NO304077B1 - Petroleum intermediate distillates with improved flow properties in cold - Google Patents

Petroleum intermediate distillates with improved flow properties in cold Download PDF

Info

Publication number
NO304077B1
NO304077B1 NO914443A NO914443A NO304077B1 NO 304077 B1 NO304077 B1 NO 304077B1 NO 914443 A NO914443 A NO 914443A NO 914443 A NO914443 A NO 914443A NO 304077 B1 NO304077 B1 NO 304077B1
Authority
NO
Norway
Prior art keywords
copolymers
weight
monomers
alkyl
vinyl
Prior art date
Application number
NO914443A
Other languages
Norwegian (no)
Other versions
NO914443L (en
NO914443D0 (en
Inventor
Gerd Konrad
Bernd Wenderoth
Klaus Barthold
Erich Schwartz
Hans-Juergen Raubenheimer
Heinrich Hartmann
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Ag filed Critical Basf Ag
Publication of NO914443D0 publication Critical patent/NO914443D0/en
Publication of NO914443L publication Critical patent/NO914443L/en
Publication of NO304077B1 publication Critical patent/NO304077B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2368Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing heterocyclic compounds containing nitrogen in the ring

Abstract

Petroleum middle distillates having improved cold flow characteristics contain small quantities of A) conventional ethylene-based flow improvers and B) copolymers, which consist of at least 70% by weight of one or more monomers of both formulae I and II <IMAGE> and H2C=CH-O-R<3> (II), R<1> being hydrogen or methyl, R<2> being C8- to C18-alkyl and R<3> being C18- to C28-alkyl, and the A/B weight ratio being 40/60 to 95/5.

Description

Den foreliggende oppfinnelse vedrører jordolje-mellomdestillater med forbedrede flytegenskaper i kulde, og det særegne ved mellomdestillatene i henhold til oppfinnelsen er at de inneholder 50-50 00 ppm av en blanding av A) vanlige flytforbedrere på etylenbasis og The present invention relates to petroleum middle distillates with improved flow properties in the cold, and the peculiarity of the middle distillates according to the invention is that they contain 50-50 00 ppm of a mixture of A) common ethylene-based flow improvers and

B) kopolymerer, som består av minst 70 vekt% av én eller B) copolymers, consisting of at least 70% by weight of one or

flere monomerer med formel I og formel II, several monomers of formula I and formula II,

hvor where

R<1>står for hydrogen eller metyl, R<2>for C8- til C18-alkyl, og R<1> stands for hydrogen or methyl, R<2> for C8- to C18-alkyl, and

R<3>for C18- til C28-alkyl, idet vektforholdet mellom A og B er R<3> for C18- to C28-alkyl, the weight ratio between A and B being

40 : 60 til 95 : 5. 40 : 60 to 95 : 5.

Disse og andre trekk ved oppfinnelsen fremgår av patent-kravene. These and other features of the invention appear in the patent claims.

Oppfinnelsen angår således jordolje-mellomdestillater The invention thus relates to petroleum middle distillates

som inneholder små mengder av et vanlig flytforbedrende middel på etylenbasis og kopolymerer av etylenisk umettede estere av karboksylsyrer og langkjedede n-alkanoler med langkjedede alkylvinyletere, og som utmerker seg ved forbedrede flytegenskaper i kulde. which contain small amounts of a common ethylene-based flow-improving agent and copolymers of ethylenically unsaturated esters of carboxylic acids and long-chain n-alkanols with long-chain alkyl vinyl ethers, and which are distinguished by improved flow properties in the cold.

Mellomdestillater, så som gassoljer, dieseloljer eller fyringsoljer, som utvinnes ved destillasjon av jordoljer, har forskjellige innhold av paraffiner alt etter jordoljens opp-rinnelse, og avhengig av bearbeidingsmåten i raffineriet. Spesielt bestemmes kuldeflytforholdene for slike destillater av andelen av langkjedede n-paraffiner. Ved avkjøling utskil-les n-paraffinene som plateformede krystaller som griper inn i hverandre som tannhjul og som bygger opp et tredimensjonalt nettverk (korthusstruktur) hvor det innesluttes store mengder av destillat som ennå er flytende og som således gjøres ube-vegelig. Parallelt med krystalliseringen av n-paraffinene finner det sted en reduksjon i flytevnen og en økning i viskositeten. På grunn av dette vanskeliggjøres tilførselen av mellomdestillatene til forbrenningsaggregatene, de utfelte paraffiner tilstopper filtere foran forbrenningsaggregatene, slik at tilførselen i ekstreme tilfeller kan stoppe fullsten-dig opp. Intermediate distillates, such as gas oils, diesel oils or heating oils, which are obtained by distilling petroleum oils, have different contents of paraffins depending on the origin of the petroleum oil, and depending on the processing method in the refinery. In particular, the cold flow conditions for such distillates are determined by the proportion of long-chain n-paraffins. On cooling, the n-paraffins are separated as plate-shaped crystals which mesh with each other like gears and which build up a three-dimensional network (house of cards structure) in which large quantities of distillate are enclosed which are still liquid and which are thus rendered immobile. Parallel to the crystallization of the n-paraffins, there is a reduction in buoyancy and an increase in viscosity. Because of this, the supply of the intermediate distillates to the combustion units is made difficult, the precipitated paraffins clog filters in front of the combustion units, so that in extreme cases the supply can stop completely.

Det har lenge vært kjent at tilstoppingen av filtere ved lave temperaturer kan motvirkes ved tilsetning av såkalte flytforbedrere. Ved kimdannelse sørger additivene for at det dannes mange små paraffinkrystaller i stedet for få store. Samtidig endres paraffinkrystallenes krystallmodifikasjon, slik at de ovenfor beskrevne små plater ikke dannes. De paraffinkrystaller som dannes ved nærvær av flytforbedrende midler, er så små at de kan passere filtrene, eller det bygges opp en filterkake som er gjennomtrengelig for den ennå flytende andel av mellomdestillatet, slik at det også ved lave temperaturer sikres en drift uten forstyrrelser. It has long been known that the clogging of filters at low temperatures can be counteracted by the addition of so-called flow improvers. During nucleation, the additives ensure that many small paraffin crystals are formed instead of a few large ones. At the same time, the crystal modification of the paraffin crystals changes, so that the small plates described above are not formed. The paraffin crystals that are formed in the presence of flow-improving agents are so small that they can pass the filters, or a filter cake is built up that is permeable to the still liquid part of the middle distillate, so that operation is ensured without disturbances even at low temperatures.

I økende grad forekommer det ved raffineriene mellomdes-tillat -snitt hvor standard-flytforbedrerne oppviser util-strekkelig virkning eller overhodet ingen virkning. Dette er spesielt tilfelle ved såkalte høysnittoljer, det vil si fraksjoner med høyt sluttkokepunkt (kokeslutt > 370°C). Kokeegen-skapene er imidlertid ikke det eneste kriterium. Det forekommer således at standardflytforbedringsmidlet oppviser god virkning i den ene av to fraksjoner med kokekurver som ligner hverandre, men hvor basisråoljene har forskjellig opprinnel-sessted, men ikke i den andre. Flytforbedringsmidlenes virkning blir i henhold til DIN 51 428 bestemt indirekte ved må-ling av "kaldfiltertilstoppingspunktene", ("Cold Filter Plugging Points" CFPP). Increasingly, mid-distillate cuts are occurring at the refineries where the standard flow improvers show insufficient effect or no effect at all. This is particularly the case with so-called high-cut oils, that is, fractions with a high final boiling point (final boiling point > 370°C). However, the cooking properties are not the only criterion. It thus occurs that the standard flow improver exhibits a good effect in one of two fractions with boiling curves that are similar to each other, but where the base crude oils have different places of origin, but not in the other. According to DIN 51 428, the effect of the flow improvers is determined indirectly by measuring the "cold filter plugging points" ("Cold Filter Plugging Points" CFPP).

Som standard kaldflytforbedringsmidler anvendes i og for seg kjente etylenkopolymerer, fremfor alt kopolymerer av etylen og umettede estere, slik de f.eks. beskrives i DE-A-2 102 469 eller i EP-A-84 148. As standard cold flow improvers, known ethylene copolymers are used per se, above all copolymers of ethylene and unsaturated esters, such as those e.g. is described in DE-A-2 102 469 or in EP-A-84 148.

I teknikken er det imidlertid nødvendig med nye flytforbedrere eller kombinasjoner av slike, som også viser god virkning ved de ovenfor beskrevne kritiske oljer. In the technique, however, new flow improvers or combinations of such are needed, which also show good effects with the critical oils described above.

Fra DE-A-1 645 785 er anvendelsen av polymerer med uforgrenede, mettede sidekjeder med minst 18 karbonatomer for nedsettelse av flytepunktet for voksholdig brenselolje kjent. Disse er f.eks. homo- eller kopolymerer av alkylestere av umettede mono- eller dikarboksylsyrer, samt homo- eller kopolymerer av forskjellige alkylvinyletere. From DE-A-1 645 785 the use of polymers with unbranched, saturated side chains with at least 18 carbon atoms for lowering the pour point of waxy fuel oil is known. These are e.g. homo- or copolymers of alkyl esters of unsaturated mono- or dicarboxylic acids, as well as homo- or copolymers of various alkyl vinyl ethers.

DE-A-2 047 448 beskriver tilsetningen av en blanding som består av polyvinyletere og etylen-vinylacetat-kopolymerer til paraffinbaserte råoljer. DE-A-2 047 448 describes the addition of a mixture consisting of polyvinyl ethers and ethylene-vinyl acetate copolymers to paraffin-based crude oils.

I EP-A-360 419 beskrives mellomdestillater som inneholder polymerer av vinyletere med hydrokarbonrester med 1 EP-A-360 419 describes middle distillates containing polymers of vinyl ethers with hydrocarbon residues with 1

til 17 karbonatomer. Som komonomerer nevnes bl.a. hhv. alkylakrylater og -metakrylater. I eksemplene beskrives imidlertid bare polymerer av alkylvinyletere med inntil 4 karbonatomer i sidekjeden. Disse Cx- til C4-vinyletere er kopolymerisert med hhv. malein- og fumarsyrederivater. Eksempler på kopolymerer med akrylsyrederivater er ikke angitt. De angjeldende additiver kan anvendes sammen med andre flytforbedrende midler. to 17 carbon atoms. As comonomers are mentioned, among others respectively alkyl acrylates and methacrylates. In the examples, however, only polymers of alkyl vinyl ethers with up to 4 carbon atoms in the side chain are described. These Cx to C4 vinyl ethers are copolymerized with respectively maleic and fumaric acid derivatives. Examples of copolymers with acrylic acid derivatives are not indicated. The relevant additives can be used together with other flow-improving agents.

Når det gjelder midlenes virkning som kuldeflytforbedrere i mellomdestillater, er disse polymerer imidlertid ikke tilfredsstillende. However, when it comes to the agents' effect as cold flow improvers in middle distillates, these polymers are not satisfactory.

Oppgaven er derfor å finne tilsetninger som oppviser en bedre virkning som kuldeflytforbedrere til mellomdestillater. The task is therefore to find additives that show a better effect as cold flow improvers for middle distillates.

I henhold til dette ble det nå funnet at jordolje-mellomdestillater som inneholder små mengder av A kjente flytforbedrere på etylenbasis og B kopolymerer som i en grad på minst 70 vekt% består av én eller flere monomerer med så-vel formel I som også formel II Accordingly, it was now found that petroleum middle distillates containing small amounts of A known ethylene-based flow improvers and B copolymers which to an extent of at least 70% by weight consist of one or more monomers of both formula I and formula II

hvor where

R<1>betyr hydrogen eller metyl, R<1> means hydrogen or methyl,

R<2>betyr C8- til C18-alkyl, og R<2> means C8- to C18-alkyl, and

R<3>betyr C18- til C28-alkyl, R<3> means C18- to C28-alkyl,

oppfyller disse krav, og dette er grunnlaget for den foreliggende oppfinnelse. meets these requirements, and this is the basis for the present invention.

Vektforholdet mellom monomerer ifølge formel I og monomerer ifølge formel II ligger fordelaktig mellom 10 : 90 og 95 : 5, foretrukket mellom 40 : 60 og 95 : 5, og spesielt foretrukket mellom 60 : 40 og 90 : 10. Forholdet mellom flytforbedrer A og kopolymer B ligger mellom 40 : 60 og 95 : 5, foretrukket mellom 60 : 40 og 95 : 5, og spesielt foretrukket mellom 70 : 30 og 90 : 10. The weight ratio between monomers according to formula I and monomers according to formula II lies advantageously between 10:90 and 95:5, preferably between 40:60 and 95:5, and particularly preferably between 60:40 and 90:10. The ratio between flow improver A and copolymer B is between 40:60 and 95:5, preferably between 60:40 and 95:5, and particularly preferred between 70:30 and 90:10.

Alkylrestene R<2>og R<3>er fortrinnsvis rettkjedede og uforgrenede. De kan imidlertid inneholde inntil 2 0 vekt% cykliske og/eller forgrenede andeler. The alkyl radicals R<2> and R<3> are preferably straight-chain and unbranched. However, they can contain up to 20% by weight of cyclic and/or branched components.

Eksempler på monomerer ifølge formel I er n-oktyl(met)-akrylat, n-decyl(met)akrylat, n-dodecyl(met)akrylat, n-tetra-decyl(met)akrylat, n-heksadecyl(met)akrylat og n-oktadecyl-(met)akrylat, samt blandinger av disse. Examples of monomers according to formula I are n-octyl(meth)acrylate, n-decyl(meth)acrylate, n-dodecyl(meth)acrylate, n-tetradecyl(meth)acrylate, n-hexadecyl(meth)acrylate and n-octadecyl-(meth)acrylate, as well as mixtures thereof.

Eksempler på monomerer ifølge formel II er n-oktadecylvinyleter, n-eicosylvinyleter, n-docosylvinyleter, n-tetra-cosylvinyleter, n-heksacosylvinyleter og n-oktacosylvinyl-eter, samt blandinger av disse. Examples of monomers according to formula II are n-octadecyl vinyl ether, n-eicosyl vinyl ether, n-docosyl vinyl ether, n-tetracosyl vinyl ether, n-hexacosyl vinyl ether and n-octacosyl vinyl ether, as well as mixtures thereof.

Kopolymerene B består i en grad på minst 70 vekt% av monomerer ifølge formlene I og II. I tillegg kan de inneholde inntil 30 vekt% av andre etylenisk umettede monomerer, som f.eks. styren, alkylstyrener, rettkjedede eller forgrenede olefiner med 2-16 karbonatomer, vinylestere av C±- til C5-karboksylsyrer, akrylnitril, N-alkyl-substituerte akryl-amider, N-holdige, etylenisk umettede heterocykliske forbindelser, så som vinylpyrrolidon, vinylimidazol eller vinyl-pyridin, hydroksyl- eller aminogruppe-holdige monomerer som butandiolmonoakrylat, heksandiolmonoakrylat, dimetylamino-etylakrylat, dietylaminoetylakrylat, samt (met)akrylsyre-estere av C1- til C8-alkanoler, så som bl.a. metylmetakrylat, etylakrylat, isobutylakrylat, samt maleinsyre-, fumarsyre- og itakonsyreestere av Cx- til C18-alkanoler. The copolymers B consist to a degree of at least 70% by weight of monomers according to the formulas I and II. In addition, they can contain up to 30% by weight of other ethylenically unsaturated monomers, such as e.g. styrene, alkylstyrenes, straight-chain or branched olefins with 2-16 carbon atoms, vinyl esters of C±- to C5-carboxylic acids, acrylonitrile, N-alkyl-substituted acrylamides, N-containing, ethylenically unsaturated heterocyclic compounds, such as vinylpyrrolidone, vinylimidazole or vinyl pyridine, hydroxyl or amino group-containing monomers such as butanediol monoacrylate, hexanediol monoacrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, as well as (meth)acrylic acid esters of C1 to C8 alkanols, such as e.g. methyl methacrylate, ethyl acrylate, isobutyl acrylate, as well as maleic acid, fumaric acid and itaconic acid esters of Cx- to C18-alkanols.

Eksempler på flytforbedrere A er de allerede nevnte og i DE-A-2 102 469 og EP-A-84 148 beskrevne polymerer, så som kopolymerer av etylen med vinylacetat, vinylpropionat, vinyl-butyrat, vinylpivalat, hhv. med estere av (met)akrylsyre, som er avledet av alkanoler med 1-12 karbonatomer. Blandinger av flere kopolymerer av etylen og vinylacetat (EP-A-261 951, additiv A), kopolymerer av etylen med a-olefiner (EP-A- Examples of flow improvers A are the polymers already mentioned and described in DE-A-2 102 469 and EP-A-84 148, such as copolymers of ethylene with vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, respectively. with esters of (meth)acrylic acid, which are derived from alkanols with 1-12 carbon atoms. Mixtures of several copolymers of ethylene and vinyl acetate (EP-A-261 951, Additive A), copolymers of ethylene with α-olefins (EP-A-

261 957, additiv D), samt de i DE-A-3 624 147 angitte blandinger av terpolymerer av etylen, vinylacetat og diisobuten med oksydert polyetylenvoks, er også egnede. Spesielt foretrukket er kopolymerer av etylen med vinylacetat eller vinylpropionat eller etylheksylakrylat. 261 957, additive D), as well as the mixtures of terpolymers of ethylene, vinyl acetate and diisobutene with oxidized polyethylene wax specified in DE-A-3 624 147 are also suitable. Particularly preferred are copolymers of ethylene with vinyl acetate or vinyl propionate or ethyl hexyl acrylate.

Kopolymerene B oppviser synergistiske virkninger sammen med flytforbedrere. Selv om kopolymerene B alene ikke opp viser noen flytforbedrende virkning eller bare liten slik virkning, overtreffer kombinasjonen av A og B enkeltvirk-ningen i høy grad. The copolymers B exhibit synergistic effects together with flow improvers. Although the copolymers B alone do not show any flow-improving effect or only a small such effect, the combination of A and B surpasses the individual effect to a high degree.

Monomerene ifølge formel I er lett tilgjengelige. De kan f.eks. oppnås ved hjelp av de kjente fremgangsmåter for for-estring. Eksempelvis varmer man opp en løsning av (met)akryl-syre og en alkanol eller en blanding av forskjellige alkanoler i et organisk løsemiddel under tilsetning av de vanlige polymerisasjonsinhibitorer, f.eks. hydrokinonderivater, og forestringskatalysatorer, så som svovelsyre, p-toluensulfon-syre eller sure ionebyttere, til koking og fjerner det dannede reaksjonsvann ved azeotrop destillasjon. Ettersom vinyleter kan polymerisere kationisk under sure betingelser, hhv. nedbrytes ved nærvær av vann og syre under dannelse av acetaldehyd, som ødelegger den radikaliske polymerisasjon, er det nødvendig for fremstilling av kopolymerene B å nøy-tralisere katalysatorsyren samt overskudd av (met)akrylsyre med f.eks. aminer eller fjerne disse forbindelser ved vasking av esterløsningen med alkaliske midler og vann. Spesielt rene estere kan oppnås ved destillasjon av den forurensede ester-løsning. The monomers according to formula I are readily available. They can e.g. is achieved using the known methods for esterification. For example, a solution of (meth)acrylic acid and an alkanol or a mixture of different alkanols is heated in an organic solvent while adding the usual polymerization inhibitors, e.g. hydroquinone derivatives, and esterification catalysts, such as sulfuric acid, p-toluenesulfonic acid or acidic ion exchangers, to boiling and removes the reaction water formed by azeotropic distillation. As vinyl ether can polymerize cationically under acidic conditions, resp. breaks down in the presence of water and acid with the formation of acetaldehyde, which destroys the radical polymerization, it is necessary for the production of the copolymers B to neutralize the catalyst acid as well as the excess of (meth)acrylic acid with e.g. amines or remove these compounds by washing the ester solution with alkaline agents and water. Particularly pure esters can be obtained by distillation of the contaminated ester solution.

Ytterligere muligheter for fremstilling av monomerene ifølge formel I er omsetning av (met)akrylsyreklorid eller -anhydrid med de passende alkanoler, samt den som omestring kjente reaksjon mellom lavere (met)akrylsyreestere og de passende C8- til C18-alkanoler under tilsetning av sure eller basiske katalysatorer og destillativ fjerning av den lavere alkanol. Også ved denne fremstillingsmåte bør esteren oppar-beides i en slik grad at det ikke er mer syre til stede. Further possibilities for producing the monomers according to formula I are the reaction of (meth)acrylic acid chloride or anhydride with the appropriate alkanols, as well as the reaction known as transesterification between lower (meth)acrylic acid esters and the appropriate C8 to C18 alkanols with the addition of acidic or basic catalysts and distillative removal of the lower alkanol. Also with this production method, the ester should be oxidized to such an extent that there is no more acid present.

Vinyleterne ifølge formel II kan oppnås ifølge kjente fremgangsmåter ved omsetning av alkanoler med acetaldehyd og påfølgende vannavspalting, hhv. ved katalytisk addisjon av acetylen på alkanoler. Spesielt rene monomerer kan også her oppnås ved destillasjon. Når det gjelder vinyletere med mer enn 20 - 22 karbonatomer i alkyldelen, er det teknisk vanskelig å gjennomføre en destillasjon hvor det ikke finner sted nedbryting. I slike tilfeller anbefales en rensing ved fil-tras jon, ekstraksjon eller omkrystallisering for fjerning av katalysatorene. The vinyl ethers according to formula II can be obtained according to known methods by reacting alkanols with acetaldehyde and subsequent water splitting, or by catalytic addition of acetylene to alkanols. Particularly pure monomers can also be obtained here by distillation. In the case of vinyl ethers with more than 20 - 22 carbon atoms in the alkyl part, it is technically difficult to carry out a distillation where decomposition does not take place. In such cases, purification by filtration, extraction or recrystallization is recommended to remove the catalysts.

Fremstillingen av kopolymerene (B) foregår etter kjente diskontinuerlige eller kontinuerlige polymerisasjonsmetoder, så som masse-, suspensjons-, fellings- eller løsningspoly-merisasjon, og med initiering med vanlige radikal-avgivere, så som acetylcykloheksansulfonylperoksyd, diacetylperoksy-dikarbonat, dicykloheksylperoksydikarbonat, di-2-etylheksyl-peroksydikarbonat, tert.-butylperneodekanoat, 2,2 '-azobis(4-metoksy-2,4-dimetylvaleronitril), tert.-butylperpivalat, tert.-butylper-2-etyl-heksanoat, tert.-butylpermaleinat, 2,2'-azobis(isobutyronitril), bis-(tert.-butylperoksyd)cykloheksan, tert.-butylperoksyisopropylkarbonat, tert.-butyl-peracetat, dikumylperoksyd, di-tert.-amylperoksyd, di-tert.-butylperoksyd, p-mentanhydroperoksyd, kumol-hydroperoksyd eller tert.-butylhydroperoksyd, og blandinger av disse med hverandre. Vanligvis blir disse initiatorer anvendt i mengder på fra 0,1 til 20 vekt%, og fortrinnsvis 0,2 til 15 vekt%, basert på monomerene. The production of the copolymers (B) takes place according to known discontinuous or continuous polymerization methods, such as mass, suspension, precipitation or solution polymerization, and with initiation with common radical donors, such as acetylcyclohexanesulfonyl peroxide, diacetylperoxydicarbonate, dicyclohexylperoxydicarbonate, di- 2-ethylhexyl peroxydicarbonate, tert-butyl perneodecanoate, 2,2 '-azobis(4-methoxy-2,4-dimethylvaleronitrile), tert-butyl perpivalate, tert-butyl per-2-ethyl hexanoate, tert-butyl permaleinate, 2,2'-azobis(isobutyronitrile), bis-(tert-butyl peroxide) cyclohexane, tert-butyl peroxyisopropyl carbonate, tert-butyl peracetate, dicumyl peroxide, di-tert-amyl peroxide, di-tert-butyl peroxide, p- menthane hydroperoxide, cumene hydroperoxide or tert-butyl hydroperoxide, and mixtures of these with each other. Generally, these initiators are used in amounts of from 0.1 to 20% by weight, and preferably 0.2 to 15% by weight, based on the monomers.

Polymerisasjonen foregår som regel ved temperaturer fra 40 til 400°C, fortrinnsvis 70 til 300°C, idet det ved anven-delse av løsemidler som har koketemperaturer under polymeri-sas j onstemperaturen er hensiktsmessig å arbeide under trykk. Dersom det ikke kan arbeides ved kokebetingelser, er det hensiktsmessig å gjennomføre polymerisasjonen under utelukkelse av luft, f.eks. under nitrogen eller karbondioksyd, ettersom oksygen forsinker polymerisasjonen. Ved medanvendelse av re-doks-koinitiatorer, så som benzoin, dimetylanilin, askorbin-syre og også løselige organiske komplekser av tungmetaller, så som kobber, kobolt, mangan, jern, nikkel og krom, kan om-setningen fremskyndes. De vanligvis anvendte mengder ligger ved 0,1 til 2000 vekt-ppm, fortrinnsvis 0,1 til 1000 vekt-ppm. Ved valg av initiatorer, henholdsvis initiatorsystem, er det ved den valgte polymerisasjonstemperatur hensiktsmessig å påse at halveringstiden for initiatoren eller initiator-systemet er mindre enn 4 timer. The polymerization usually takes place at temperatures from 40 to 400°C, preferably 70 to 300°C, since when using solvents that have boiling temperatures below the polymerization temperature, it is appropriate to work under pressure. If it is not possible to work under boiling conditions, it is appropriate to carry out the polymerization under the exclusion of air, e.g. under nitrogen or carbon dioxide, as oxygen delays polymerization. By co-using redox coinitiators, such as benzoin, dimethylaniline, ascorbic acid and also soluble organic complexes of heavy metals, such as copper, cobalt, manganese, iron, nickel and chromium, the turnover can be accelerated. The amounts usually used are 0.1 to 2000 ppm by weight, preferably 0.1 to 1000 ppm by weight. When choosing initiators or initiator systems, it is appropriate to ensure that the half-life of the initiator or initiator system is less than 4 hours at the selected polymerization temperature.

For å oppnå lavmolekylære kopolymerer er det ofte hensiktsmessig å arbeide i nærvær av kjedeoverføringsmidler. Egnede kjedeoverførere er eksempelvis allylalkoholer, så som 1- buten-3-ol, og organiske merkapto-forbindelser, så som 2- merkaptoetanol, 2-merkaptopropanol, merkaptoeddiksyre, mer- kaptopropionsyre, tert.-butylmerkaptan, n-butylmerkaptan, n-oktylmerkaptan, n-dodecylmerkaptan og tert.-dodecylmerkaptan, som vanligvis anvendes i mengder fra 0,1 til 10 vekt%. In order to obtain low molecular weight copolymers, it is often appropriate to work in the presence of chain transfer agents. Suitable chain transfer agents are, for example, allyl alcohols, such as 1-buten-3-ol, and organic mercapto compounds, such as 2-mercaptoethanol, 2-mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, tert-butyl mercaptan, n-butyl mercaptan, n-octyl mercaptan , n-dodecyl mercaptan and tert.-dodecyl mercaptan, which are usually used in amounts from 0.1 to 10% by weight.

Apparaturer som er egnet for polymerisasjonen er f.eks. vanlige rørekjeler med eksempelvis anker-, blad-, skovlhjul-eller flertrinnsimpuls-motstrøms-rørere, og for kontinuerlig fremstilling rørekjelekaskader, rørreaktorer og statiske blandere. Apparatus suitable for the polymerization are e.g. ordinary stirrers with, for example, armature, blade, paddle wheel or multi-stage impulse counter-current stirrers, and for continuous production stirrer cascades, tubular reactors and static mixers.

Den enkleste polymerisasjonsmetode er massepolymerisa-sjon. Ved denne metode polymeriseres de vinylaromatiske forbindelser og syregruppeholdige monomerer i nærvær av en initiator og i fravær av løsemidler. Det er hensiktsmessig å blande alle monomerer i ønsket sammensetning og å anbringe en liten del, f.eks. ca. 5 - 10%, i reaktoren på forhånd, varme opp under røring til den ønskede polymerisasjonstemperatur og dosere jevnt inn resten av monomerblandingen og initiatoren og eventuelt ko-initiator så vel som kjedeoverfører i løpet av 1 - 10 timer, fortrinnsvis 2-5 timer. Det er derved hensiktsmessig å tildosere initiatoren og også ko-initiatoren atskilt i form av løsninger i en liten mengde av et egnet løsemiddel. Kopolymeren kan så, sammen med flytforbedrings-midlet, tilsettes direkte til mellomdestillatet som stivnet smelte eller etter opptak i et egnet løsemiddel. The simplest polymerization method is mass polymerization. In this method, the vinyl aromatic compounds and monomers containing acid groups are polymerized in the presence of an initiator and in the absence of solvents. It is appropriate to mix all monomers in the desired composition and to place a small portion, e.g. about. 5 - 10%, in the reactor in advance, heat with stirring to the desired polymerization temperature and evenly dose in the rest of the monomer mixture and the initiator and possibly co-initiator as well as chain transfer over the course of 1 - 10 hours, preferably 2-5 hours. It is therefore appropriate to dose the initiator and also the co-initiator separately in the form of solutions in a small amount of a suitable solvent. The copolymer can then, together with the flow improver, be added directly to the intermediate distillate as a solidified melt or after absorption in a suitable solvent.

En kontinuerlig høytrykksprosess, som tillater rom-tid-utbytter fra 1 til 50 kg polymer pr. liter reaktor og time, er også egnet for fremstilling av de ønskede kopolymerer. Som polymerisasjons-apparatur kan f.eks. anvendes en trykkjele, en trykkjelekaskade, et trykkrør eller også en trykkjele med et ettertilkoplet reaksjonsrør som er forsynt med en statisk blander. Man polymeriserer fortrinnsvis monomerene av (met)-akrylsyreestere og vinyletere i minst 2 etter hverandre kob-lede polymerisasjonssoner. I dette tilfelle kan den ene reak-sjonssone bestå av en trykkbestandig kjele, og den andre av en statisk blander som kan varmes opp. Man oppnår derved om-setninger på mer enn 99%. En kopolymer av (met)akrylsyre-estere og vinyletere kan eksempelvis fremstilles ved at man kontinuerlig tilfører monomerene og en egnet initiator til en reaktor eller til to etter hverandre koplede reaksjonssoner, eksempelvis en reaktor-kaskade, og tar ut reaksjonsproduktet kontinuerlig fra reaksjonssonen etter en oppholdstid på fra 2 til 60, fortrinnsvis fra 5 til 30 minutter, ved temperaturer mellom 200 og 400°C. Det er hensiktsmessig å gjennomføre polymerisasjonen ved trykk på mer enn 1 bar, fortrinnsvis mellom 1 og 200 bar. De oppnådde kopolymerer oppviser fast-stoff innhold på over 99%, og kan tilføres mellomdestillatet uten ytterligere behandling. A continuous high-pressure process, which allows space-time yields from 1 to 50 kg of polymer per liter reactor and hour, is also suitable for the production of the desired copolymers. As polymerization equipment, e.g. a pressure boiler, a pressure boiler cascade, a pressure tube or also a pressure boiler with a downstream reaction tube which is equipped with a static mixer is used. The monomers of (meth)-acrylic acid esters and vinyl ethers are preferably polymerized in at least 2 successively connected polymerization zones. In this case, one reaction zone can consist of a pressure-resistant boiler, and the other of a static mixer that can be heated. This results in conversions of more than 99%. A copolymer of (meth)acrylic acid esters and vinyl ethers can, for example, be produced by continuously adding the monomers and a suitable initiator to a reactor or to two successively connected reaction zones, for example a reactor cascade, and removing the reaction product continuously from the reaction zone after a residence time of from 2 to 60, preferably from 5 to 30 minutes, at temperatures between 200 and 400°C. It is appropriate to carry out the polymerization at a pressure of more than 1 bar, preferably between 1 and 200 bar. The copolymers obtained have a solids content of over 99%, and can be added to the middle distillate without further treatment.

En ytterligere enkel metode for fremstilling av kopolymerene B er løsnings-polymerisasjon. Ved løsnings-polymerisasjon blir det anvendt slike løsemidler som monomerene og de dannede kopolymerer er løselige i. For dette er alle løsemid-ler som oppfyller denne betingelse, og som ikke reagerer med monomerene, egnede. Eksempler på slike er toluen, xylen, etylbenzen, kumen, høytkokende aromatblandinger, som f.eks. Solvesso<®>100, 150 og 200, alifatiske og cykloalifatiske hy-drokarboner, som f.eks. n-heksan, cykloheksan, metylcyklo-heksan, n-oktan, iso-oktan, paraffinoljer, Shellsol<®>TD, T og K, samt tetrahydrofuran og dioksan, idet tetrahydrofuran og dioksan er spesielt godt egnede for å oppnå lavmolekylære kopolymerer. Ved gjennomføringen av løsningspolymerisasjonen er det hensiktsmessig å innføre løsemidlet og en del av monomerblandingen på forhånd (f.eks. ca. 5 - 20%), og så tildosere resten av monomerblandingen sammen med initiatoren og eventuelt ko-initiator, kjedeoverfører og løsemiddel. Monomerene kan også tilsettes enkeltvis og med forskjellig hastighet. Dette er å anbefale ved monomerer med sterkt forskjellig reaktivitet, noe som er tilfelle med (met)akrylater og vinyletere, og dersom det ønskes en spesielt jevn for-deling av den mindre reaktive vinyleter. I dette tilfelle tilsettes den mindre reaktive monomer hurtigere og den mer reaktive monomer langsommere. Det er også mulig å anbringe hele mengden av én monomer, fortrinnsvis den mindre reaktive vinyleter, i reaksjonsbeholderen og bare tilsette (met)-akrylatet. Til sist er det også mulig å anbringe alle monomerene og løsemidlet i reaksjonsbeholderen og bare tilsette initiatoren og eventuelt koinitiatoren og kjedeoverføreren A further simple method for producing the copolymers B is solution polymerization. In solution polymerization, solvents are used in which the monomers and the copolymers formed are soluble. For this, all solvents which meet this condition and which do not react with the monomers are suitable. Examples of such are toluene, xylene, ethylbenzene, cumene, high-boiling aromatic mixtures, such as e.g. Solvesso<®>100, 150 and 200, aliphatic and cycloaliphatic hydrocarbons, such as e.g. n-hexane, cyclohexane, methylcyclohexane, n-octane, iso-octane, paraffin oils, Shellsol<®>TD, T and K, as well as tetrahydrofuran and dioxane, tetrahydrofuran and dioxane being particularly suitable for obtaining low molecular weight copolymers. When carrying out the solution polymerization, it is appropriate to introduce the solvent and part of the monomer mixture in advance (e.g. approx. 5 - 20%), and then dose the rest of the monomer mixture together with the initiator and possibly co-initiator, chain transfer and solvent. The monomers can also be added individually and at different rates. This is recommended for monomers with greatly different reactivity, which is the case with (meth)acrylates and vinyl ethers, and if a particularly even distribution of the less reactive vinyl ether is desired. In this case, the less reactive monomer is added faster and the more reactive monomer more slowly. It is also possible to place the entire amount of one monomer, preferably the less reactive vinyl ether, in the reaction vessel and only add the (meth)-acrylate. Finally, it is also possible to place all the monomers and the solvent in the reaction vessel and only add the initiator and possibly the co-initiator and the chain transfer

("sats"-drift). Ved gjennomføring av denne fremgangsmåte i større målestokk kan det imidlertid oppstå problemer med å føre bort varmen slik at denne fremgangsmåte bare bør anvendes ved lav konsentrasjon av de monomerer som skal polymeriseres. Konsentrasjonen av monomerene som skal polymeriseres ligger mellom 20 og 80 vekt%, fortrinnsvis mellom 30 og 70 vekt%. Den faste kopolymer kan uten problemer utvinnes ved fordamping av løsemidlet. Det er imidlertid hensiktsmessig for polymerisasjonen å velge et løsemiddel som er forenlig med mellomdestillatet, slik at polymerisatløsningen kan tilsettes direkte til mellomdestillatet. Løsningspolymerisasjon er den foretrukne fremstillingsform for kopolymerene av (met)akrylsyre og vinyletere. ("rate" operation). When carrying out this method on a larger scale, however, problems may arise with removing the heat so that this method should only be used with a low concentration of the monomers to be polymerised. The concentration of the monomers to be polymerized is between 20 and 80% by weight, preferably between 30 and 70% by weight. The solid copolymer can be easily recovered by evaporation of the solvent. However, it is appropriate for the polymerization to choose a solvent that is compatible with the middle distillate, so that the polymer solution can be added directly to the middle distillate. Solution polymerization is the preferred form of production for the copolymers of (meth)acrylic acid and vinyl ethers.

I teknikken er det nødvendig at additivene ifølge oppfinnelsen, bestående av en flytforbedrer A og en kopolymer B, er tilgjengelige i lett håndterlig form. For dette formål bør polymerene A og B sammen foreligge i form av ett konsentrat, fordi anvendelsen av to konsentrater - ett av hver av polymerene A og B - vanskeliggjør håndteringen. På grunn av den mulige uforenlighet mellom polymerene A og B kan det ved ren sammenblanding av de to polymerer i et felles løsemiddel finne sted faseseparasjon. Denne kan eventuelt undertrykkes ved hjelp av egnede løsemidler og/eller tilsetningsstoffer. Egnet er f.eks. alkanoler, så som iso-butanol, n-heksanol, 2-etylheksanol, iso-dekanol og addukter av disse med etylenoksyd, propylenoksyd og/eller butylenoksyd, alkylfenoler og addukter av disse med etylenoksyd, propylenoksyd og/eller butylenoksyd, samt halvestere eller diestere av dikarboksylsyrer med alkanoler eller (oligo)alkylenoksyd-halvetere, så som mono- eller dibutylftalat, mono- eller di-2-etylheksyl-ftalat eller di(2-metoksyetyl)-ftalat. In the technique, it is necessary that the additives according to the invention, consisting of a flow improver A and a copolymer B, are available in an easily manageable form. For this purpose, the polymers A and B should be present together in the form of one concentrate, because the use of two concentrates - one of each of the polymers A and B - makes handling difficult. Due to the possible incompatibility between the polymers A and B, phase separation can occur when the two polymers are mixed together in a common solvent. This can possibly be suppressed with the help of suitable solvents and/or additives. Suitable is e.g. alkanols, such as iso-butanol, n-hexanol, 2-ethylhexanol, iso-decanol and adducts of these with ethylene oxide, propylene oxide and/or butylene oxide, alkylphenols and adducts of these with ethylene oxide, propylene oxide and/or butylene oxide, as well as half-esters or diesters of dicarboxylic acids with alkanols or (oligo)alkylene oxide half ethers, such as mono- or dibutyl phthalate, mono- or di-2-ethylhexyl phthalate or di(2-methoxyethyl) phthalate.

En ytterligere fremgangsmåte for å unngå en eventuell faseseparasjon består i å pode kopolymer B i det minste del-vis på flytforbedreren. For poding anvendes fortrinnsvis masse- eller løsnings-polymerisasjonen. Polymerisasjonen kan finne sted ifølge en "sats"- eller tilløps-fremgangsmåte. Ved "sats"-fremgangsmåten anbringes hele mengden av flytforbedrer A som podingen skal gjennomføres på, i reaksjonsbeholderen sammen med monomeren, og initiator, samt eventuelt koinitiator og kjedeoverfører doseres til. Ved tilløps-fremgangsmåten anbringes hele mengden av flytforbedrer A som det skal podes på, eventuelt sammen med en del av monomeren, i reaksjonsbeholderen, og resten av monomerene, initiator, samt eventuelt koinitiator og kjedeoverfører doseres til. A further method to avoid possible phase separation consists in grafting copolymer B at least partially onto the flow improver. For grafting, the mass or solution polymerization is preferably used. The polymerization may take place according to a "batch" or batch process. In the "batch" method, the entire amount of flow improver A on which the grafting is to be carried out is placed in the reaction container together with the monomer, and initiator, as well as possibly coinitiator and chain transfer agent are dosed. In the addition method, the entire quantity of flow improver A to be grafted onto, possibly together with part of the monomer, is placed in the reaction vessel, and the rest of the monomers, initiator, and possibly coinitiator and chain transfer are dosed to.

Som allerede nevnt, er det ikke nødvendig å pode kopolymeren B på hele andelen av flytforbedrer A. Eksempelvis poder man ved forhold A : B på 90 : 10 på grunn av rom-tids-ut-bytte, kopolymeren B bare på en andel på 2 til 2 0 vekt% av den samlede mengde A. Ved forhold A : B på 4 0 : 6 0 podes imidlertid på en andel av 30 - 100 vekt% av den samlede mengde av A. As already mentioned, it is not necessary to graft the copolymer B onto the entire proportion of flow improver A. For example, at a ratio A : B of 90 : 10, due to space-time exchange, the copolymer B is grafted only on a proportion of 2 to 20% by weight of the total amount of A. At a ratio of A : B of 40 : 60, however, a proportion of 30 - 100% by weight of the total amount of A is grafted.

Det er heller ikke nødvendig å pode kopolymeren B full-stendig på en del av flytforbedreren A. Dette er i alle tilfeller vanskelig, da det vanligvis ikke oppnås et podeutbytte på 100%, slik at det i de beskrevne konsentrater ved siden av pode-polymerisater og uomsatt eller tilblandet flytforbedrer A heller ikke kan foreligge podet kopolymer B. It is also not necessary to graft the copolymer B completely onto a part of the flow improver A. This is in all cases difficult, as a seed yield of 100% is not usually achieved, so that in the described concentrates next to graft polymers and unreacted or admixed flow improver A cannot also be grafted copolymer B.

K-verdiene [ifølge H. Fikentscher, Cellulosechemie, bd. 13, s. 58 - 64 og 71 - 74 (1932)], bestemt i 2% (vekt/volum) xylenløsning av kopolymerisatene B, ligger mellom 10 og 50, fortrinnsvis mellom 10 og 4 0 og spesielt foretrukket mellom 13 og 30. Det spesielt foretrukne område tilsvarer molekyl-vekter mellom ca. 5.000 og 25.000 g/mol (tallmessige middel-verdier, bestemt ved gelgjennomtrengnings-kromatografi mot polystyren-standarder). The K values [according to H. Fikentscher, Cellulosechemie, vol. 13, pp. 58-64 and 71-74 (1932)], determined in a 2% (w/v) xylene solution of the copolymers B, lie between 10 and 50, preferably between 10 and 40 and particularly preferably between 13 and 30. The particularly preferred range corresponds to molecular weights between approx. 5,000 and 25,000 g/mol (number average values, determined by gel permeation chromatography against polystyrene standards).

Additivene A og B ifølge oppfinnelsen tilsettes sammen til jordolje-mellomdestillatene i mengder på 50 - 5.000 ppm, foretrukket 100 - 2.000 ppm. Additives A and B according to the invention are added together to the petroleum middle distillates in quantities of 50 - 5,000 ppm, preferably 100 - 2,000 ppm.

Mellomdestillatene ifølge oppfinnelsen, som inneholder små mengder av en flytforbedrer A og en kopolymer B, kan alt etter anvendelsesformål også inneholde andre additiver eller tilsetningsstoffer, så som dispergeringsmidler, anti-skumad-ditiver, korrosjonsbeskyttelsesmidler, anti-oksydanter, farvestoffer, m.a. The intermediate distillates according to the invention, which contain small amounts of a flow improver A and a copolymer B, may, depending on the intended use, also contain other additives or additives, such as dispersants, anti-foam additives, corrosion protection agents, antioxidants, dyes, e.g.

Oppfinnelsen skal forklares ved hjelp av de følgende eksempler: Fremstillin<g>av kopolymerene B ifølge oppfinnelsen Eksempel 1 The invention shall be explained with the help of the following examples: Preparation of the copolymers B according to the invention Example 1

I en reaktor som var utstyrt med røreverk, oppvarmings-og tilsetningsinnretning, ble 144 g laurylakrylat, 16 g n-oktadecylvinyleter, 0,16 g 2-merkaptoetanol, 65 mg trietylamin og 69 g toluen oppvarmet til 100°C i svak nitrogenstrøm under omrøring, og i løpet av 4 timer ble det jevnt tilsatt en løs-ning av 0,64 g tert.-butylper-2-etylheksanoat i 38,2 g toluen. Deretter ble blandingen ettervarmet enda 1 time ved 100°C og fortynnet med ca. 54 g toluen. Det ble oppnådd en klar, gulaktig, ca. 50 vekt% løsning. Polymerens K-verdi var 24,8. In a reactor equipped with a stirrer, heating and addition device, 144 g of lauryl acrylate, 16 g of n-octadecyl vinyl ether, 0.16 g of 2-mercaptoethanol, 65 mg of triethylamine and 69 g of toluene were heated to 100°C in a gentle stream of nitrogen with stirring , and over the course of 4 hours a solution of 0.64 g of tert-butyl per-2-ethylhexanoate in 38.2 g of toluene was added evenly. The mixture was then reheated for another 1 hour at 100°C and diluted with approx. 54 g of toluene. A clear, yellowish, approx. 50% by weight solution. The K value of the polymer was 24.8.

Eksempel 2 Example 2

I en reaktor ifølge eksempel 1 ble 144 g laurylakrylat, 16 g n-oktadecylvinyleter og 68,6 g Solvesso® 150 (høyt-kokende aromatblanding fra firma Esso) oppvarmet til 80°C i en svak nitrogenstrøm under omrøring og i løpet av 4 timer jevnt tilsatt en løsning av 0,48 g azoisobutyronitril i 30 g Solvesso<®>150. Deretter ble det tilsatt en løsning av 0,16 g azoisobutyronitril i 8,5 g Solvesso<®>150, ettervarmet i 2 timer ved 80°C og fortynnet med 53,5 g Solvesso<®>150. Det ble oppnådd en klar, farveløs, viskøs, ca. 50 vekt% løsning. Polymerens K-verdi var 2 8,3. In a reactor according to example 1, 144 g of lauryl acrylate, 16 g of n-octadecyl vinyl ether and 68.6 g of Solvesso® 150 (high-boiling aromatic mixture from the company Esso) were heated to 80°C in a weak stream of nitrogen with stirring and during 4 hours evenly added a solution of 0.48 g azoisobutyronitrile in 30 g Solvesso<®>150. A solution of 0.16 g of azoisobutyronitrile in 8.5 g of Solvesso<®>150 was then added, reheated for 2 hours at 80°C and diluted with 53.5 g of Solvesso<®>150. A clear, colorless, viscous, approx. 50% by weight solution. The K value of the polymer was 2 8.3.

Eksempel 3 Example 3

I en reaktor ifølge eksempel 1 ble 29,2 g laurylakrylat, 7,3 g n-oktadecylvinyleter og 55,4 g Shellsol<®>K In a reactor according to example 1, 29.2 g of lauryl acrylate, 7.3 g of n-octadecyl vinyl ether and 55.4 g of Shellsol<®>K

(høytkokende n- og iso-paraffinblanding fra firma Shell) (high-boiling n- and iso-paraffin mixture from the company Shell)

oppvarmet til 100°C i svak nitrogenstrøm under omrøring og i løpet av 2 timer jevnt tilsatt en løsning av 102,1 g laurylakrylat, 26,0 g n-vinyloktadecyleter og 14,6 g Shellsol<®>K, samt i løpet av 4 timer en løsning av 0,5 g tert.-butyl-per-2 -etylheksanoat i 25 g Shellsol<®>K. Deretter ble det heated to 100°C in a weak stream of nitrogen with stirring and over the course of 2 hours a solution of 102.1 g of lauryl acrylate, 26.0 g of n-vinyl octadecyl ether and 14.6 g of Shellsol<®>K, and over the course of 4 hours a solution of 0.5 g of tert.-butyl-per-2-ethyl hexanoate in 25 g of Shellsol<®>K. Then it was

tilsatt en løsning av 0,17 g tert.-butylper-2-etylheksanoat i 4,2 g Shellsol<®>K, ettervarmet ved 100°C i 1 time og fortynnet med 67,5 g Shellsol<®>K. Det ble oppnådd en klar, farveløs, svakt viskøs polymerløsning. Polymerens K-verdi var 19, 6 . added a solution of 0.17 g of tert-butyl per-2-ethyl hexanoate in 4.2 g of Shellsol<®>K, reheated at 100°C for 1 hour and diluted with 67.5 g of Shellsol<®>K. A clear, colorless, slightly viscous polymer solution was obtained. The K value of the polymer was 19.6.

Eksemplene 4-18 ble fremstilt ifølge fremgangsmåter som tilsvarte fremgangsmåtene i eksempel 3. Examples 4-18 were prepared according to methods which corresponded to the methods in example 3.

LA Laurylakrylat = n-alkylakrylat-blanding, fremstilt av en fettalkoholblanding av vanlig handelstype, bestående av maksimalt 1,5 vekt% n-dekanol, 51 - 57 vekt% n-dodekanol, 41 - 47 vekt% n-tetradekanol og LA Lauryl acrylate = n-alkyl acrylate mixture, prepared from a commercial fatty alcohol mixture, consisting of a maximum of 1.5% by weight n-decanol, 51 - 57% by weight n-dodecanol, 41 - 47% by weight n-tetradecanol and

maks. 1,5 vekt% n-heksadekanol. max. 1.5% by weight n-hexadecanol.

A8-18 n-Alkylakrylat-blanding, fremstilt av en fettalkoholblanding av vanlig handelstype, bestående av 5 - 8 vekt% n-oktanol, 5-7 vekt% n-dekanol, 44 - 50 A8-18 n-Alkyl acrylate mixture, prepared from a fatty alcohol mixture of the usual commercial type, consisting of 5 - 8% by weight n-octanol, 5-7% by weight n-decanol, 44 - 50

vekt% n-dodekanol, 14 - 20 vekt% n-tetradekanol, 8 - 10 vekt% n-heksadekanol og 8 - 12 vekt% n-oktadekanol. wt% n-dodecanol, 14-20 wt% n-tetradecanol, 8-10 wt% n-hexadecanol and 8-12 wt% n-octadecanol.

V18 n-Oktadecylvinyleter V18 n-Octadecyl vinyl ether

V1822 n-Alkylvinyleter-blanding, fremstilt av en fettalkoholblanding av vanlig handelstype, bestående av 41 - 43 vekt% n-oktadekanol, 9-13 vekt% n-eicosanol og V1822 n-Alkylvinyl ether mixture, prepared from a commercial fatty alcohol mixture, consisting of 41-43% by weight n-octadecanol, 9-13% by weight n-eicosanol and

43 - 46 vekt% n-docosanol. 43 - 46% by weight n-docosanol.

V20+ n-Alkylvinyleter-blanding, fremstilt av en fettalkoholblanding av vanlig handelstype, bestående av maksimalt 6 vekt% n-oktadekanol, 40 - 60 vekt% n-eicosanol, 23 - 35 vekt% n-docosanol, 10 - 18 vekt% n-tetracosanol og 2-8 vekt% n-heksacosanol. V20+ n-Alkylvinyl ether mixture, prepared from a commercial grade fatty alcohol mixture, consisting of a maximum of 6% by weight n-octadecanol, 40 - 60% by weight n-eicosanol, 23 - 35% by weight n-docosanol, 10 - 18% by weight n- tetracosanol and 2-8% by weight n-hexacosanol.

Vpr Vinylpropionat Vpr Vinyl Propionate

SK Shellsol<®>K SK Shellsol<®>K

V i-4 Isopropylvinyleter V i-4 Isopropyl vinyl ether

C-heks Cykloheksan C-hex Cyclohexane

TBPO tert.-butylper-2-etylheksanoat TBPO tert-butyl per-2-ethyl hexanoate

AIBN Azoisobutyronitril AIBN Azoisobutyronitrile

Eksempel 19 Example 19

(Sammenligningsforsøk analogt EP-A-360 419, eksempel C4) (Comparison test analogous to EP-A-360 419, example C4)

I en reaktor ifølge eksempel 1, ble 51,4 g (ca. 0,1 mol) di-n-tetradecylfumarat og 10,0 g (0,1 mol) n-butylvinyl-eter oppvarmet til 90°C med svak nitrogenstrøm og omrøring. Deretter ble det tilsatt 0,4 g AIBN og polymerisert i 6 timer, idet det hver time ble tilsatt ytterligere 0,1 g AIBN. Det ble oppnådd en viskøs, 99 vekt% polymerløsning med K-verdi 11,5. In a reactor according to Example 1, 51.4 g (about 0.1 mol) of di-n-tetradecyl fumarate and 10.0 g (0.1 mol) of n-butyl vinyl ether were heated to 90°C with a weak stream of nitrogen and stirring. Then 0.4 g of AIBN was added and polymerized for 6 hours, with a further 0.1 g of AIBN being added every hour. A viscous, 99% by weight polymer solution with a K-value of 11.5 was obtained.

Eksempel 2 0 Example 2 0

(Sammenligningsforsøk analogt DE-A-1 645 785) (Comparison test analogous to DE-A-1 645 785)

I en reaktor ifølge eksempel 1, ble det anbrakt 1,5 g bortrifluor-eterat i 187,5 toluen og ved 30°C ble en løsning av 90 g n-oktadecylvinyleter i 22,5 g toluen tilsatt jevnt i løpet av 1 time; det ble omrørt i ytterligere 10 minutter, og polymerisasjonen ble avsluttet ved tilsetning av 5 ml meta-nol. Polymerløsningen ble utfelt i aceton og tørket i vakuum. K-verdien var 15,4. In a reactor according to example 1, 1.5 g of boron trifluoroetherate was placed in 187.5 g of toluene and at 30°C a solution of 90 g of n-octadecyl vinyl ether in 22.5 g of toluene was added evenly over the course of 1 hour; it was stirred for another 10 minutes, and the polymerization was terminated by the addition of 5 ml of methanol. The polymer solution was precipitated in acetone and dried in vacuum. The K value was 15.4.

Eksemplene 17 - 2 0 er sammenligningseksempler og ikke noen del av foreliggende oppfinnelse. Examples 17 - 20 are comparative examples and not part of the present invention.

Eksempel 21 Example 21

Poding av laurylakrylat og n-oktadecylvinyleter på en flytforbedrer bestående av 60 vekt% etylen og 40 vekt% vinylpropionat med en midlere molekylvekt på ca. 2.500 (bestemt ved hjelp av damptrykkosmometri) = Fl(A). Grafting of lauryl acrylate and n-octadecyl vinyl ether on a flow improver consisting of 60% by weight ethylene and 40% by weight vinyl propionate with an average molecular weight of approx. 2,500 (determined by vapor pressure osmometry) = Fl(A).

I en reaktor ifølge eksempel 1, ble 215 g av flytforbedreren Fl(A) og 86 g Shellsol<®>K oppvarmet til 100°C i svak nitrogenstrøm og under omrøring. Til dette ble det tilsatt 86 g av en blanding av 516 g laurylakrylat, 129 g n-oktadecylvinyleter og 73,1 g Shellsol<®>K, og resten av blandingen ble jevnt tilsatt i løpet av 2 timer. Samtidig ble det jevnt i løpet av 4 timer tilsatt 1,94 g tert.-butylper-2-etylheksa-noat, oppløst i 64,5 g Shellsol<®>K. Deretter ble en løsning av 0,65 g tert.-butylper-2-etylheksanoat i 21,5 g Shellsol<®>K tilsatt, det ble ettervarmet i 1 time og fortynnet med 615 g Solvesso<®>150 (høytkokende aromatblanding fra firma Esso). Det ble oppnådd en ca. 50 vekt%, svakt uklar polymerløsning med K-verdi 25,2. Av denne ble 80 g blandet med 110 g Fl(A) og 110 Solvesso® 150 ved 60°C. Det ble ved romtemperatur oppnådd en uklar blanding som består av ialt ca. 80 deler flytforbedrer Fl(A) og 20 deler kopolymer B. Blandingen er stabil i mer enn 10 uker ved romtemperatur. In a reactor according to example 1, 215 g of the flow improver Fl(A) and 86 g of Shellsol<®>K were heated to 100°C in a weak stream of nitrogen and with stirring. To this was added 86 g of a mixture of 516 g of lauryl acrylate, 129 g of n-octadecyl vinyl ether and 73.1 g of Shellsol<®>K, and the rest of the mixture was added evenly over the course of 2 hours. At the same time, 1.94 g of tert-butyl per-2-ethyl hexanoate, dissolved in 64.5 g of Shellsol<®>K, was added evenly over the course of 4 hours. Then a solution of 0.65 g of tert.-butyl per-2-ethylhexanoate in 21.5 g of Shellsol<®>K was added, it was reheated for 1 hour and diluted with 615 g of Solvesso<®>150 (high-boiling aromatic mixture from Esso). An approx. 50% by weight, slightly cloudy polymer solution with K-value 25.2. Of this, 80 g were mixed with 110 g Fl(A) and 110 Solvesso® 150 at 60°C. At room temperature, a cloudy mixture was obtained which consists of a total of approx. 80 parts flow improver Fl(A) and 20 parts copolymer B. The mixture is stable for more than 10 weeks at room temperature.

Anvendelseseksempler Application examples

I det følgende betyr: In the following means:

Fl = flytforbedrer, spesielt Fl = flow improver, esp

Fl(A) etylen/vinylpropionat (med ca. 40 vekt% vinylpropionat) med en midlere molekylvekt på ca. 2.500 Fl(A) ethylene/vinyl propionate (with approx. 40% by weight vinyl propionate) with an average molecular weight of approx. 2,500

(bestemt ved hjelp av damptrykk-osmometri) (determined by vapor pressure osmometry)

Fl(B) etylen/vinylpropionat (med ca. 30 vekt% vinylpropionat) med en midlere molekylvekt på ca. 2.500 Fl(C) etylen/vinylacetat (med ca. 30 vekt% vinylacetat) Fl(B) ethylene/vinyl propionate (with approx. 30% by weight vinyl propionate) with an average molecular weight of approx. 2,500 Fl(C) ethylene/vinyl acetate (with approx. 30% by weight vinyl acetate)

med en midlere molekylvekt på ca. 2.500 with an average molecular weight of approx. 2,500

Ved flytforbedrerne Fl(A), Fl(B) og Fl(C) dreier det seg om produkter av vanlig handelstype, f.eks. Keroflux<®->merkene fra firma BASF. The flow improvers Fl(A), Fl(B) and Fl(C) are products of the usual commercial type, e.g. The Keroflux<®->brands from the company BASF.

Som mellomdestillater ble det anvendt brenseloljer og dieselbrennstoffer av vesttysk raffinerikvalitet av den type som vanligvis er å få i handelen. De er betegnet som mellomdestillater I, II, III og IV. As middle distillates, fuel oils and diesel fuels of West German refinery quality of the type usually available in the trade were used. They are designated as middle distillates I, II, III and IV.

Testmetode: Test method:

"Kaldfiltertilstoppingspunktet" ("Cold Filter Plugging Point"), CFPP) ble undersøkt ifølge DIN 51428. Resultatene er sammenfattet i følgende tabell. The "Cold Filter Plugging Point" ("Cold Filter Plugging Point"), CFPP) was examined according to DIN 51428. The results are summarized in the following table.

Som de foran angitte eksempler viser, virker de vanlige flytforbedrere Fl(A), Fl(B) og Fl(C) bare utilfredsstil-lende i mellomdestillater. Tilsetning av bare kopolymerene ifølge oppfinnelsen fører heller til en forverring av mellom-destillatenes CFPP. Den synergistiske virkning av flytforbedrere og kopolymerer ifølge oppfinnelsen tydeliggjøres ved hjelp av eksemplene 7-40. As the above-mentioned examples show, the usual flow improvers Fl(A), Fl(B) and Fl(C) only work unsatisfactorily in middle distillates. Addition of only the copolymers according to the invention rather leads to a deterioration of the CFPP of the middle distillates. The synergistic effect of flow improvers and copolymers according to the invention is made clear by means of examples 7-40.

Som sammenligningseksemplene viser, forårsaker hverken polyakrylatet (eksempel 42) eller polyvinyleteren (eksempel 45) sammen med de vanlige flytforbedrere en tilfredsstillende senking av CFPP. Også de i EP-A-360 419 beskrevne kopolymerer med kortkjedede vinyletere (eksempel 43 og 44) viste seg å være uvirksomme i de foran angitte oljer, mens kopolymerisatene ifølge oppfinnelsen av alkylakrylater, langkjedede vinyletere og eventuelt en ytterligere monomer i kombinasjon med Fl(A), Fl(B) eller Fl(C) senket CFPP betydelig ved lav dosering. As the comparative examples show, neither the polyacrylate (Example 42) nor the polyvinyl ether (Example 45) together with the usual flow improvers cause a satisfactory lowering of the CFPP. Also the copolymers with short-chain vinyl ethers described in EP-A-360 419 (examples 43 and 44) proved to be ineffective in the above-mentioned oils, while the copolymers according to the invention of alkyl acrylates, long-chain vinyl ethers and possibly a further monomer in combination with Fl( A), Fl(B) or Fl(C) significantly lowered CFPP at low dosage.

Claims (5)

1. Jordolje-mellomdestillater med forbedrede flytegenskaper i kulde, karakterisert vedat de inneholder 50-5000 ppm av en blanding av A) vanlige flytforbedrere på etylenbasis og B) kopolymerer, som består av minst 70 vekt% av én eller flere monomerer med formel I og formel II, 1. Petroleum middle distillates with improved flow properties in cold, characterized in that they contain 50-5000 ppm of a mixture of A) common ethylene-based flow improvers and B) copolymers, consisting of at least 70% by weight of one or several monomers of formula I and formula II, hvor R<1>står for hydrogen eller metyl, R<2>for C8- til C18-alkyl, og R3 for C18- til C28-alkyl, idet vektforholdet mellom A og B er 40 : 60 til 95 : 5.where R<1> stands for hydrogen or methyl, R<2> for C8- to C18-alkyl, and R3 for C18- to C28-alkyl, the weight ratio between A and B being 40:60 to 95:5. 2. Jordolje-mellomdestillater ifølge krav 1,karakterisert vedat mengdeforholdet mellom monomerene ifølge formel I og monomerene ifølge formel II i kopolymerene B er 10 : 90 til 95 : 5.2. Petroleum middle distillates according to claim 1, characterized in that the quantity ratio between the monomers according to formula I and the monomers according to formula II in the copolymers B is 10:90 to 95:5. 3. Jordolje-mellomdestillater ifølge krav 1,karakterisert vedat alkylsubstituentene i kopolymerene B er rettkjedede og uforgrenede.3. Petroleum middle distillates according to claim 1, characterized in that the alkyl substituents in the copolymers B are straight-chain and unbranched. 4. Jordolje-mellomdestillater ifølge krav 1,karakterisert vedat kopolymerene inneholder inntil 3 0 vekt% av andre etylenisk umettede monomerer.4. Petroleum middle distillates according to claim 1, characterized in that the copolymers contain up to 30% by weight of other ethylenically unsaturated monomers. 5. Jordolje-mellomdestillater ifølge krav 1,karakterisert vedat det som vanlige flytforbedrere anvendes kopolymerer av etylen med vinylacetat, vinylpropionat eller etylheksylakrylat.5. Petroleum middle distillates according to claim 1, characterized in that copolymers of ethylene with vinyl acetate, vinyl propionate or ethylhexyl acrylate are used as common flow improvers.
NO914443A 1990-11-14 1991-11-13 Petroleum intermediate distillates with improved flow properties in cold NO304077B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4036227A DE4036227A1 (en) 1990-11-14 1990-11-14 PETROLEUM DISTILLATES WITH IMPROVED FLOW PROPERTIES IN THE COLD

Publications (3)

Publication Number Publication Date
NO914443D0 NO914443D0 (en) 1991-11-13
NO914443L NO914443L (en) 1992-05-15
NO304077B1 true NO304077B1 (en) 1998-10-19

Family

ID=6418231

Family Applications (1)

Application Number Title Priority Date Filing Date
NO914443A NO304077B1 (en) 1990-11-14 1991-11-13 Petroleum intermediate distillates with improved flow properties in cold

Country Status (7)

Country Link
EP (1) EP0486836B1 (en)
AT (1) ATE118529T1 (en)
CA (1) CA2055418A1 (en)
DE (2) DE4036227A1 (en)
ES (1) ES2068464T3 (en)
FI (1) FI105824B (en)
NO (1) NO304077B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710652B1 (en) * 1993-09-30 1995-12-01 Elf Antar France Composition of cold operability additives for middle distillates.
ES2402928T3 (en) * 2003-10-22 2013-05-10 Innospec Leuna Gmbh Composition from mineral oil and a mixture of additives
PL2305753T3 (en) 2009-09-25 2012-07-31 Evonik Oil Additives Gmbh A composition to improve cold flow properties of fuel oils
WO2014095408A1 (en) 2012-12-18 2014-06-26 Basf Se Polymer formulations in solvents with a high flash point, method for the production thereof and use thereof as pour-point depressants for crude oils, mineral oils or mineral oil products
CA2889070C (en) 2012-12-18 2017-11-28 Basf Se Polymeric compositions composed of ethylene-vinyl ester copolymers alkyl (meth)acrylates, processes for production thereof and use thereof as pour point depressants for crude oils, mineral oils or mineral oil products
US9574146B2 (en) 2012-12-18 2017-02-21 Basf Se Polymeric compositions composed of ethylene-vinyl ester copolymers alkyl (meth)acrylates, processes for production thereof and use thereof as pour point depressants for crude oils, mineral oils or mineral oil products
AR100387A1 (en) 2014-02-18 2016-10-05 Basf Se COPOLYMERS UNDERSTANDING ETHYLENE, VINYL ESTERS AND ACRYLIC ACID (MET) ESTERS, THEIR FORMULATIONS AND USES AS A FLUIDITY POINT DEPRESSOR, WAX INHIBITOR AND FLOW OIL POTENTIATOR
WO2016061110A1 (en) 2014-10-13 2016-04-21 Avery Dennison Corporation Vinyl acetate-ethylene / acrylic polymer emulsions and products and methods relating thereto
DE102015226635A1 (en) 2015-12-23 2017-06-29 Clariant International Ltd Polymer compositions with improved handleability
EP3774997A1 (en) 2018-03-26 2021-02-17 Basf Se Hyperbranched polyethers and their use, especially as pour point depressant and wax inhibitors
EP3798261A1 (en) 2019-09-26 2021-03-31 Clariant International Ltd Polymer compositions and their use as pour point depressant in paraffin-containing hydrocarbon oils

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL148099B (en) * 1966-03-17 1975-12-15 Shell Int Research PROCEDURE FOR REDUCING THE FLOOD POINT OF A FUEL MIXTURE.
NL6709453A (en) * 1967-07-07 1969-01-09
US3961915A (en) * 1974-12-27 1976-06-08 Exxon Research And Engineering Company Synergistic additive in petroleum middle distillate fuel
FR2572410B1 (en) * 1984-10-25 1987-09-04 Elf Aquitaine ETHYLENE GRAFT COPOLYMERS USED IN PARTICULAR AS ADDITIVES FOR THE INHIBITION OF PARAFFIN DEPOSITION IN CRUDE OILS AND COMPOSITIONS CONTAINING THE OILS AND ADDITIVES
FR2592658B1 (en) * 1986-01-09 1988-11-04 Inst Francais Du Petrole ADDITIVE COMPOSITIONS IN PARTICULAR FOR IMPROVING THE COLD FILTRABILITY PROPERTIES OF MEDIUM OIL DISTILLATES.
GB8820071D0 (en) * 1988-08-24 1988-09-28 Exxon Chemical Patents Inc Fuel compositions
DE3905681A1 (en) * 1989-02-24 1990-08-30 Basf Ag CONCENTRATED MIXTURES OF GAPPOPOLYMERISATS FROM ESTERS OF UNSATURATED ACIDS AND ETHYLENE-VINYLESTER COPOLYMERISATS

Also Published As

Publication number Publication date
ATE118529T1 (en) 1995-03-15
NO914443L (en) 1992-05-15
NO914443D0 (en) 1991-11-13
FI915126A (en) 1992-05-15
DE59104601D1 (en) 1995-03-23
EP0486836B1 (en) 1995-02-15
FI105824B (en) 2000-10-13
CA2055418A1 (en) 1992-05-15
EP0486836A1 (en) 1992-05-27
ES2068464T3 (en) 1995-04-16
FI915126A0 (en) 1991-10-30
DE4036227A1 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
CA2112855C (en) Terpolymers based on .alpha.,.beta.-unsaturated dicarboxylic anhydrides .alpha.,.beta.-unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols
US5178641A (en) Middle distillates of crude oil having improved cold flow properties
NO310826B1 (en) Terpolymerisates of ethylene, their process for preparation, mixtures as well as mineral oil or mineral oil distillates of the same
SU1660588A3 (en) Method for preventing crystallization of crude oil
NO304077B1 (en) Petroleum intermediate distillates with improved flow properties in cold
EP1144555B1 (en) Fuel additiive-compositions
CA2008986A1 (en) Concentraded mixtures of graft copolymers of esters of unsaturated acids and ethylene/vinyl ester copolymers
US3841850A (en) Hydrocarbon oil containing ethylene copolymer pour depressant
NO327199B1 (en) Acrylic copolymers as additives for the inhibition of paraffin deposits in crude oils and mixtures containing these
JP4803774B2 (en) Copolymers based on ethylene and unsaturated carboxylic acid esters and their use as additives for mineral oils
AU680915B2 (en) Polymeric flow improver additives
CA3009541A1 (en) Polymer compositions allowing easier handling
CA2032246A1 (en) Low-temperature-stable petroleum middle distillates, containing polymers as paraffin dispersants
US10703840B2 (en) Method for the preparation of copolymers of alkyl methacrylates and maleic anhydride
NO315564B1 (en) Ethylene-based copolymers and their use as flow enhancers for petroleum intermediate distillates
EP0485774B1 (en) Petrolium middle distillate with improved cold flowcharacteristics
CA2242517C (en) Fuel oils based on middle distillates and copolymers of ethylene and unsaturated carboxylic esters
WO2016097039A1 (en) Method for the preparation of copolymers of alkyl methacrylates and maleic anhydride
US4772673A (en) Ethylene copolymers
JPH1171485A (en) Flow improver for mineral oil
JPS6017476B2 (en) Cold fluidity improver for petroleum products
US3151957A (en) Hydrocarbon fuel composition of improved pour point
NO310361B1 (en) Copolymers based on diketene, ethylenically unsaturated dicarboxylic acids or dicarboxylic acid derivatives and ethylenic unsaturated hydrocarbons, process for their preparation, modified copolymers and use of the copolymers
SU1659425A1 (en) Method for obtaining ethylene copolymers
CA3150553A1 (en) Polymer compositions and use thereof as pour point depressants in paraffin-containing hydrocarbon oils

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees