det følgende. Ved blandingen av disse to strømmene i ejektoren 2 blir det for forbrenningen oppnådd mest mulig homogene betingelser. Mengden av den tilbakeførte karbondioksidrike strømmen og også mengden av den tilførte oksygenrike strømmen er begrenset av oksygenmengden i den strømmen 3 som dannes i ejektoren 2. Through line 1, the 95 to 99.5 mol-% oxygen-rich stream is supplied to an ejector 2. Through line 20 and the control valve a, the ejector is additionally supplied with a 90 to 99 mol-% carbon dioxide-rich stream, the origin of which is discussed in more detail in the following. By mixing these two streams in the ejector 2, the most homogeneous conditions are achieved for the combustion. The quantity of the returned carbon dioxide-rich stream and also the quantity of the supplied oxygen-rich stream is limited by the amount of oxygen in the stream 3 which is formed in the ejector 2.

Den strømmen 3 som forlater ejektoren 2 har fortrinnsvis mindre enn 5 mol-% nitrogen, 13 til 20 mol-% oksygen og 70 til 87 mol-% karbondioksid og også en molekyl vekt på mellom 35 og 43. The stream 3 leaving the ejector 2 preferably has less than 5 mol% nitrogen, 13 to 20 mol% oxygen and 70 to 87 mol% carbon dioxide and also a molecular weight of between 35 and 43.

Denne strømmen 3 blir komprimert i gassturbinen 4 og videre tilført brennkammeret 6 i gassturbinen gjennom ledningen 5. Som hydrokarbonrik brenngasstrøm blir brennkammeret gjennom ledningen 7 tilført fortrinnsvis jordgass, syntetisk jordgass eller flytende hydrokarboner. Av det anvendte brennstoffet blir til slutt den nødvendige mengden av oksygen bestemt som er nødvendig for å holde brenneren i drift. This flow 3 is compressed in the gas turbine 4 and further supplied to the combustion chamber 6 in the gas turbine through the line 5. As a hydrocarbon-rich fuel gas flow, the combustion chamber through the line 7 is preferably supplied with natural gas, synthetic natural gas or liquid hydrocarbons. From the fuel used, the required amount of oxygen is finally determined which is necessary to keep the burner in operation.

Avgasstrømmen fra brennkammeret som i alt vesentlig bare inneholder karbondioksid og vanndamp blir i en avspenningsturbin 8 avspent og derved blir det til slutt laget mekanisk og/eller elektrisk energi (prinsipp for gassturbiner), ved hjelp av denne avspenningsturbinen 8 blir f.eks. en generator 9 drevet. The exhaust gas stream from the combustion chamber, which essentially only contains carbon dioxide and water vapour, is relaxed in a relaxation turbine 8 and thereby mechanical and/or electrical energy is finally created (principle for gas turbines), with the help of this relaxation turbine 8 is e.g. a generator 9 powered.

Avgasstrømmen 10 forlater turbinen med en temperatur på mellom 450 og 650 °C. I en varmeveksler 11 blir temperaturen på avgasstrømmen 10 senket til omkring 100 til 125 °C. Dette foregår i motstrøm med et høytrykks dampkretsløp 52 hhv 55 hvor en energiskapende avspenningsturbin 53 og også en varmeveksler 54 er forutsatt, hvor liøytrykksstrørnmen fortrinnsvis blir avkjølt med kjølevann. The exhaust gas stream 10 leaves the turbine at a temperature of between 450 and 650 °C. In a heat exchanger 11, the temperature of the exhaust gas stream 10 is lowered to around 100 to 125 °C. This takes place in countercurrent with a high-pressure steam circuit 52 or 55 where an energy-generating relaxation turbine 53 and also a heat exchanger 54 are provided, where the low-pressure stream is preferably cooled with cooling water.

Avgassen avkjølt slik blir i et første skilletrinn, fortrinnsvis tilført en utskiller 13. Fra utskilleren 13 blir det gjennom en ledning 15, hvor det er forutsatt en pumpe 50 og også en reguleringsventil b, en vannrik kondensatfraksjon trukket ut. Denne vannrike kondensatrfaksjonen blir fortrinnsvis tilført en avløpsvannsoppreder. Den karbondioksidrike gasstrømmen som blir trukket ut gjennom ledningen 14 fra utskilleren 13 blir i en komressor 16 komprimert til ca. 1,7 bar, avkjølt i kjøleren 17 til mellom 8 og The exhaust gas cooled in this way is, in a first separation step, preferably supplied to a separator 13. From the separator 13, a water-rich condensate fraction is extracted through a line 15, where a pump 50 and also a control valve b are provided. This water-rich condensate fraction is preferably fed to a wastewater treatment plant. The carbon dioxide-rich gas stream that is extracted through the line 14 from the separator 13 is compressed in a compressor 16 to approx. 1.7 bar, cooled in the cooler 17 to between 8 and

30 °C og videre tilført et andre skilletrinn, fortrinnsvis en utskiller 18. 30 °C and further added to a second separation step, preferably a separator 18.

Fra utskilleren 18 blir igjen en vannrik kondensatfraksjon trukket ut gjennom ledningen 41, hvor det er forutsatt en pumpe 51 og også en reguleringsventil c. Den karbondioksidrike gassfraksjonen som trekkes ut gjennom ledningen 19 blir delt opp i to delstrømmer 20 hhv 22. From the separator 18, a water-rich condensate fraction is again drawn out through line 41, where a pump 51 and also a control valve c are provided. The carbon dioxide-rich gas fraction that is drawn out through line 19 is divided into two partial streams 20 and 22, respectively.

Den første delstrømmen 20 blir som allerede beskrevet gjennom reguleringsventilen a tilført ejektoren 2 som 90 til 99 mol-% karbondioksidrik strøm. Denne karbondioksidrike tilbakeføringsstrømmen 20 tjener i alt vesentlig som drivkraft for ejektoren 2 for å muliggjøre et lavest mulig inngangstrykk for den oksygenrike strømmen som blir tilført ejektoren 2 gjennom ledningen 1. Derved blir energibehovet til fraksjoneringsanlegget som tjener til å klargjøre den oksygenrike strømmen redusert. Blir det for klargjøringen av den oksygenrike strømmen i ledningen 1 anvendt et kryogent lufrfraksjoneringsanlegg, så kan komressoren 4 for gassturbinen 8 forbindes med aksialfortetter(ne) til luftfraksjoneringsanlegget, noe som fører til en reduksjon av investeringsomkostningene. Det er videre tenkelig at aksialkomressoren til det kryogene luftfraksjoneirngsanlegget blir drevet gjennom avspenningsturbinen 53. As already described, the first partial flow 20 is supplied to the ejector 2 as a 90 to 99 mol% carbon dioxide-rich flow through the control valve a. This carbon dioxide-rich return stream 20 essentially serves as a driving force for the ejector 2 to enable the lowest possible input pressure for the oxygen-rich stream which is supplied to the ejector 2 through line 1. Thereby, the energy requirement of the fractionation plant which serves to prepare the oxygen-rich stream is reduced. If a cryogenic air fractionation plant is used for the preparation of the oxygen-rich stream in line 1, then the compressor 4 for the gas turbine 8 can be connected to the axial condenser(s) of the air fractionation plant, which leads to a reduction in investment costs. It is also conceivable that the axial compressor of the cryogenic air fractionation plant is driven through the relaxation turbine 53.

I ledningen 3 er det forutsatt et analyseapparat som ikke er vist på figuren, som oksygeninnholdet i den strømmen som dannes i ejektoren 2 kan måles og overvåkes med. Ved hjelp av oksygeninnholdet blir ved hjelp av reguleringsventilen a mengden av karbondioksid som blir tilbakeført gjennom ledningen 20 innstilt. In the line 3, an analysis device is provided, which is not shown in the figure, with which the oxygen content of the stream formed in the ejector 2 can be measured and monitored. With the help of the oxygen content, the amount of carbon dioxide that is returned through the line 20 is adjusted by means of the control valve a.

Den andre delstrømmen 22, den karbondioksidrike gassfraksjonen som blir trukket ut av utskilleren 18 blir i det første trinnet 21 i en tretrinns karbondioksidfortetter komprimert til 5-7 bar og videre i en mellomkjøler 23, fortrinnsvis mot kjølevann, avkjølt til en temperatur på mellom 8 og 30 °C. Av (suge-)utskilleren 24 som er koblet etter mellomkjøleren 23 blir gjennom en ledning 25, hvor det er forutsatt en reguleringsventil d, trukket ut et vannrikt kondensat. The second partial flow 22, the carbon dioxide-rich gas fraction that is extracted from the separator 18, is compressed in the first stage 21 in a three-stage carbon dioxide condenser to 5-7 bar and further cooled in an intercooler 23, preferably against cooling water, to a temperature of between 8 and 30 °C. A water-rich condensate is extracted from the (suction) separator 24 which is connected after the intercooler 23 through a line 25, where a control valve d is provided.

Av utskilleren 24 blir gjennom ledningen 26 en karbondioksidrik gassfraksjon trukket ut og i det andre fortetningstrinnet 27 i karbondioksidkomressoren komprimert til 18-20 bar. Videre foregår i mellomkjøleren en avkjøling til 8-30 °C. Fra utskilleren 29 som er koplet etter mellomkjøleren 28 gjennom ledningen 32, hvor det er forutsatt en reguleringsventil e blir igjen et vannrikt kondensat trukket ut. A carbon dioxide-rich gas fraction is extracted from the separator 24 through the line 26 and compressed to 18-20 bar in the second densification stage 27 in the carbon dioxide compressor. Furthermore, cooling to 8-30 °C takes place in the intercooler. From the separator 29 which is connected after the intercooler 28 through the line 32, where a control valve e is provided, a water-rich condensate is again extracted.

Den nevnte vannrike kondensatfraksjonen fra ledningene 25, 32 og 41 blir gjennom ledningen 51 tilført skilletrinnet 13. De blir på denne måten gjennom den allerede nevnte ledningen 15 hvorved den ene vannrike kondensatrfaksjonen fra skilletrinnet 13 blir trukket ut, ført bort fra fremgangsmåten hhv anlegget. The aforementioned water-rich condensate fraction from lines 25, 32 and 41 is fed through line 51 to the separation stage 13. They are thus fed through the already mentioned line 15 whereby the one water-rich condensate fraction from the separation stage 13 is extracted, taken away from the process or the plant.

Fra utskilleren 29 blir gjennom ledningen 33 igjen en karbondioksidrik gassfraksjon trukket ut og i det tredje trinnet 30 i karbondioksidkomressoren komprimert til et trykk mellom 58 og 61 bar. Såvel de tre fortetningstrinnene til karbondioksidkomressoren som også i gitte tilfelle komressoren 16 blir f.eks. drevet av en (elektro-motor 31. From the separator 29, a carbon dioxide-rich gas fraction is again extracted through the line 33 and compressed in the third stage 30 in the carbon dioxide compressor to a pressure between 58 and 61 bar. Both the three condensation stages of the carbon dioxide compressor and also in the given case the compressor 16 becomes e.g. driven by an (electric motor 31.

Etter fortetningen i det tredje trinnet 30 i karbondioksidkomressoren blir den karbondioksidrike fraksjonen tilført en kondensator 34 og videre en karbondioksidsamlebeholder 35. Mellom kondensatoren 34 og karbondioksidsamlebeholderen 35 blir den karbondioksidrike strømmen gjennom ledningen 42 tilført et tørremiddel, fortrinnsvis metanol eller glykol. Ved tilføringen av dette tørremidlet blir det oppnådd at karbondioksidproduktet som blir tilført karbondioksidsamlebeholderen 35 er tilstrekkelig tørt. After the densification in the third stage 30 in the carbon dioxide compressor, the carbon dioxide-rich fraction is supplied to a condenser 34 and further to a carbon dioxide collection container 35. Between the condenser 34 and the carbon dioxide collection container 35, the carbon dioxide-rich flow through the line 42 is supplied with a drying agent, preferably methanol or glycol. By adding this desiccant, it is achieved that the carbon dioxide product which is added to the carbon dioxide collection container 35 is sufficiently dry.

Alternativt til dette kan tilførselen av tørremidlet f.eks. også foregå etter det andre fortetningstrinnet. Det er videre tenkelig at det som alternativ tørremetode er forutsatt en adsorpsjonsprosess, hvor tørkingen f.eks. foregår ved hjelp av en molsil. Ikke kondenserbare komponenter i den karbondioksidrike strømmen som blir tilført samlebeholderen 35 blir trukket ut gjennom ledningen 39 og over en kamin 40 avgitt til atmosfæren. Alternatively to this, the supply of the desiccant can e.g. also take place after the second condensation step. It is also conceivable that an adsorption process is assumed as an alternative drying method, where the drying e.g. takes place using a molecular sieve. Non-condensable components in the carbon dioxide-rich stream which is supplied to the collecting container 35 are drawn out through the line 39 and over a stove 40 released to the atmosphere.

Trykket inne i karbondioksidsamlebeholderen 35 blir over karbondioksidnivået i samlebeholderen 35 og ved utslipp av ikke kondenserbare komponenter gjennom ledningen 39 regulert. The pressure inside the carbon dioxide collection container 35 is regulated above the carbon dioxide level in the collection container 35 and upon discharge of non-condensable components through the line 39.

Det tørrede karbondioksidproduktet som blir trukket ut av karbondioksidsamlebeholderen 35 gjennom ledningen 36 blir ved hjelp av minst en pumpe 37 pumpet til et passende trykk mellom 50 og 500 bar, fortrinnsvis mellom 250 og 350 bar. The dried carbon dioxide product which is extracted from the carbon dioxide collection container 35 through the line 36 is pumped by means of at least one pump 37 to a suitable pressure between 50 and 500 bar, preferably between 250 and 350 bar.

Gjennom en reguleringsventil f blir det flytende karbondioksidproduktet videre f.eks. ledet ned i havdypet til en "Aquifier" til et utnyttet olje/gassreservoar og/eller til et olje/gassreservoar som ennå befinner seg i drift. Prinsipielt kan det flytende karbondioksidproduktet selvfølgelig tilføres andre mulige lagerplasser. Through a control valve f, the liquid carbon dioxide product is further e.g. led down into the ocean depths to an "Aquifier" to an exploited oil/gas reservoir and/or to an oil/gas reservoir that is still in operation. In principle, the liquid carbon dioxide product can of course be supplied to other possible storage locations.

Ved hjelp av fremgangsmåten som angår oppfinnelsen hhv innretningen som angår oppfinnelsen fortelles det om en karbondioksidgjenvinningsrate på inntil 99 %. Sammenlignet med kjente fremgangsmåter for karbondioksidgjenvinning reduseres såvel investerings- som også driftsomkostningene for fremgangsmåten hhv anlegget. Energitapet i forhold til en bestemt energimengde som skal dannes er sammenlignet med en i innledningen forklart "amin-absorpsjonsfremgangsmåte" mindre. Avgassen fra forbrenningskammeret 6 er i tillegg fritt for NOx-skadestoffer. Videre dannes det i motsetning til den nevnte "amin-absorpsjonsfremgangsmåte" ingen aminrik reststrøm som må underkastes en krevende etterrengjøring hhv bortskaffes. With the help of the method relating to the invention or the device relating to the invention, a carbon dioxide recovery rate of up to 99% is reported. Compared to known methods for carbon dioxide recovery, both the investment and operating costs for the method and the plant are reduced. The energy loss in relation to a specific amount of energy to be formed is smaller compared to an "amine absorption method" explained in the introduction. The exhaust gas from the combustion chamber 6 is also free of NOx pollutants. Furthermore, in contrast to the aforementioned "amine absorption method", no amine-rich residual stream is formed which must be subjected to a demanding post-cleaning or disposed of.

Claims (14)

1. Fremgangsmåte for å frembringe energi ved hjelp av gassturbinprinsippet, fortrinnsvis ved hjelp av en gassturbin, hvor det verken dannes gassformet karbondioksid eller NOx-skadestoffer, hvor a) en 95 til 99,5 mol-% oksygenrik strøm (1) og en 90 til 99 mol-% karbondioksidrik strøm (20) forbrennes med en karbonhydrogenrik brenngasstrøm (7), b) avgasstrømmen som i alt vesentlig bare har karbondioksid og vanndamp fra a) avspennes (8) under energiutvikling, c) vann utskilles fra den avspente avgasstrømmen (10, 20), d) den gjenværende karbondioksid blir så langt det er påkrevet tilbakeført som karbondioksidrik strøm (20) og resten av karbondi-oksiden (22), fortrinnsvis ved tilsetning av metanol og/eller glykol (42) eller ved adsorpsjon, tørkes, pumpes til et trykk mellom 50 og 500 bar, fortrinnsvis mellom 250 og 350 bar, og ledes ned i havdypet til en "Aquifier" til et utnyttet olje/gassreservoar og/eller til et olje/gassreservoar som ennå befinner seg i drift, karakterisert ved at den oksygenrike strøm(l) og den tidligere komprimerte karbondioksidrike strøm (2) blandes med en ejektor (2) og at den på denne måte frembragte blandingsstrøm (3) komprimeres i minst en kompressor (4) som er koplet etter ejektoren (2).1. Method for producing energy using the gas turbine principle, preferably using a gas turbine, where neither gaseous carbon dioxide nor NOx pollutants are formed, where a) a 95 to 99.5 mol-% oxygen-rich stream (1) and a 90 to 99 mol-% carbon dioxide-rich stream (20) is combusted with a carbon-hydrogen-rich fuel gas stream (7), b) the exhaust gas stream which essentially only has carbon dioxide and water vapor from a) is de-stressed (8) during energy development, c) water is separated from the de-stressed exhaust gas stream ( 10, 20), d) the remaining carbon dioxide is, as far as required, returned as a carbon dioxide-rich stream (20) and the rest of the carbon dioxide (22), preferably by adding methanol and/or glycol (42) or by adsorption, is dried , is pumped to a pressure between 50 and 500 bar, preferably between 250 and 350 bar, and is led down into the sea depth to an "Aquifier" to an exploited oil/gas reservoir and/or to an oil/gas reservoir that is still in operation, characterized in that the ok sygen-rich stream (1) and the previously compressed carbon dioxide-rich stream (2) are mixed with an ejector (2) and that the mixed stream (3) produced in this way is compressed in at least one compressor (4) which is connected after the ejector (2). 2. Fremgangsmåte ifølge krav 1, karakterisert ved at Strømmen (3) som dannes i ejektoren (2) har mindre enn 5 mol-% nitrogen, 13 til 20 mol-% oksygen og 70 til 87 mol-% karbondioksid og en molekylvekt mellom 35 og 43.2. Method according to claim 1, characterized in that the Stream (3) formed in the ejector (2) has less than 5 mol% nitrogen, 13 to 20 mol% oxygen and 70 to 87 mol% carbon dioxide and a molecular weight between 35 and 43. 3. Fremgangsmåte ifølge foregående krav, karakterisert ved at den 95 til 99,5 mol-% oksygenrike strømmen (1) kryogen blir dannet adsorptivt og/eller permeativt.3. Method according to the preceding claim, characterized in that the 95 to 99.5 mol-% oxygen-rich stream (1) is cryogenically formed adsorptively and/or permeatively. 4. Fremgangsmåte ifølge foregående krav, karakterisert ved at som hydrokarbonrik brenngasstrøm (7) blir anvendt jordgass, syntetisk jordgass, flytende hydrokarboner etc.4. Method according to the preceding claim, characterized in that natural gas, synthetic natural gas, liquid hydrocarbons etc. are used as the hydrocarbon-rich fuel gas stream (7). 5. Fremgangsmåte ifølge foregående krav, karakterisert ved at den avspente avgasstrømmen (10) blir avkjølt (11) mot et åpent eller lukket energidannende kretsløp (52, 53, 54, 55) for utnyttelse av spillvarme.5. Method according to the preceding claim, characterized in that the relaxed exhaust gas flow (10) is cooled (11) towards an open or closed energy-generating circuit (52, 53, 54, 55) for utilization of waste heat. 6. Fremgangsmåte ifølge foregående krav, karakterisert ved at den avspente, karbondioksid- og vannrike avgasstrømmen (10, 20) blir befridd for vannet (13, 18) i ett eller flere trinn.6. Method according to the preceding claim, characterized in that the relaxed, carbon dioxide and water-rich exhaust gas stream (10, 20) is freed from the water (13, 18) in one or more stages. 7. Fremgangsmåte ifølge foregående krav, karakterisert ved at resten av karbondioksid (22) blir befridd for vann (24,29) i ett eller flere trinn.7. Method according to the preceding claim, characterized in that the rest of the carbon dioxide (22) is freed from water (24,29) in one or more steps. 8. Fremgangsmåte ifølge foregående krav, karakterisert ved at det utskilte vannet (15,41,25,32) blir tilført (56) avløpsvannsoppredning.8. Method according to the preceding claim, characterized in that the secreted water (15,41,25,32) is supplied to (56) wastewater treatment. 9. Innretning for gjennomføring av en fremgangsmåte til å frembringe energi ved hjelp av gassturbinprinsippet, fortrinnsvis ved hjelp av en gassturbin ifølge foregående krav, omfattende a) minst et brennkammer (6) hvor den komprimerte strømmen (3) med en hydrokarbonrik brenngasstrøm (7) blir forbrent, b) minst en avspenningsturbin (8) hvor avgasstrømmen som bare har karbondioksid og vanndamp fra brennkammeret hhv brennkamrene (6) avspennes, c) midler til utskilling av vann (13, 18) fra den avspente avgasstrømmen (10, 20), d) midler til tilbakeføring (19, 20) av karbondioksid til ejektoren (2), og e) midler til tørking av karbondioksid (22) som ikke er tilbakeført til ejektoren (2), pumper (37) for å pumpe det tørrede karbondioksid til et trykk mellom 50 og 500 bar, fortrinnsvis mellom 250 og 350 bar og middel til å lagre den flytende karbondioksid, karakterisert ved f) minst en ejektor (2) hvor en 95 til 99,5 mol-% oksygenrik strøm (1) og en 90 til 99 mol-% karbondioksidrik strøm (20) blir blandet, og at g) minst en kompressor (4) er koplet etter ejektoren (2) hvor strømmen (3) komprimeres før den tilføres brennkammeret (6).9. Device for carrying out a method to generate energy using the gas turbine principle, preferably using a gas turbine according to the preceding claim, comprising a) at least one combustion chamber (6) where the compressed flow (3) with a hydrocarbon-rich fuel gas flow (7) is combusted, b) at least one relaxation turbine (8) where the exhaust gas flow that only has carbon dioxide and water vapor from the combustion chamber or the combustion chambers (6) is relaxed, c) means for separating water (13, 18) from the relaxed exhaust gas flow (10, 20), d) means for returning (19, 20) carbon dioxide to the ejector (2), and e) means for drying carbon dioxide (22) not returned to the ejector (2), pumps (37) for pumping the dried carbon dioxide to a pressure between 50 and 500 bar, preferably between 250 and 350 bar and means for storing the liquid carbon dioxide, characterized by f) at least one ejector (2) where a 95 to 99.5 mol-% oxygen-rich stream (1) and a 90 to 99 mol% carbon dioxide rich stream (20) is mixed, and that g) at least one compressor (4) is connected after the ejector (2) where the flow (3) is compressed before it is fed to the combustion chamber (6). 10. Innretning ifølge krav 9, karakterisert ved at midler til kryogenering, adsorptiv og/eller permeativ dannelse av den 95 til 99,5 mol-% oksygenrike strømmen (1) er tilgjengelige.10. Device according to claim 9, characterized in that means for cryogenic, adsorptive and/or permeative formation of the 95 to 99.5 mol-% oxygen-rich stream (1) are available. 11. Innretning ifølge krav 9-10, karakterisert ved at midler til utnyttelse av spillvarme for avgasstrømmen (10) som forlater avspenningsturbinen (8) er tilgjengelige.11. Device according to claims 9-10, characterized in that means for utilizing waste heat for the exhaust gas stream (10) leaving the relaxation turbine (8) are available. 12. Innretning ifølge krav 11, karakterisert ved at midlene til utnyttelsen av spillvarmen i avgasstrømmen )10) som forlater avspenningsturbinen (8) er utformet som minst et åpent eller lukket energidannende kretsløp (52, 53, 54, 55) for utnyttelse av spillvarmen.12. Device according to claim 11, characterized in that the means for the utilization of the waste heat in the exhaust gas stream (10) leaving the relaxation turbine (8) are designed as at least one open or closed energy-generating circuit (52, 53, 54, 55) for the utilization of the waste heat. 13. Innretning ifølge krav 9-12, karakterisert ved at midlene til utskillelse av vann (13, 18) fra den avspente avgasstrømmen (10, 20) er utformet som minst en, fortrinnsvis minst to skillekolonner (13,18) anordnet etter hverandre.13. Device according to claims 9-12, characterized in that the means for separating water (13, 18) from the decompressed exhaust gas stream (10, 20) are designed as at least one, preferably at least two separating columns (13, 18) arranged one behind the other. 14. Innretning ifølge krav 9-13, karakterisert ved at midler til oppredning av det utskilte vannet (15,41,25, 32) er tilgjengelig.14. Device according to claims 9-13, characterized in that means for settling the secreted water (15, 41, 25, 32) are available.
NO19983082A 1997-07-03 1998-07-02 Method and device for energy development NO311453B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19728151A DE19728151C2 (en) 1997-07-03 1997-07-03 Method and device for generating energy

Publications (3)

Publication Number Publication Date
NO983082D0 NO983082D0 (en) 1998-07-02
NO983082L NO983082L (en) 1999-01-04
NO311453B1 true NO311453B1 (en) 2001-11-26

Family

ID=7834366

Family Applications (1)

Application Number Title Priority Date Filing Date
NO19983082A NO311453B1 (en) 1997-07-03 1998-07-02 Method and device for energy development

Country Status (2)

Country Link
DE (1) DE19728151C2 (en)
NO (1) NO311453B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952884A1 (en) * 1999-11-03 2001-05-10 Abb Alstom Power Ch Ag Operation method for carbon dioxide gas turbine system, involves using combustion chamber in which fuel is burnt with oxygen, with at least one turbine and one generator
DE10016079A1 (en) * 2000-03-31 2001-10-04 Alstom Power Nv Method for removing carbon dioxide from the exhaust gas of a gas turbine system and device for carrying out the method
DE10056128A1 (en) * 2000-11-13 2002-06-06 Alstom Switzerland Ltd Process for operating a gas turbine plant and a corresponding plant
FR2825935B1 (en) * 2001-06-14 2003-08-22 Inst Francais Du Petrole LOW CO2 EMISSIONS POWER GENERATOR AND ASSOCIATED METHOD
EP1549881B1 (en) * 2002-10-10 2016-02-03 LPP Combustion, LLC System for vaporization of liquid fuels for combustion and method of use
LT1825194T (en) 2004-12-08 2021-04-26 Lpp Combustion, Llc Method and apparatus for conditioning liquid hydrocarbon fuels
US8529646B2 (en) 2006-05-01 2013-09-10 Lpp Combustion Llc Integrated system and method for production and vaporization of liquid hydrocarbon fuels for combustion
DE102007022168A1 (en) 2007-05-11 2008-11-13 Siemens Ag Process for generating motor energy from fossil fuels with removal of pure carbon dioxide
EP2248999A1 (en) * 2008-12-24 2010-11-10 Alstom Technology Ltd Power plant with CO2 capture
DE102009017131A1 (en) * 2009-04-15 2010-11-04 Kirchner, Hans Walter, Dipl.-Ing. Open gas turbine method for integrated carbon dioxide separation, involves utilizing residual air for burning in air separation system after large separation of nitrogen portion
GB2481594B (en) 2010-06-28 2015-10-28 Statoil Petroleum As A method of recovering a hydrocarbon mixture from a subterranean formation
IT202000023140A1 (en) * 2020-10-01 2022-04-01 Saipem Spa POWER GENERATION PROCESS USING A LIQUID FUEL, AIR AND/OR OXYGEN WITH ZERO CO2 EMISSIONS
IT202000032657A1 (en) * 2020-12-29 2022-06-29 Saipem Spa ENERGY STORAGE AND PRODUCTION SYSTEM FOR THE STABILIZATION OF THE ELECTRICITY NETWORK

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH594817A5 (en) * 1976-12-02 1978-01-31 Bbc Brown Boveri & Cie
US4528811A (en) * 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
US5175995A (en) * 1989-10-25 1993-01-05 Pyong-Sik Pak Power generation plant and power generation method without emission of carbon dioxide
JPH04191418A (en) * 1990-11-26 1992-07-09 Mitsubishi Heavy Ind Ltd Carbon dioxide (co2) recovering power generation plant

Also Published As

Publication number Publication date
NO983082D0 (en) 1998-07-02
DE19728151C2 (en) 2000-06-08
NO983082L (en) 1999-01-04
DE19728151A1 (en) 1999-01-07

Similar Documents

Publication Publication Date Title
RU2489197C2 (en) Method of gas cleaning by membranes with permeate blow for removal of carbon dioxide from combustion products
AU2003297063B2 (en) Configurations and methods of acid gas removal
EP2890885B1 (en) Cycle turbine engine power system
AU2007310516B2 (en) Method of and apparatus for CO2 capture in oxy-combustion
US8906138B2 (en) Methods of generating and utilizing utility gas
USRE39826E1 (en) Comprehensive natural gas processing
US5642630A (en) Process for solids waste landfill gas treatment and separation of methane and carbon dioxide
EP0503910A1 (en) Carbon dioxide and acid gas removal and recovery process for fossil fuel fired power plants
US8999036B2 (en) Method for production of a compressed natural gas equivalent from landfill gas and other biogases
US20090075219A1 (en) Oxycombustion Method Allowing Capture of All of the Carbon Dioxide Produced
US20080223214A1 (en) Method And Apparatus For Separating Gases
US20150240717A1 (en) Increasing Combustibility of Low BTU Natural Gas
NO311453B1 (en) Method and device for energy development
MX2012014459A (en) Stoichiometric combustion with exhaust gas recirculation and direct contact cooler.
JP2017532524A (en) Method and apparatus for producing LMG from various gas sources {METHOD AND ARRANGEMENT FOR PRODUCING LIQUEFIED METANE GAS FROM VARIOUS GAS SOURCES}
AU2012200908A1 (en) Method and device for treating a carbon dioxide-containing gas stream
KR20130069651A (en) Method for reducing co2 emissions in a combustion stream and industrial plants utilizing the same
RU2619313C2 (en) Method for separating gases using membranes based on purge joined with power generation at gas power stations and extracting co2
MX2015003390A (en) Process for optimizing removal of condensable components from a fluid.
US20130025276A1 (en) Method and device for producing a carbon dioxide-rich gas mixture, method and device for improved oil recovery and corresponding use of a gas engine
RU2670171C1 (en) Installation and method for producing liquid carbon dioxide from gas mixtures containing carbon dioxide using membrane technology
RU2428375C1 (en) Method of preparing sulphur dioxide for pumping into formation through injection well
WO2017151147A1 (en) Flare recovery with carbon capture
CN115962623A (en) Carbon dioxide liquefaction device and method for carbon capture system
WO2023195862A1 (en) Method and system for co2 capture and utilization