NO310807B1 - Catalyst pretreatment - Google Patents

Catalyst pretreatment Download PDF

Info

Publication number
NO310807B1
NO310807B1 NO19992582A NO992582A NO310807B1 NO 310807 B1 NO310807 B1 NO 310807B1 NO 19992582 A NO19992582 A NO 19992582A NO 992582 A NO992582 A NO 992582A NO 310807 B1 NO310807 B1 NO 310807B1
Authority
NO
Norway
Prior art keywords
catalyst
dehydrogenation
hours
oxidation
carried out
Prior art date
Application number
NO19992582A
Other languages
Norwegian (no)
Other versions
NO992582D0 (en
NO992582L (en
Inventor
Paal Soeraker
Staale Foerre Jensen
Erling Rytter
Morten Roennekleiv
Original Assignee
Norske Stats Oljeselskap
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norske Stats Oljeselskap filed Critical Norske Stats Oljeselskap
Priority to NO19992582A priority Critical patent/NO310807B1/en
Publication of NO992582D0 publication Critical patent/NO992582D0/en
Priority to EP00931745A priority patent/EP1206319A1/en
Priority to PCT/NO2000/000175 priority patent/WO2000072967A1/en
Priority to AU49575/00A priority patent/AU4957500A/en
Publication of NO992582L publication Critical patent/NO992582L/en
Publication of NO310807B1 publication Critical patent/NO310807B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

Oppfinnelsens område. Field of the invention.

Foreliggende oppfinnelse angår en fremgangsmåte for en forbehandlingsaktivering av en Pt/Sn-basert katalysator og en katalysator aktivert ved en slik forbehandling. The present invention relates to a method for a pretreatment activation of a Pt/Sn-based catalyst and a catalyst activated by such pretreatment.

Bakgrunn for oppfinnelsen Background for the invention

Under industriell drift blir katalysatorer permanent deaktivert på grunn av forgiftning og sintring og må erstattes ved gitte tidsintervaller, generelt etter 1 til 5 år i drift, avhengig av fødestrømmer og reaksjonsbetingelser. Vanligvis må katalysatorene behandles i henhold til en spesiell forbehandlingsprosedyre før katalysatoren kan virke ved optimum ytelse (se særlig WO 92/06784 hvor betingelser for optimal reduksjon av en kobolt-katalysator er beskrevet). Spesielt når katalysatorer må erstattes med korte intervaller, er det av stor betydning å redusere forbehandlingstiden. Levetiden til en typisk Pt/Sn-basert dehydrogeneringskatalysator er opptil 3 år. Katalysatoren som blir anvendt i STAR prosessen (Pt/Sn på zinkaluminat) har en forventet levetid på 1 til 2 år i kommersiell drift, mens katalysatoren anvendt i Oleflex prosessen (Pt/Sn/Cs på Al203) har en forventet levetid på 1 til 3 år [Catalytica (1993)]. Betydelige tap i alkenproduksjon kan forutsees hvis en lang aktiveringsperiode er nødvendig etter hver katalysator-utskifting. Slike katalysatorer eller variasjoner derav kan også anvendes for flere kjemiske prosesser som innbefatter hovedsakelig eller delvis dehydrogenerings-eller hydrogeneringstrinn. En lang aktiveringsperiode er også en ulempe forbundet med uventete stopp og eksperimentell utvikling i laboratoriet. During industrial operation, catalysts are permanently deactivated due to poisoning and sintering and must be replaced at given time intervals, generally after 1 to 5 years of operation, depending on feed streams and reaction conditions. Generally, the catalysts must be treated according to a special pretreatment procedure before the catalyst can operate at optimum performance (see in particular WO 92/06784 where conditions for optimum reduction of a cobalt catalyst are described). Especially when catalysts have to be replaced at short intervals, it is of great importance to reduce the pretreatment time. The lifetime of a typical Pt/Sn-based dehydrogenation catalyst is up to 3 years. The catalyst used in the STAR process (Pt/Sn on zinc aluminate) has an expected lifetime of 1 to 2 years in commercial operation, while the catalyst used in the Oleflex process (Pt/Sn/Cs on Al203) has an expected lifetime of 1 to 3 year [Catalytica (1993)]. Significant losses in alkene production can be anticipated if a long activation period is required after each catalyst replacement. Such catalysts or variations thereof can also be used for several chemical processes which include mainly or partially dehydrogenation or hydrogenation steps. A long activation period is also a disadvantage associated with unexpected stops and experimental development in the laboratory.

Katalysatorene nevnt i foreliggende oppfinnelse er tidligere beskrevet i patentsøknader nummer 932173 og 981126. The catalysts mentioned in the present invention have previously been described in patent applications number 932173 and 981126.

Oppsummering av oppfinnelsen. Summary of the invention.

Det foreligger et behov for metoder for raskere oppnåelse av Pt/Sn-baserte dehydrogeneringskatalysatorer med den maksimale katalytiske aktivitet enn det som har vært mulig med den tidligere kjente teknologi, hvilken kan kreve mange hundre timer i strøm før den omtrent maksimale aktivitet blir oppnådd. En slik metode ville forbedre totalutbyttene av dehydrogeneringsprodukter som blir oppnådd i løpet av levetiden til en dehydrogeneringskatalysator. There is a need for methods for more quickly obtaining Pt/Sn-based dehydrogenation catalysts with the maximum catalytic activity than has been possible with the previously known technology, which may require many hundreds of hours in current before the approximately maximum activity is achieved. Such a method would improve the overall yields of dehydrogenation products that are obtained during the lifetime of a dehydrogenation catalyst.

Ulempene ved den tidligere kjente teknikk blir overvunnet ved en fremgangsmåte for en forbehandlingsaktivering av en Pt/Sn-basert dehydrogeneringskatalysator, hvor en Pt/Sn/Mg(AI)O katalysator blir underkastet flere (gjentatte) cykler av 1. ) reduksjon med H2 ved forhøyede temperaturer. 2. ) alkandehydrogenering ved forhøyede temperaturer; 3. ) oksidasjon/regenerering med en 02-holdig gass ved forhøyede temperaturer; The disadvantages of the prior art are overcome by a method for a pretreatment activation of a Pt/Sn-based dehydrogenation catalyst, where a Pt/Sn/Mg(AI)O catalyst is subjected to several (repeated) cycles of 1. ) reduction with H2 by elevated temperatures. 2. ) alkane dehydrogenation at elevated temperatures; 3. ) oxidation/regeneration with an O2-containing gas at elevated temperatures;

Fortrinnsvis blir alkandehydrogeneringen utført ved temperaturer i området 500 til 700 °C. Preferably, the alkane dehydrogenation is carried out at temperatures in the range of 500 to 700 °C.

Likeledes blir oksidasjonen/regenereringen foretrukket utført ved temperaturer i området 500 til 700 °C . Likewise, the oxidation/regeneration is preferably carried out at temperatures in the range of 500 to 700 °C.

Likeledes blir reduksjonen med H2 foretrukket utført i området 500 til 700 °C . Likewise, the reduction with H2 is preferably carried out in the range 500 to 700 °C.

Spesielt er den kjemiske prosess dehydrogenering utført på et lavere alkan. In particular, the chemical process dehydrogenation is carried out on a lower alkane.

Mer foretrukket dehydrogeneres propan. More preferably, propane is dehydrogenated.

I en foretrukket prosess blir oksidasjonen utført med en gassformig 02/N2-blanding hvori O2 -innholdet gradvis økes. In a preferred process, the oxidation is carried out with a gaseous O2/N2 mixture in which the O2 content is gradually increased.

I en foretrukket prosess blir sluttfasen av oksidasjonen utført i luft. In a preferred process, the final phase of the oxidation is carried out in air.

Med hensyn til reduksjonstrinnet blir dette fortrinnsvis utført i H2 i et temperaturområde på 500 til 700 °C . With regard to the reduction step, this is preferably carried out in H2 in a temperature range of 500 to 700 °C.

Med hensyn til dehydrogeneringstiden er denne mindre enn halvparten av dehydrogeneringstiden under normale dehydrogeneringsprosessbetingelser. With regard to the dehydrogenation time, this is less than half of the dehydrogenation time under normal dehydrogenation process conditions.

En typisk dehydrogeneringstid er 2 timer. A typical dehydrogenation time is 2 hours.

Gode resultater blir oppnådd når den første del av oksidasjonen blir utført i ca. 3 timer, mens sluttfasen av oksidasjonen blir utført i ca. 1 time. Good results are obtained when the first part of the oxidation is carried out for approx. 3 hours, while the final phase of the oxidation is carried out for approx. 1 hour.

Reduksjonen i H2 blir spesielt utført i ca. 2 timer. The reduction in H2 is especially carried out in approx. 2 hours.

De beste resultater blir oppnådd når antallet cykler er 6 til 12, men færre cykler har også en betydelig effekt. The best results are obtained when the number of cycles is 6 to 12, but fewer cycles also have a significant effect.

Det er forventet at en optimal forbehandlingsaktiveringsprosedyre i stor grad vil avhenge av det eksakte preparat og fremstillingsmetoden for katalysatoren. Dette betyr at det vil være store variasjoner i det foretrukne antall cykler, gassblandinger og nødvendige tider for hvert trinn. It is expected that an optimal pretreatment activation procedure will largely depend on the exact preparation and method of preparation of the catalyst. This means that there will be wide variations in the preferred number of cycles, gas mixtures and required times for each stage.

En ytterligere gjenstand for foreliggende oppfinnelse er en katalysator aktivert ved forbehandlingen angitt ovenfor. A further object of the present invention is a catalyst activated by the pretreatment indicated above.

Detaljert beskrivelse av oppfinnelse Detailed description of invention

Som allerede nevnt ovenfor er gjenstanden for foreliggende oppfinnelse å definere en forbehandlingsprosedyre som reduserer den nødvendige tiden for å nå et optimum omdannelsesnivå i en alkandehydrogeneringsenhet ved anvendelse av en Pt/Sn/Mg(AI)0-katalysator beskrevet i NO patent 179131. I denne tidligere oppfinnelse beskriver vi en forbehandlingsprosedyre som fører til en optimum dehydrogeneringsaktivitet av en Pt/Sn/Mg (Al)O-katalysator oppnådd ved impregnering av Pt og Sn på et forkalsinert Mg(AI)0-bærermateriale. Forbehandlingprosedyren anvendt i denne tidligere oppfinnelse besto av in situ reduksjon, fulgt av oksidasjon og en ny reduksjonsperiode (ROR). I foreliggende oppfinnelse ble det overraskende observert at ved anvendelse av en litt modifisert metallimpregneringsprosedyre, førte ROR-forbehandlingprosedyren ikke til en optimal dehydrogeneringsaktivitet. Under testing av dehydrogeneringskatalysatoren ble det observert at omdannelsesnivået etter den første regenerering var høyere enn det innledende omdannelsesnivå etter ROR. Etter neste test-cyklus ble omdannelsesnivået enda høyere. En stabil katalysatorytelse ble ikke oppnådd før etter 300 timer i strøm, da katalysatoren hadde blitt underkastet 9 cykler bestående av en dehydrogeneringsperiode fulgt av regenerering og reduksjon. En forbehandlingsprosedyre for katalysatoren som dramatisk reduserte den nødvendige tid for å oppnå optimum omdannelsesnivå ved dehydrogenering av propan ble utviklet. As already mentioned above, the object of the present invention is to define a pretreatment procedure which reduces the time required to reach an optimum conversion level in an alkane dehydrogenation unit using a Pt/Sn/Mg(AI)0 catalyst described in NO patent 179131. In this earlier invention, we describe a pretreatment procedure which leads to an optimum dehydrogenation activity of a Pt/Sn/Mg (Al)O catalyst obtained by impregnation of Pt and Sn on a precalcined Mg(AI)0 support material. The pretreatment procedure used in this earlier invention consisted of in situ reduction, followed by oxidation and a further period of reduction (ROR). In the present invention, it was surprisingly observed that when using a slightly modified metal impregnation procedure, the ROR pretreatment procedure did not lead to an optimal dehydrogenation activity. During testing of the dehydrogenation catalyst, it was observed that the conversion level after the first regeneration was higher than the initial conversion level after ROR. After the next test cycle, the conversion level was even higher. A stable catalyst performance was not achieved until after 300 hours on stream, when the catalyst had been subjected to 9 cycles consisting of a dehydrogenation period followed by regeneration and reduction. A catalyst pretreatment procedure that dramatically reduced the time required to achieve optimum conversion levels in dehydrogenation of propane was developed.

De følgende eksempler vil tjene til å illustrere fordelene ved anvendelse av den her beskrevne forbehandlingsprosedyre for aktiveringen av Pt/Sn-Mg(AI)0-dehydrogeneringskatalysatoren. The following examples will serve to illustrate the advantages of using the pretreatment procedure described here for the activation of the Pt/Sn-Mg(Al)0 dehydrogenation catalyst.

Generelt Generally

Katalysatoren ble fremstilt i henhold til en liten modifikasjon av metoden beskrevet i patent NO 179131 ved anvendelse av en vannbasert sur løsning ved avsetningen av platina og tinn på hydrotalcit eller forkalsinert hydrotalcit. Katalysatorene anvendt i eksemplene har et Mg/AI-forhold på 4,8. Innholdet av platina og tinn er henholdsvis ca. 0,25 og 0,5 vekt%. Katalysatoren ble kalsinert ved 560°C etter impregneringen. Katalysatoren ble presset til tabletter, knust og siktet til en pelletstørrelse på 0,64-1,0 mm før testing. The catalyst was produced according to a slight modification of the method described in patent NO 179131 using a water-based acidic solution during the deposition of platinum and tin on hydrotalcite or precalcined hydrotalcite. The catalysts used in the examples have a Mg/Al ratio of 4.8. The content of platinum and tin is respectively approx. 0.25 and 0.5% by weight. The catalyst was calcined at 560°C after the impregnation. The catalyst was compressed into tablets, crushed and sieved to a pellet size of 0.64-1.0 mm before testing.

Alle forbehandlingprosedyrer ble utført in situ i en laboratorieskala fiksert-bed titan-reaktor med påfølgende testing for propandehydrogenering. Den innvendige diameter av reaktoren var 9 mm. Et titan-rør med en utvendig diameter på 3 mm befant seg i midten av reaktoren. Reaktortemperaturen ble kontrollert med et termoelement plassert i 3 mm røret inne i reaktoren. Katalysatorpelletene ( omtrent 3 All pretreatment procedures were performed in situ in a laboratory-scale fixed-bed titanium reactor with subsequent testing for propane dehydrogenation. The internal diameter of the reactor was 9 mm. A titanium tube with an external diameter of 3 mm was located in the center of the reactor. The reactor temperature was controlled with a thermocouple placed in the 3 mm tube inside the reactor. The catalyst pellets (about 3

g) ble plassert på et titan-sinter i reaktoren. Totaltrykket i reaktoren var 1,1 bar og reaktortemperaturen var 600°C. Imidlertid ble på grunn av reaksjonens endoterme g) was placed on a titanium sinter in the reactor. The total pressure in the reactor was 1.1 bar and the reactor temperature was 600°C. However, due to the reaction being endothermic

natur en temperaturgradient observert i reaktoren. Reaktortemperaturen ble regulert nature a temperature gradient observed in the reactor. The reactor temperature was regulated

til 600°C i en avstand på 1/3 av den totale katalysatorsjikt-lengde fra toppen av katalysatorsjiktet, mens temperaturen på bunnen av katalysatorsjiktet, målt i en avstand på omtrent 1/3 av katalysatorsjiktlengden fra bunnen av katalysatorsjiktet, var i området 590 til 615°C. GHSV var 1000 timer"<1> basert på propan og reaksjonsgassen inneholdt 4,5% hydrogen, 32% propan og resten damp på mol basis. to 600°C at a distance of 1/3 of the total catalyst bed length from the top of the catalyst bed, while the temperature at the bottom of the catalyst bed, measured at a distance of approximately 1/3 of the catalyst bed length from the bottom of the catalyst bed, was in the range of 590 to 615°C. The GHSV was 1000 hours"<1> based on propane and the reaction gas contained 4.5% hydrogen, 32% propane and the rest steam on a mole basis.

Dehydrogeneringstidene varte vanligvis omtrent 20 timer og ble fulgt av en regenerering av katalysatoren. Omdannelsesnivåene ble beregnet fra on-line GC-analyse. Analysen ble tatt med omtrent 1 times intervaller. Omdannelsesnivåer som er presentert ble oppnådd etter 5 timer i dehydrogeneringsperioden. The dehydrogenation times usually lasted about 20 hours and were followed by a regeneration of the catalyst. The conversion levels were calculated from on-line GC analysis. The analysis was taken at approximately 1-hour intervals. Conversion levels presented were obtained after 5 hours in the dehydrogenation period.

Regenereringen av katalysatoren ble utført ved brenning av den dannete koks ved anvendelse av luft fortynnet med nitrogen. Innholdet av oksygen ble først redusert til omtrent 2% og ble trinnvis øket til et sluttnivå på 21% hvori ren luft ble anvendt. Regenereringsperioden ble fulgt av katalysatorreduksjon ved anvendelse av hydrogen. Både regenereringen og reduksjonen av katalysatoren ble utført ved 600°C. The regeneration of the catalyst was carried out by burning the coke formed using air diluted with nitrogen. The content of oxygen was first reduced to about 2% and was gradually increased to a final level of 21% in which clean air was used. The regeneration period was followed by catalyst reduction using hydrogen. Both the regeneration and the reduction of the catalyst were carried out at 600°C.

Eksempel 1 (ROR) Example 1 (ROR)

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: The catalyst was subjected to a pretreatment procedure consisting of the following steps:

1. Oppvarmning fra omgivelsestemperatur til 600°C i nitrogen, 100 ml/min. 1. Heating from ambient temperature to 600°C in nitrogen, 100 ml/min.

2. Reduksjon i H2. 20 ml/min, 600°C, 2 timer. 2. Reduction in H2. 20 ml/min, 600°C, 2 hours.

3. Oksidasjon i en strøm inneholdende 40 ml/min N2 og 10 ml/min luft. 600°C. 1 time. 3. Oxidation in a stream containing 40 ml/min N2 and 10 ml/min air. 600°C. 1 hour.

4. Oksidasjon i luft. 50 ml/min, 600°C, 1 time. 4. Oxidation in air. 50 ml/min, 600°C, 1 hour.

5. Redusert i H2. 600°C. 2 timer. 20 ml/min. 5. Reduced in H2. 600°C. 2 hours. 20 ml/min.

Resultatene fra de påfølgende propandehydrogeneringstester er vist i Figur 1 og Tabell 1. The results from the subsequent propane dehydrogenation tests are shown in Figure 1 and Table 1.

Eksempel 2: (ROR - (PDH(600°C)-OR)<*>X) Example 2: (ROR - (PDH(600°C)-OR)<*>X)

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: 1. Katalysatoren blir først forbehandlet i henhold til ROR-prosedyren beskrevet i Eksempel 1. 2. PDH ( Propandehydrogenering) ved 600°C i en strøm bestående av C3H8 (70 ml/min). H2 (10 ml/min) og damp (140 ml/min) i 2 timer. 3. Oksidasjon/regenerering ved anvendelse av en 02/N2-blanding med et gradvis økende 02-innhold. (1, 5 og 10%). Hver trinn varte 1 time. Forskjellige 02-innhold ble oppnådd ved fortynning av luft med N2. Total strøm:84 ml/min., T=600°C. The catalyst was subjected to a pretreatment procedure consisting of the following steps: 1. The catalyst is first pretreated according to the ROR procedure described in Example 1. 2. PDH (Propane dehydrogenation) at 600°C in a stream consisting of C3H8 (70 ml/min) . H2 (10 ml/min) and steam (140 ml/min) for 2 hours. 3. Oxidation/regeneration using an 02/N2 mixture with a gradually increasing 02 content. (1, 5 and 10%). Each step lasted 1 hour. Different O2 contents were obtained by diluting air with N2. Total flow: 84 ml/min., T=600°C.

4. Oksidasjon i luft. 80 ml/min., 600°C, 1 time. 4. Oxidation in air. 80 ml/min., 600°C, 1 hour.

5. Reduksjon i H2. 20 ml/min., 600°C, 2 timer. 5. Reduction in H2. 20 ml/min., 600°C, 2 hours.

Trinn 2 til 5 ble gjentatt 9 ganger, på hvilket tidspunkt ingen ytterligere økning i omdannelsesnivået av propan i PDH-perioden ble observert. Resultatene fra den påfølgende propan- dehydrogeneringstest er vist i Figur 1 og Tabell 1. Steps 2 to 5 were repeated 9 times, at which time no further increase in the conversion level of propane in the PDH period was observed. The results from the subsequent propane dehydrogenation test are shown in Figure 1 and Table 1.

Eksempel 3 (R-OR<*>X) Example 3 (R-OR<*>X)

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn:: The catalyst was subjected to a pretreatment procedure consisting of the following steps:

1. Oppvarmning fra omgivelsestemperatur til 600°C i nitrogen, 100 ml/min. 1. Heating from ambient temperature to 600°C in nitrogen, 100 ml/min.

2. Reduksjon i H2. 20 ml/min., 600°C, 2 timer. 2. Reduction in H2. 20 ml/min., 600°C, 2 hours.

3. Oksidasjon/regenerering ved anvendelse av en O2/N2 blanding med et gradvis økende 02-innhold (1, 5 og 10%). 1 time i hvert trinn. Forskjellige 02-innhold ble oppnådd ved fortynning luft med N2. Total strøm: 84 ml/min. T=600°C. 3. Oxidation/regeneration using an O2/N2 mixture with a gradually increasing O2 content (1, 5 and 10%). 1 hour in each step. Different O2 contents were obtained by diluting air with N2. Total flow: 84 ml/min. T=600°C.

4. Oksidasjon i luft. 80 ml/min., 600°C, 1 time. 4. Oxidation in air. 80 ml/min., 600°C, 1 hour.

5. Reduksjon i H2. 20 ml/min., 600°C, 2 timer. 5. Reduction in H2. 20 ml/min., 600°C, 2 hours.

Trinn 3 til 5 blir gjentatt 12 ganger. Resultatene fra de følgende PDH-omdannelses-tester er vist i Figur 1 og Tabell 1. Steps 3 to 5 are repeated 12 times. The results from the following PDH conversion tests are shown in Figure 1 and Table 1.

Eksempel 4: (ROR - (PDH-OR)<*>X) Example 4: (ROR - (PDH-OR)<*>X)

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: 1. Katalysatoren blir først forbehandlet i henhold til ROR-prosedyren beskrevet i Eksempel 1. 2. PDH ( Propandehydrogenering) ved 650°C i en strøm bestående av C3H8 (70 ml/min). H2 (10 ml/min) og damp (140 ml/min) i 2 timer. 3. Oksidasjon/regenerering i en 02/N2 blanding med et gradvis økende 02-innhold (1,5 og 10%). 1 time i hvert trinn. Forskjellige 02-innhold ble oppnådd ved fortynning av luft med N2. Total strøm:84 ml/min., T=600°C. The catalyst was subjected to a pretreatment procedure consisting of the following steps: 1. The catalyst is first pretreated according to the ROR procedure described in Example 1. 2. PDH (Propane dehydrogenation) at 650°C in a stream consisting of C3H8 (70 ml/min) . H2 (10 ml/min) and steam (140 ml/min) for 2 hours. 3. Oxidation/regeneration in an 02/N2 mixture with a gradually increasing 02 content (1.5 and 10%). 1 hour in each step. Different O2 contents were obtained by diluting air with N2. Total flow: 84 ml/min., T=600°C.

4. Oksidasjon i luft. 80 ml/min., 600°C, 1 time. 4. Oxidation in air. 80 ml/min., 600°C, 1 hour.

5. Reduksjon i H2. 20 ml/min., 600°C, 2 timer. 5. Reduction in H2. 20 ml/min., 600°C, 2 hours.

Trinn 2 til 5 ble gjentatt 6 ganger, slik at ingen økning i omdannelsen nivå av propan i PDH-perioden lenger ble observert. Resultatene fra de påfølgende propandehydrogeneringstester er vist i Figur 1 og Tabell 1. Steps 2 to 5 were repeated 6 times, so that no increase in the conversion level of propane in the PDH period was observed anymore. The results from the subsequent propane dehydrogenation tests are shown in Figure 1 and Table 1.

Eksempel 5: R-(PDH-OR)<*>X Example 5: R-(PDH-OR)<*>X

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: 1. Oppvarmning fra omgivelsestemperatur til 600°C i nitrogen, 100 ml/min. The catalyst was subjected to a pretreatment procedure consisting of the following steps: 1. Heating from ambient temperature to 600°C in nitrogen, 100 ml/min.

2. Reduksjon i H2. 20 ml/min., 600°C, 2 timer. 2. Reduction in H2. 20 ml/min., 600°C, 2 hours.

3. PDH ( Propandehydrogenering) ved 630°C i en strøm bestående av C3H8 (70 ml/min). H2 (10 ml/min) og damp (140 ml/min) i 2 timer. 4. Oksidasjon/regenerering ved anvendelse av en 02/N2-blanding med et gradvis økende 02-innhold. (1, 5 og 10%) 1 time i hvert trinn. Forskjellige 02-innhold ble oppnådd ved fortynning av luft med N2. Total strøm:84 ml/min. T=600°C. 3. PDH (Propane dehydrogenation) at 630°C in a stream consisting of C3H8 (70 ml/min). H2 (10 ml/min) and steam (140 ml/min) for 2 hours. 4. Oxidation/regeneration using an 02/N2 mixture with a gradually increasing 02 content. (1, 5 and 10%) 1 hour in each step. Different O2 contents were obtained by diluting air with N2. Total flow: 84 ml/min. T=600°C.

5. Oksidasjon i luft. 80 ml/min., 600°C, 1 time. 5. Oxidation in air. 80 ml/min., 600°C, 1 hour.

6. Reduksjon i H2. 20 ml/min, 600°C, 0,5 timer. 6. Reduction in H2. 20 ml/min, 600°C, 0.5 hours.

Trinn 3 til 6 ble gjentatt 5 ganger, slik at det ble funnet at ingen ytterligere økning i omdannelsesnivå i PDH-perioden (Trinn 3) blir observert. Resultatene fra den påfølgende propandehydrogeneringstest er vist i Figur 1 og Tabell 1. Steps 3 to 6 were repeated 5 times so that it was found that no further increase in conversion level during the PDH period (Step 3) is observed. The results from the subsequent propane dehydrogenation test are shown in Figure 1 and Table 1.

Eksempel 6: R-(PDH-OR)<*>X Example 6: R-(PDH-OR)<*>X

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: The catalyst was subjected to a pretreatment procedure consisting of the following steps:

1. Oppvarmning fra omgivelsestemperatur til 600°C i nitrogen, 100 ml/min. 1. Heating from ambient temperature to 600°C in nitrogen, 100 ml/min.

2. Reduksjon i H2. 20 ml/min., 600°C, 2 timer. 2. Reduction in H2. 20 ml/min., 600°C, 2 hours.

3. PDH ( Propandehydrogenering) ved 630°C i en strøm bestående av C3Hs (70 ml/min). H2 (10 ml/min) og damp (140 ml/min) i 2 timer. 4. Oksidasjon/regenerering ved anvendelse av en 02/N2-blanding med et gradvis økende 02-innhold. (1, 5 og 10%) 1 time i hvert trinn. Forskjellige 02 innhold ble oppnådd ved fortynning av luft med N2. Total strøm:84 ml/min. T=600°C. 3. PDH (Propane dehydrogenation) at 630°C in a stream consisting of C3Hs (70 ml/min). H2 (10 ml/min) and steam (140 ml/min) for 2 hours. 4. Oxidation/regeneration using an 02/N2 mixture with a gradually increasing 02 content. (1, 5 and 10%) 1 hour in each step. Different 02 contents were obtained by diluting air with N2. Total flow: 84 ml/min. T=600°C.

5. Oksidasjon i luft. 80 ml/min., 600°C, 1 time. 5. Oxidation in air. 80 ml/min., 600°C, 1 hour.

6. Reduksjon i H2. 20 ml/min, 600°C, 2 timer. 6. Reduction in H2. 20 ml/min, 600°C, 2 hours.

Trinn 3 til 6 blir gjentatt 6 ganger, hvorved det ikke ble observert noen ytterligere økning i omdannelsesnivå i PDH-perioden (Trinn 3). Resultatene fra den påfølgende propandehydrogeneringstest er vist i Figur 1 og Tabell 1. Steps 3 to 6 are repeated 6 times, whereby no further increase in conversion level was observed during the PDH period (Step 3). The results from the subsequent propane dehydrogenation test are shown in Figure 1 and Table 1.

Normaliserte omdannelsesdata fra Eks. 1 til Eks. 6 er vist i Figur 1. Normalized conversion data from Ex. 1 to Ex. 6 is shown in Figure 1.

Omdannelsesnivådata for Eksempel 1 til Eksempel 6 er alle gitt som normaliserte verdier, hvor det stabiliserte omdannelsesnivå som blir oppnådd på den fullstendig forbehandlete katalysator er gitt verdien 100%. Et typisk eksempel på det oppnådde omdannelsesnivå av propan til propen er gitt i Tabell 2. Lignende omdannelsesnivåer er også oppnådd i de øvrige eksempler. Imidlertid viser omdannelsesnivået liten variasjon på grunn av små endringer i reaksjonsbetingelsene, som for eksempel temperaturprofilen i reaktoren og forskjellig partialtrykk i gassene som kommer inn i reaktoren. Conversion level data for Example 1 to Example 6 are all given as normalized values, where the stabilized conversion level achieved on the fully pretreated catalyst is given the value 100%. A typical example of the achieved conversion level of propane to propene is given in Table 2. Similar conversion levels were also achieved in the other examples. However, the conversion level shows little variation due to small changes in the reaction conditions, such as the temperature profile in the reactor and different partial pressures in the gases entering the reactor.

Resultatene viser at ved anvendelse av ROR-forbehandlingsprosedyren beskrevet i NO patent 179131 på den foreliggende katalysator øker aktiviteten til katalysatoren etter hver omdannelsescyklus, bestående av en dehydrogeneringsperiode fulgt av regenerering/oksidasjon og reduksjon. Katalysatoren virker ikke med en optimal ytelse før etter 300 timer i strøm. Ved anvendelse av en forbehandlingsprosedyre bestående av gjentatte cykler av reduksjon og oksidasjoner og en sluttreduksjon (Eksempel 3), blir tiden for å nå den optimale ytelse redusert til omtrent 50-150 timer. Imidlertid må flere dehydrogenerings-regenereringscykler utføres etter forbehandlingsprosedyren i rekkefølge, hvilket gir et høyt og stabilt omdannelsesnivå. The results show that when applying the ROR pretreatment procedure described in NO patent 179131 to the present catalyst, the activity of the catalyst increases after each conversion cycle, consisting of a dehydrogenation period followed by regeneration/oxidation and reduction. The catalyst does not work with an optimal performance until after 300 hours in power. By using a pretreatment procedure consisting of repeated cycles of reduction and oxidation and a final reduction (Example 3), the time to reach the optimum performance is reduced to about 50-150 hours. However, several dehydrogenation-regeneration cycles must be performed after the pretreatment procedure in sequence, which provides a high and stable conversion level.

En forbehandlingsprosedyre som omfattet ovennevnte ROR-prosedyre fulgt av mange cykler bestående av en kort dehydrogeneringsperiode (2 timer, ved 600°) fulgt av regenerering (oksidasjon) og reduksjon i hydrogen (Eksempel 2) redusert forbehandlingstiden til omtrent 80 timer. Når den korte dehydrogeneringsperiode i løpet av forbehandlingen ble utført ved høyere temperatur, dvs. 630-650°C, ble enda kortere forbehandlingstid oppnådd (Eksempel 4). Den innledende ROR-forbehandling kunne også utelukkes ved anvendelse av denne type katalysator-forbehandling. (Eksempel 5 og 6). En forbehandlingstid på 40 timer ble oppnådd ved anvendelse av en forbehandling bestående av en innledende reduksjon fulgt av 5 cykler bestående av dehydrogenering, regenerering og reduksjon. En detaljert beskrivelse av denne prosedyren er gitt i eksempel 5. Etter dette virker forbehandlingskatalysatoren med et omdannelsesnivå på 90% av det optimale omdannelsesnivå. I løpet av to konvensjonelle 20 timers dehydrogeneringsperioder ved 600°C var katalysatorytelsen på et optimumsnivå. A pretreatment procedure comprising the above ROR procedure followed by many cycles consisting of a short dehydrogenation period (2 hours, at 600°) followed by regeneration (oxidation) and reduction in hydrogen (Example 2) reduced the pretreatment time to approximately 80 hours. When the short dehydrogenation period during the pretreatment was carried out at a higher temperature, i.e. 630-650°C, an even shorter pretreatment time was achieved (Example 4). The initial ROR pretreatment could also be excluded by using this type of catalyst pretreatment. (Examples 5 and 6). A pretreatment time of 40 hours was achieved using a pretreatment consisting of an initial reduction followed by 5 cycles consisting of dehydrogenation, regeneration and reduction. A detailed description of this procedure is given in Example 5. After this, the pretreatment catalyst operates with a conversion level of 90% of the optimum conversion level. During two conventional 20 hour dehydrogenation periods at 600°C, the catalyst performance was at an optimum level.

Mislykket forbehandling Failed preprocessing

Eksempel 7: OR Example 7: OR

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: The catalyst was subjected to a pretreatment procedure consisting of the following steps:

1. Oppvarmning fra omgivelsestemperatur til 600°C i nitrogen, 100 ml/min. 1. Heating from ambient temperature to 600°C in nitrogen, 100 ml/min.

2. Oksidasjon i luft. 50 ml/min., 600°C, 10 timer. 2. Oxidation in air. 50 ml/min., 600°C, 10 hours.

3. Reduksjon i H2. 20 ml/min, 600°C, 2 timer. 3. Reduction in H2. 20 ml/min, 600°C, 2 hours.

Omdannelsen etter 5 timer propandehydrogenering (samme testbetingelser som beskrevet i eksempel 1 til 6, 600°C) var 11% og selektiviteten var 94%. The conversion after 5 hours of propane dehydrogenation (same test conditions as described in examples 1 to 6, 600°C) was 11% and the selectivity was 94%.

Eksempel 8: O-Damp-R Example 8: O-Vapor-R

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: 4. Oksidasjon/regenerering av katalysatoren fra eksempel 7 ved anvendelse av en 02/N2-blanding med et gradvis økende 02-innhold. (1, 5 og 10%) 1 time i hvert trinn. Forskjellige 02-innhold ble oppnådd ved fortynning av luft med N2. The catalyst was subjected to a pretreatment procedure consisting of the following steps: 4. Oxidation/regeneration of the catalyst from Example 7 using an O 2 /N 2 mixture with a gradually increasing O 2 content. (1, 5 and 10%) 1 hour in each step. Different O2 contents were obtained by diluting air with N2.

Total strøm: 84 ml/min. T=600°C. Total flow: 84 ml/min. T=600°C.

5. Damping. 140 ml/min., 600°C, 10 timer. 5. Steaming. 140 ml/min., 600°C, 10 hours.

6. Reduksjon i H2. 20 ml/min, 600°C, 2 timer. 6. Reduction in H2. 20 ml/min, 600°C, 2 hours.

Omdannelsen etter 5 timer propandehydrogenering (samme testbetingelser som beskrevet i eksempel 1 til 6, 600°C) var 26% og selektiviteten var 95%. The conversion after 5 hours of propane dehydrogenation (same test conditions as described in examples 1 to 6, 600°C) was 26% and the selectivity was 95%.

Eksempel 9: O-Damp-R Example 9: O-Vapor-R

Katalysatoren ble underkastet en forbehandlingsprosedyre bestående av de følgende trinn: 7. Oksidasjon/regenerering av katalysatoren fra eksempel 8 ved anvendelse av en 02/N2-blanding med et gradvis økende 02-innhold. (1, 5 og 10%) 1 time i hvert trinn. Forskjellige 02-innhold ble oppnådd ved fortynning av luft med N2. The catalyst was subjected to a pretreatment procedure consisting of the following steps: 7. Oxidation/regeneration of the catalyst from example 8 using an 02/N2 mixture with a gradually increasing 02 content. (1, 5 and 10%) 1 hour in each step. Different O2 contents were obtained by diluting air with N2.

Total strøm: 84 ml/min. T=600°C. Total flow: 84 ml/min. T=600°C.

8. Damping. 140 ml/min., 700°C, 10 timer. 8. Steaming. 140 ml/min., 700°C, 10 hours.

9. Reduksjon i H2. 20 ml/min, 600°C, 2 timer. 9. Reduction in H2. 20 ml/min, 600°C, 2 hours.

Omdannelsen etter 5 timer propandehydrogenering (samme testbetingelser som beskrevet i eksempel 1 til 6, 600°C) var 7,5% og selektiviteten var 93,5%. The conversion after 5 hours of propane dehydrogenation (same test conditions as described in examples 1 to 6, 600°C) was 7.5% and the selectivity was 93.5%.

Konklusjon Conclusion

Aktiveringsperioden for Pt/Sn/Mg(AI)0-dehydrogeneringskatalysatoren blir redusert fra 300 timer til omtrent 50 timer ved anvendelse av forbehandlingsprosedyren utviklet i henhold til foreliggende oppfinnelse. Forbehandlingsprosedyren består av en innledende reduksjon av katalysatoren ved anvendelse av hydrogen, fulgt av mange cykler som omfatter en kort dehydrogeneringsperiode. The activation period of the Pt/Sn/Mg(Al)0 dehydrogenation catalyst is reduced from 300 hours to about 50 hours using the pretreatment procedure developed according to the present invention. The pretreatment procedure consists of an initial reduction of the catalyst using hydrogen, followed by many cycles comprising a short dehydrogenation period.

Litteratur sitert Literature cited

Catalytica Oxidative Dehydrogeation and Alternative Dehydrogenation Processes Study No,4192 OD; Catalytica Studies Division: Mountain View, CA, 1993 Catalytica Oxidative Dehydrogeation and Alternative Dehydrogenation Processes Study No,4192 OD; Catalytica Studies Division: Mountain View, CA, 1993

Akporiaye, D., Rønnekleiv, M., Hasselgård, P., NO 179131, 1996, overdratt til Statoil. Akporiaye, D., Rønnekleiv, M., Hasselgård, P., NO 179131, 1996, transferred to Statoil.

Claims (15)

1. Fremgangsmåte for forbehandlingsaktivering av en Pt/Sn-basert katalysator, karakterisert ved at en Pt/Sn/Mg (Al)O-katalysator underkastes flere (gjentatte) cykler av 1. ) reduksjon med H2 ved forhøyede temperaturer. 2. ) alkandehydrogenering ved forhøyede temperaturer; 3. ) oksidasjon/regenerering med en 02-holdig gass ved forhøyede temperaturer;1. Method for pretreatment activation of a Pt/Sn-based catalyst, characterized in that a Pt/Sn/Mg (Al)O catalyst is subjected to several (repeated) cycles of 1. ) reduction with H2 at elevated temperatures. 2. ) alkane dehydrogenation at elevated temperatures; 3. ) oxidation/regeneration with an O2-containing gas at elevated temperatures; 2. Fremgangsmåte ifølge krav 1,karakterisert ved at alkandehydrogeneringen blir utført ved temperaturer i området 500 til 700 °C .2. Method according to claim 1, characterized in that the alkane dehydrogenation is carried out at temperatures in the range 500 to 700 °C. 3. Fremgangsmåte ifølge krav 1,karakterisert ved at oksidasjonen/regenereringen blir utført ved temperaturer i området 500 til 700 °C3. Method according to claim 1, characterized in that the oxidation/regeneration is carried out at temperatures in the range 500 to 700 °C 4. Fremgangsmåte ifølge krav 1,karakterisert ved at reduksjonen med H2 blir utført i området 500 til 700 °C .4. Method according to claim 1, characterized in that the reduction with H2 is carried out in the range 500 to 700 °C. 5. Fremgangsmåte ifølge kravene 1 og 2, karakterisert ved at et lavere alkan dehydrogeneres.5. Method according to claims 1 and 2, characterized in that a lower alkane is dehydrogenated. 6. Fremgangsmåte ifølge kravene 1,3 og 5, karakterisert ved at propan dehydrogeneres.6. Method according to claims 1, 3 and 5, characterized in that propane is dehydrogenated. 7. Fremgangsmåte ifølge kravene 1 og 3, karakterisert ved at oksidasjonen blir utført med en gassformig 02/N2-blanding gradvis økende i 02-innhold.7. Method according to claims 1 and 3, characterized in that the oxidation is carried out with a gaseous 02/N2 mixture gradually increasing in 02 content. 8. Fremgangsmåte ifølge kravene 1 og 7, karakterisert ved at siste del av oksidasjonen blir utført i luft.8. Method according to claims 1 and 7, characterized in that the last part of the oxidation is carried out in air. 9. Fremgangsmåten ifølge krav 1,karakterisert ved at reduksjonen i H2 blir utført i et temperaturområde på 500 til 700 °C .9. The method according to claim 1, characterized in that the reduction in H2 is carried out in a temperature range of 500 to 700 °C. 10. Fremgangsmåte ifølge kravene 1,2, 5 og 6, karakterisert ved at dehydrogeneringen blir utført i ca. 2 timer.10. Method according to claims 1, 2, 5 and 6, characterized in that the dehydrogenation is carried out for approx. 2 hours. 11. Fremgangsmåte ifølge kravenel ,3, 7 og 8, karakterisert ved at den første del av oksidasjonen blir utført i ca. 3 timer, mens siste del av oksidasjonen blir utført i ca. 1 time.11. Method according to claims 1, 3, 7 and 8, characterized in that the first part of the oxidation is carried out for approx. 3 hours, while the last part of the oxidation is carried out for approx. 1 hour. 12. Fremgangsmåte ifølge krav 1,karakterisert ved at reduksjonen i H2 blir utført i ca. 2 timer.12. Method according to claim 1, characterized in that the reduction in H2 is carried out in approx. 2 hours. 13. Fremgangsmåte ifølge kravene 1 til 12, karakterisert ved at antallet cykler er mer enn én.13. Method according to claims 1 to 12, characterized in that the number of cycles is more than one. 14. Fremgangsmåte ifølge kravene 1 til 12, karakterisert ved at antallet cykler er 6 til 12.14. Method according to claims 1 to 12, characterized in that the number of cycles is 6 to 12. 15. Katalysator, karakterisert ved at den er aktivert ved forbehandlingen ifølge kravene 1 til 13.15. Catalyst, characterized in that it is activated during the pretreatment according to claims 1 to 13.
NO19992582A 1999-05-28 1999-05-28 Catalyst pretreatment NO310807B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NO19992582A NO310807B1 (en) 1999-05-28 1999-05-28 Catalyst pretreatment
EP00931745A EP1206319A1 (en) 1999-05-28 2000-05-26 PRETREATMENT OF A Pt/Sn-BASED CATALYST
PCT/NO2000/000175 WO2000072967A1 (en) 1999-05-28 2000-05-26 PRETREATMENT OF A Pt/Sn-BASED CATALYST
AU49575/00A AU4957500A (en) 1999-05-28 2000-05-26 Pretreatment of a pt/sn-based catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO19992582A NO310807B1 (en) 1999-05-28 1999-05-28 Catalyst pretreatment

Publications (3)

Publication Number Publication Date
NO992582D0 NO992582D0 (en) 1999-05-28
NO992582L NO992582L (en) 2000-11-29
NO310807B1 true NO310807B1 (en) 2001-09-03

Family

ID=19903377

Family Applications (1)

Application Number Title Priority Date Filing Date
NO19992582A NO310807B1 (en) 1999-05-28 1999-05-28 Catalyst pretreatment

Country Status (4)

Country Link
EP (1) EP1206319A1 (en)
AU (1) AU4957500A (en)
NO (1) NO310807B1 (en)
WO (1) WO2000072967A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308081C (en) * 2000-12-04 2007-04-04 巴斯福股份公司 Regeneration of dehydrogenation catalyst

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104248968B (en) * 2013-06-28 2017-05-31 中国石油化工股份有限公司 A kind of catalyst of propane direct dehydrogenation propylene and preparation method thereof
CN111686709B (en) * 2020-01-23 2021-06-01 中国科学院大连化学物理研究所 Propane dehydrogenation propylene supported catalyst with specific pore structure and preparation method thereof
CA3228648A1 (en) * 2021-08-13 2023-02-16 Exxonmobil Chemical Patents Inc. Processes for dehydrogenating alkanes and alkyl aromatic hydrocarbons
CN114570364A (en) * 2022-03-28 2022-06-03 福州大学 Pretreatment method of Pt-based catalyst for preparing propylene by propane dehydrogenation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842139A (en) * 1973-03-12 1974-10-15 Gulf Research Development Co Dehydrogenation of paraffins over a platinum magnesium aluminate spinel
FR2603044B1 (en) * 1986-08-25 1988-11-04 Inst Francais Du Petrole PROCESS FOR REGENERATING A HYDROCONVERSION HYDROCONVERSION CATALYST
US5220091A (en) * 1992-02-26 1993-06-15 Phillips Petroleum Company Alkane dehydrogenation
NO179131C (en) * 1993-06-14 1996-08-14 Statoil As Catalyst, process for its preparation and process for dehydrogenation of light paraffins
NO300117B1 (en) * 1994-12-22 1997-04-14 Norske Stats Oljeselskap Reactor for dehydrogenation of hydrocarbons with selective oxidation of hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308081C (en) * 2000-12-04 2007-04-04 巴斯福股份公司 Regeneration of dehydrogenation catalyst

Also Published As

Publication number Publication date
WO2000072967A1 (en) 2000-12-07
AU4957500A (en) 2000-12-18
NO992582D0 (en) 1999-05-28
NO992582L (en) 2000-11-29
EP1206319A1 (en) 2002-05-22

Similar Documents

Publication Publication Date Title
TWI286131B (en) Dehydrogenation of hydrocarbons
KR101644695B1 (en) Dehydrogenation catalyst and manufacturing method same
CN104785256B (en) A kind of preparation method and application of cyclohexane dehydrogenation cyclohexene catalyst
JP5989749B2 (en) Cineol
EP0016852A1 (en) Process for producing C2-C4 hydrocarbons from carbon monoxide and hydrogen
NO821487L (en) CATALYST FOR SELECTIVE HYDROGENATION OF ACETYLEN IN MIXTURE WITH ONE.
Bayahia et al. Ketonisation of carboxylic acids over Zn-Cr oxide in the gas phase
NO310807B1 (en) Catalyst pretreatment
KR20200083497A (en) Dehydrogenation catalyst
US5989457A (en) Process for the production of synthesis gas
NO127901B (en)
Mukainakano et al. Catalytic performance and characterization of Pt–Ni bimetallic catalysts for oxidative steam reforming of methane
CN105642282B (en) A kind of catalyst for dehydrogenation of low-carbon paraffin and its preparation method and application
NO301057B1 (en) Process for Preparing a Supported Dehydrogenation Catalyst and Using the Prepared Catalyst in a Dehydrogenation Process
Virgilio et al. Ru/ReOx/TiO2 Selective and Reusable Catalyst for C− O Hydrogenolysis of C4 Polyols
CA2170330A1 (en) Eggshell catalyst and process for preparation of the same
US5166362A (en) Process for the manufacture of thiophene
Lai et al. Ring-shift isomerization of sym-octahydrophenanthrene into sym-octahydroanthracene. Effects of zeolite catalysts and equilibrium compositions
US20130029839A1 (en) Catalysts for the oxidative reforming of alcohols
EP3681629B1 (en) Palladium-based acetylene selective hydrogenation catalysts enhanced by organic dopants
EP4101815A1 (en) Hydrogen sulfide reforming of hydrocarbons
BR112012004399A2 (en) process to synthesize a compound
Fürcht et al. n-Octane reforming over modified catalysts: effect of regeneration on the catalyst performance
WO2021151813A1 (en) Process for dehydrogenation of a hydrocarbon feed stock in a fixed bed reactor
Sullivan et al. The Nature of Surface Deposits Following Valeric Acid Interactions with Al 2 O 3-Supported Alkaline Earth Oxide Catalysts: Towards Cellulosic Biofuels