NO300293B1 - Plant for the production of liquefied natural gas - Google Patents

Plant for the production of liquefied natural gas Download PDF

Info

Publication number
NO300293B1
NO300293B1 NO960911A NO960911A NO300293B1 NO 300293 B1 NO300293 B1 NO 300293B1 NO 960911 A NO960911 A NO 960911A NO 960911 A NO960911 A NO 960911A NO 300293 B1 NO300293 B1 NO 300293B1
Authority
NO
Norway
Prior art keywords
gas turbine
cooling circuit
gas
plant
compressor
Prior art date
Application number
NO960911A
Other languages
Norwegian (no)
Other versions
NO960911D0 (en
NO960911A (en
Inventor
Ove Muri
Pentti Paurola
Original Assignee
Norske Stats Oljeselskap
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norske Stats Oljeselskap filed Critical Norske Stats Oljeselskap
Priority to NO960911A priority Critical patent/NO960911A/en
Publication of NO960911D0 publication Critical patent/NO960911D0/en
Priority to AU21067/97A priority patent/AU717114C/en
Priority to PCT/NO1997/000062 priority patent/WO1997033131A1/en
Priority to MYPI97000864A priority patent/MY117996A/en
Priority to IDP970663A priority patent/ID16118A/en
Publication of NO300293B1 publication Critical patent/NO300293B1/en
Publication of NO960911A publication Critical patent/NO960911A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0247Different modes, i.e. 'runs', of operation; Process control start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0298Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Oppfinnelsen angår et anlegg for fremstilling av flytendegjort naturgass, omfattende en forkjølekrets og en hovedkjølekrets som inneholder kjølemedium for nedkjøling av naturgassen, idet hver av kjølekretsene omfatter minst én kompressor for komprimering av kretsens kjølemedium, og minst én gassturbin for drift av kompressorene. The invention relates to a plant for the production of liquefied natural gas, comprising a pre-cooling circuit and a main cooling circuit containing coolant for cooling the natural gas, each of the cooling circuits comprising at least one compressor for compressing the circuit's coolant, and at least one gas turbine for operating the compressors.

Anlegg for fremstilling av flytendegjort naturgass eller LNG (LNG = Liquefied Natural Gas) er ekstremt kapitalkrev-ende. Et større LNG-anlegg vil således kreve investeringer av størrelsesorden 10 milliarder kroner. I tillegg til anleggsom-kostningene kommer feltutvikling, rørledning for ilandføring når det dreier seg om et offshorefelt, og dediserte skip for transport av LNG-produktet. Det er derfor meget vesentlig å redusere kostnadene i denne forbindelse. Plants for the production of liquefied natural gas or LNG (LNG = Liquefied Natural Gas) are extremely capital intensive. A larger LNG plant will thus require investments of the order of NOK 10 billion. In addition to the construction costs, there is field development, a pipeline for bringing ashore when it is an offshore field, and dedicated ships for transporting the LNG product. It is therefore very important to reduce costs in this regard.

I et LNG-anlegg ligger 30 - 40 % av byggekostnadene i selve kjøleanlegget. Nedkjølingen av naturgassen, hovedsakelig bestående av metangass, som skal kjøles ned til flytende form, foregår vanligvis i to kjølekretser, nærmere bestemt en forkjøle-krets og en hovedkjølekrets. Begge disse kretser har egne kjølemedier som sirkulerer i lukkede systemer, og som ikke blandes med fødegassen, dvs. naturgassen som skal gjøres flytende. Kjølekretsene inneholder store kompressorer som komprimerer kjølemediene i de respektive kretser. Under komprimeringen blir mediet varmt. Det kjøles ned med store mengder vann. Deretter ekspanderes mediet igjen, og det genereres kulde som overføres til fødegassen. Gassen må nedkjøles til -162 °C for å bli flytende ved atmosfæretrykk. In an LNG plant, 30 - 40% of the construction costs are in the cooling plant itself. The cooling of the natural gas, mainly consisting of methane gas, which is to be cooled to liquid form, usually takes place in two cooling circuits, specifically a pre-cooling circuit and a main cooling circuit. Both of these circuits have their own refrigerants that circulate in closed systems, and which are not mixed with the feed gas, i.e. the natural gas to be liquefied. The cooling circuits contain large compressors that compress the refrigerants in the respective circuits. During compression, the medium becomes hot. It is cooled with large amounts of water. The medium is then expanded again, and cold is generated which is transferred to the feed gas. The gas must be cooled to -162 °C to liquefy at atmospheric pressure.

Forkjølekretsen inneholder vanligvis én kompressor, mens hovedkjølekretsen inneholder to. Disse kompressorer er meget store og kan ha en størrelse på opp mot 40 000 kw, eller noe over 50 000 HK. På LNG-anlegg som er bygget, eller som er under bygging i dag, benyttes enten en separat driver for hver kompressor, eller det benyttes en egen driver for kompressoren i forkjølekretsen og en felles driver for de to kompressorer i hovedkjølekretsen. På grunn av kompressorenes store kapasitet er det i dag vanlig å benytte store gassturbiner som drivere. Disse gassturbiner er meget kostbare, og hver enkelt enhet trenger mye kostbart tilleggsutstyr. Anlegget blir derfor tilsvarende The pre-cooling circuit usually contains one compressor, while the main cooling circuit contains two. These compressors are very large and can have a size of up to 40,000 kw, or something over 50,000 HP. At LNG plants that have been built, or are under construction today, either a separate driver is used for each compressor, or a separate driver is used for the compressor in the pre-cooling circuit and a common driver for the two compressors in the main cooling circuit. Due to the large capacity of the compressors, it is common today to use large gas turbines as drivers. These gas turbines are very expensive, and each individual unit needs a lot of expensive additional equipment. The plant will therefore be similar

kostbart. costly.

Formålet med oppfinnelsen er å tilveiebringe et LNG-anlegg som kan bygges med vesentlig reduserte kostnader i forhold til de hittil kjente anlegg, og som også er mer økonomisk i drift. The purpose of the invention is to provide an LNG plant which can be built with substantially reduced costs compared to the previously known plants, and which is also more economical to operate.

Ovennevnte formål oppnås med et anlegg av den innled-ningsvis angitte type som ifølge oppfinnelsen er kjennetegnet ved kompressorene i forkjølekretsen og hovedkjølekretsen er mekanisk sammenkoplet og er innrettet til å drives av en eneste, felles gassturbin. The above-mentioned purpose is achieved with a plant of the type indicated at the outset which, according to the invention, is characterized by the compressors in the pre-cooling circuit and the main cooling circuit is mechanically interconnected and is arranged to be driven by a single, common gas turbine.

Ved hjelp av ovennevnte løsning, som benytter bare én driver eller gassturbin for alle tre kompressorer, oppnås en rekke vesentlige fordeler, så som - færre utstyrsenheter, også med hensyn til tilleggsutstyr, By means of the above solution, which uses only one driver or gas turbine for all three compressors, a number of significant advantages are achieved, such as - fewer equipment units, also with regard to additional equipment,

- færre rørledningssystemer, - fewer pipeline systems,

- mindre område for prosessanlegget og følgelig kortere rørforbindelser, - lavere kostnad pr. effektenhet, dvs. høyere effektivitet og følgelig mindre C02-utslipp, - smaller area for the process plant and consequently shorter pipe connections, - lower cost per power unit, i.e. higher efficiency and consequently less C02 emissions,

- høyere driftsfaktor (timer drift pr. år), - higher operating factor (hours of operation per year),

- lavere investeringer og lavere driftskostnader. - lower investments and lower operating costs.

Som driver i et representativt anlegg ifølge oppfinnelsen, som eksempelvis kan ha en kapasitet på 4 - 5 GSm<3>/år, kan det hensiktsmessig benyttes en gassturbin av typen "General Electric Frame 7" som felles driver, i stedet for tre "Frame 5" gassturbiner. På grunn av de ovennevnte fordeler resulterer dette i en kostnadsbesparelse av størrelsesorden 250 mill. kroner. Løsningen ifølge oppfinnelsen kan benyttes både for større og mindre gassturbiner. As a driver in a representative plant according to the invention, which can for example have a capacity of 4 - 5 GSm<3>/year, a gas turbine of the "General Electric Frame 7" type can be suitably used as a common driver, instead of three "Frame 5" gas turbines. Due to the above advantages, this results in a cost saving of the order of NOK 250 million. The solution according to the invention can be used for both larger and smaller gas turbines.

Oppfinnelsen skal beskrives nærmere i det følgende i forbindelse med et utførelseseksempel under henvisning til tegningen hvis ene figur viser et forenklet flytskjema av et LNG-anlegg ifølge oppfinnelsen. The invention shall be described in more detail in the following in connection with an embodiment with reference to the drawing, one figure of which shows a simplified flow chart of an LNG plant according to the invention.

Det på tegningen viste anlegg omfatter en forkjølekrets 1 og en hovedkjølekrets 2 for nedkjøling av renset naturgass (fødegass) som tilføres til anlegget via en rørledning 3 for behandling i anlegget slik som nærmere beskrevet nedenfor. Gassen kan eksempelvis tilføres i en mengde på ca. 490 tonn pr. time. Slik det fremgår, er forkjølekretsen og hovedkjølekretsen separate, lukkede kretser for sirkulasjon av respektive kjøle-medier. Temperaturen (i °C) på kjølemediene og fødegassen på forskjellige steder i systemet er på tegningen angitt i rektan-gelsymboler, mens kjølemedienes og fødegassens trykk (i bar a) på forskjellige steder er angitt i sirkelsymboler. The plant shown in the drawing comprises a pre-cooling circuit 1 and a main cooling circuit 2 for cooling purified natural gas (feed gas) which is supplied to the plant via a pipeline 3 for treatment in the plant as described in more detail below. The gas can, for example, be supplied in a quantity of approx. 490 tonnes per hour. As can be seen, the pre-cooling circuit and the main cooling circuit are separate, closed circuits for circulation of respective cooling media. The temperature (in °C) of the refrigerants and feed gas at different locations in the system is indicated in the drawing in rectangle symbols, while the pressure of the refrigerants and feed gas (in bar a) at different locations is indicated in circle symbols.

Forkjølekretsen 1 forutsettes i det viste tilfelle å benytte propan som kjølemedium, men kjølemediet kan også bestå av en blanding av forskjellige gasser. Kretsen inneholder i den viste utførelse en to-trinns kompressor (C3K) 4 for kompresjon av kjølemediet. Fra kompressoren 4 fører en ledning 5 via en varmeveksler 6 til en plate-finne-varmeveksler (PFW) 7, og fra denne varmeveksler fører to ledninger 8, 9 tilbake til kompressoren 4. In the case shown, the pre-cooling circuit 1 is assumed to use propane as cooling medium, but the cooling medium can also consist of a mixture of different gases. In the embodiment shown, the circuit contains a two-stage compressor (C3K) 4 for compression of the refrigerant. From the compressor 4, a line 5 leads via a heat exchanger 6 to a plate-fin heat exchanger (PFW) 7, and from this heat exchanger two lines 8, 9 lead back to the compressor 4.

Under komprimeringen i kompressoren 4 oppvarmes kjølemediet, og det avkjøles derfor i varmeveksleren 6 ved hjelp av kjølevann (KV). I varmeveksleren 7 ekspanderes mediet og kjøles dermed sterkt ned. Mediet avgir kulde i varmeveksleren og absorberer derved varme fra fødegassen som tilføres via rørled-ningen 3 og ledes gjennom varmeveksleren i egne kanaler. Fødegassen avkjøles derved fra ca. +25 °C til ca. -35 "C. Det oppvarmede kjølemedium føres tilbake til kompressoren 4 via ledningene 8, 9 for å komprimeres på nytt. During the compression in the compressor 4, the refrigerant is heated, and it is therefore cooled in the heat exchanger 6 by means of cooling water (KV). In the heat exchanger 7, the medium is expanded and thus cooled down strongly. The medium emits cold in the heat exchanger and thereby absorbs heat from the feed gas which is supplied via the pipeline 3 and is led through the heat exchanger in its own channels. The feed gas is thereby cooled from approx. +25 °C to approx. -35 "C. The heated refrigerant is fed back to the compressor 4 via the lines 8, 9 to be compressed again.

•Slik det fremgår av tegningen, er det ved innløpene 10, 11 til kompressoren 4 mellom ledningene 8 og 9 anordnet en •As can be seen from the drawing, at the inlets 10, 11 of the compressor 4 between the lines 8 and 9, a

omføringsventil 12, og mellom innløpet 10 og kompressorens utløp 13 er det likeledes anordnet en omføringsventil 14. Formålet med disse ventiler skal beskrives nærmere senere. diverter valve 12, and between the inlet 10 and the compressor's outlet 13 there is likewise arranged a diverter valve 14. The purpose of these valves will be described in more detail later.

Hovedkjølekretsen 2 omfatter en lavtrykkskompressor (HKK LT) 15 og en høytrykkskompressor (HKK HT) 16 for kompresjon av kjølemediet. Lavtrykkskompressoren 15 har et innløp 17 og et utløp 18, mens høytrykkskompressoren 16 har et innløp 19 og et utløp 20. Fra lavtrykkskompressorens utløp 18 fører en ledning 21 via en varmeveksler 22 til høytrykkskompressorens innløp 19. Fra dennes utløp 20 fører en ledning 23 via en varmeveksler 24 til plate-finne-varmeveksleren 7. Fra denne varmeveksler fortsetter kretsløpet via en ledning 25 til en separator 26. Denne har to utløp fra hvilke respektive ledninger 27, 28 fører til en hovedvarmeveksler (HHV) 29 via respektive ventiler 30, 31. Fra hovedvarmeveksleren fører en ledning 32 tilbake til lavtrykkskompressorens 15 innløp 17. The main cooling circuit 2 comprises a low-pressure compressor (HKK LT) 15 and a high-pressure compressor (HKK HT) 16 for compression of the refrigerant. The low-pressure compressor 15 has an inlet 17 and an outlet 18, while the high-pressure compressor 16 has an inlet 19 and an outlet 20. From the outlet 18 of the low-pressure compressor, a line 21 leads via a heat exchanger 22 to the inlet 19 of the high-pressure compressor. From its outlet 20, a line 23 leads via a heat exchanger 24 to the plate-fin heat exchanger 7. From this heat exchanger, the circuit continues via a line 25 to a separator 26. This has two outlets from which respective lines 27, 28 lead to a main heat exchanger (HHV) 29 via respective valves 30, 31. From the main heat exchanger, a line 32 leads back to the inlet 17 of the low-pressure compressor 15.

Kjølemediet i hovedkjølekretsen består av en tilpasset blanding av gasser (f.eks. metan, etan og propan) med forskjellig kokepunkt for å få en godt fordelt varmeoverføring. Etter en første komprimering i lavtrykkskompressoren 15 nedkjøles det oppvarmede medium i varmeveksleren 22 ved hjelp av kjølevann (KV). Etter en ytterligere komprimering i høytrykkskompressoren 16 avkjøles det oppvarmede medium på nytt i varmeveksleren 24 ved hjelp av kjølevann (KV). Deretter tilføres mediet til plate-finne-varmeveksleren 7 hvor det nedkjøles ytterligere og derved gjøres delvis flytende. Blandingen av gass og væske separeres i separatoren 26 og føres videre til hovedvarmeveksleren 29 i to strømmer via ledningene 27, 28. Etter delvis nedkjøling i en første del av hovedvarmeveksleren 29 føres kjølemediumstrømmene via respektive av ventilene 30 og 31 inn i en andre del av varmeveksleren hvor strømmene ekspanderer og dermed blir ytterligere sterkt nedkjølt. De nedkjølte kjølemediumstrømmer sprøytes ut inne i varmeveksleren og forårsaker en sterk nedkjøling av fødegassen som passerer hovedvarmeveksleren i egne kanaler. The cooling medium in the main cooling circuit consists of a suitable mixture of gases (e.g. methane, ethane and propane) with different boiling points to achieve a well-distributed heat transfer. After a first compression in the low-pressure compressor 15, the heated medium is cooled in the heat exchanger 22 by means of cooling water (KV). After a further compression in the high-pressure compressor 16, the heated medium is cooled again in the heat exchanger 24 by means of cooling water (KV). The medium is then supplied to the plate-fin heat exchanger 7 where it is further cooled and thereby partially liquefied. The mixture of gas and liquid is separated in the separator 26 and passed on to the main heat exchanger 29 in two streams via lines 27, 28. After partial cooling in a first part of the main heat exchanger 29, the refrigerant streams are fed via respective valves 30 and 31 into a second part of the heat exchanger where the currents expand and are thus further greatly cooled. The cooled refrigerant streams are sprayed out inside the heat exchanger and cause a strong cooling of the feed gas which passes the main heat exchanger in its own channels.

På liknende måte som for kompressoren 4 i forkjølekret-sen er en omføringsventil 33 anordnet mellom lavtrykkskompressorens 15 innløp 17 og utløp 18. En liknende omføringsventil 34 er anordnet mellom høytrykkskompressorens 16 innløp 19 og utløp 20. Formålet med disse ventiler skal beskrives nærmere senere. In a similar way as for the compressor 4 in the pre-cooling circuit, a diversion valve 33 is arranged between the inlet 17 and outlet 18 of the low-pressure compressor 15. A similar diversion valve 34 is arranged between the inlet 19 and outlet 20 of the high-pressure compressor 16. The purpose of these valves will be described in more detail later.

I det viste anlegg kan kompressoren i forkjølekretsen f.eks. være en sentrifugalkompressor med en effekt på ca. 21 500 kW. Lavtrykkskompressoren i hovedkjølekretsen kan være en aksialkompressor med en effekt på ca. 38 000 MW, mens høytrykks-kompressoren kan være en sentrifugalkompressor med en effekt på ca. 27 000 kW. In the system shown, the compressor in the pre-cooling circuit can e.g. be a centrifugal compressor with an effect of approx. 21,500 kW. The low-pressure compressor in the main cooling circuit can be an axial compressor with an output of approx. 38,000 MW, while the high-pressure compressor can be a centrifugal compressor with an output of approx. 27,000 kW.

Når det gjelder fødegassen, avkjøles denne som nevnt i varmeveksleren 7 og føres videre derfra via en ledning 35 til en kondensatutskiller 36. I denne enhet utskilles kondensat som tilføres via en ledning 37 til et kondensatlager (ikke vist). Fra kondensatutskilleren 36 tilføres fødegassen til hovedvarmeveksleren 29 via en ledning 38. På grunn av den sterke nedkjøling av fødegassen når denne passerer hovedvarmeveksleren, går den over i flytende form, men er fremdeles under trykk. Fra hovedvarmeveksleren tilføres fødegassen via en ledning 39 til en As for the feed gas, it is cooled as mentioned in the heat exchanger 7 and carried on from there via a line 35 to a condensate separator 36. In this unit, condensate is separated which is supplied via a line 37 to a condensate storage (not shown). From the condensate separator 36, the feed gas is supplied to the main heat exchanger 29 via a line 38. Due to the strong cooling of the feed gas when it passes the main heat exchanger, it changes to liquid form, but is still under pressure. From the main heat exchanger, the feed gas is supplied via a line 39 to a

nitrogenutskiller 40. Fødegassen ekspanderes inn i nitrogenut-s skilleren hvor nitrogenet (N2) i gassen utskilles ved avdamping, nitrogen separator 40. The feed gas is expanded into the nitrogen separator where the nitrogen (N2) in the gas is separated by evaporation,

samtidig som den flytende gass avkjøles ytterligere slik at den er i flytende form ved atmosfæretrykk. Den flytende naturgass (LNG) har da en temperatur på -162 °C. Den flytende gass tilføres at the same time as the liquefied gas is further cooled so that it is in liquid form at atmospheric pressure. The liquefied natural gas (LNG) then has a temperature of -162 °C. The liquefied gas is supplied

til lagertanker 41, i det viste eksempel i en mengde på ca. 450 tonn pr. time, for deretter å bli pumpet om bord i spesial tankere for transport til de aktuelle bestemmelsessteder. to storage tanks 41, in the example shown in an amount of approx. 450 tonnes per hour, to then be pumped on board in special tankers for transport to the respective destinations.

Slik det fremgår av tegningen, er de foran omtalte kompressorer 4, 15 og 16 koplet i serie og er i overensstemmelse As can be seen from the drawing, the aforementioned compressors 4, 15 and 16 are connected in series and are in accordance

med oppfinnelsen innrettet til å drives av en eneste, felles driver i form av en gassturbin 42. Gassturbinen er vist å ha to inntak 43, 44 for tilførsel av henholdsvis luft og gass ved drift av turbinen, og et utløp for avgass som avgis via en enhet 45 gjennom hvilken det sirkulerer varm olje. with the invention arranged to be driven by a single, common driver in the form of a gas turbine 42. The gas turbine is shown to have two intakes 43, 44 for the supply of air and gas respectively when operating the turbine, and an outlet for exhaust gas which is emitted via a unit 45 through which hot oil circulates.

Gassturbinen kan hensiktsmessig være en enakslet gassturbin som yter effekt først ved et høyt turtall, og bare innen et begrenset turtallsområde. Det er derfor nødvendig å benytte en starter- eller hjelpemotor 46 for å bringe gassturbinen opp på det nødvendige turtall før den kan belastes. Gassturbinen kan i det viste eksempel være av typen "General Electric Frame 7", som har en effekt på 85 000 kW og et turtall på 3 600 ± 5 % omdreininger pr. minutt. I det viste eksempel benyttes en elektrisk hjelpemotor på 8 MW med variabelt turtall fra 0 til 3 600 omdr. pr. min. Under vanlig drift benyttes motoren som en hjelper for gassturbinen, for på denne måte å øke effekten og derved øke produksjonen. Det kan hensiktsmessig benyttes en enda større motor (f.eks. på 10 MW) for å ha ekstra effekt på varme dager da gassturbinen gir en redusert effekt. The gas turbine can suitably be a single-shaft gas turbine which produces effect only at a high speed, and only within a limited speed range. It is therefore necessary to use a starter or auxiliary motor 46 to bring the gas turbine up to the required speed before it can be loaded. In the example shown, the gas turbine can be of the "General Electric Frame 7" type, which has an output of 85,000 kW and a speed of 3,600 ± 5% revolutions per revolution. minute. In the example shown, an electric auxiliary motor of 8 MW is used with a variable speed from 0 to 3,600 rpm. my. During normal operation, the engine is used as a helper for the gas turbine, in this way to increase the effect and thereby increase production. An even larger engine (e.g. 10 MW) can be suitably used to have extra power on hot days as the gas turbine produces a reduced power.

Hele den beskrevne enhet bestående av de tre kompressorer, gassturbinen og hjelpemotoren, er fast sammenkoplet, og kan i det viste eksempel ha en total vekt på ca. 450 tonn og en total lengde på ca. 45 m. Hele enheten er således meget stor og representerer en vesentlig del av anleggets investering. Det er derfor meget viktig at oppstarting av enheten skjer på en forsvarlig måte. Avlastningsmuligheter for utstyret under igangsetting av enheten er absolutt nødvendig. Dersom oppstartingen ikke utføres på riktig måte, vil belastningen på motoren og gassturbinen kunne bli for stor og resultere i at hele enheten stanser under oppstartsekvensen. Dette vil kunne resultere i at motoren går varm og at skader kan påføres både på motor og gassturbin. The entire unit described, consisting of the three compressors, the gas turbine and the auxiliary engine, is firmly connected, and in the example shown can have a total weight of approx. 450 tonnes and a total length of approx. 45 m. The entire unit is thus very large and represents a significant part of the plant's investment. It is therefore very important that the device is started in a proper way. Relief possibilities for the equipment during the start-up of the unit are absolutely necessary. If the start-up is not carried out correctly, the load on the engine and gas turbine could become too great and result in the entire unit stopping during the start-up sequence. This could result in the engine running hot and damage to both the engine and the gas turbine.

Oppstarting av enheten, og de nødvendige forberedelser Start-up of the unit, and the necessary preparations

i denne forbindelse, skal beskrives nedenfor. in this connection, shall be described below.

Hele den fast sammenkoplede enhet må bringes opp på et tilstrekkelig turtall ved hjelp av elektromotoren før luft og gass bringes inn i gassturbinens brennkammer og turbinen oppnår den nødvendige effekt for å få i gang prosessen. Ved selve igangkjøringen må derfor all motstand reduseres til et minimum. The entire permanently connected unit must be brought up to a sufficient speed by means of the electric motor before air and gas are brought into the gas turbine's combustion chamber and the turbine achieves the necessary power to start the process. During actual commissioning, all resistance must therefore be reduced to a minimum.

For å kunne sette i gang den store utstyrsenhet, må således motstanden i kjølekretsene reduseres til et minimum. Dette gjøres ved å åpne kompressorenes omføringsventiler 12, 14, 33 og 34, og også ventilene 30 og 31. Man må også passe på at andre ventiler (ikke vist) i kjølekretsene er slik innstilt at de gir minst mulig motstand i begge kretser. Videre må kjølevann tilføres til varmevekslerne 6, 22, 24 som har vann som kjøle-medium. In order to be able to start the large equipment unit, the resistance in the cooling circuits must therefore be reduced to a minimum. This is done by opening the compressors' bypass valves 12, 14, 33 and 34, and also valves 30 and 31. Care must also be taken that other valves (not shown) in the cooling circuits are set so that they provide the least possible resistance in both circuits. Furthermore, cooling water must be supplied to the heat exchangers 6, 22, 24, which have water as a cooling medium.

Motoren 46 startes og trekker i gang gassturbinen og de fast tilkoplede kompressorer inntil hele enheten er kommet opp på et turtall hvor gassturbinen utvikler tilstrekkelig egen effekt. Alle ventiler på kompressorenes sugeside er lukket. Deretter startes gassturbinen. Når gassturbinen yter tilstrekkelig egen effekt, åpnes ventiler i anlegget, slik at fødegass i begrenset mengde kan ledes gjennom plate-finne-varmeveksleren 7 og hovedvarmeveksleren 29. Gassen føres til anleggets fakkel-system og avbrennes. The engine 46 is started and starts the gas turbine and the permanently connected compressors until the entire unit has reached a speed at which the gas turbine develops sufficient own power. All valves on the compressor's suction side are closed. The gas turbine is then started. When the gas turbine produces sufficient own power, valves in the plant are opened, so that a limited quantity of feed gas can be passed through the plate-fin heat exchanger 7 and the main heat exchanger 29. The gas is led to the plant's flare system and burned.

Ved trykksettingen av anlegget trykksettes først forkjølekretsen. Omføringsventilene 12 og 14 stenges og justerin-ger av andre ventiler og utstyr foretas, slik at den komprimerte gass først avkjøles i varmeveksleren 6 og deretter kan ekspandere i varmeveksleren 7 og kjøle ned fødegassen. When pressurizing the system, the precooling circuit is first pressurized. The diversion valves 12 and 14 are closed and adjustments of other valves and equipment are made, so that the compressed gas is first cooled in the heat exchanger 6 and can then expand in the heat exchanger 7 and cool the feed gas.

Når forkjølekretsen er gjort operativ, kan hovedkjøle-kretsen trykksettes. Dennes omføringsventiler stenges, og deretter justeres ventilene 30 og 31 og annet utstyr for å oppnå det riktige trykkfall og ekspansjon av kjølemediet. Kjølemediet nedkjøles i kjølevannsvarmevekslerne 22 og 24 og nedkjøles ytterligere i varmeveksleren 7. When the pre-cooling circuit is made operational, the main cooling circuit can be pressurized. Its bypass valves are closed, and then valves 30 and 31 and other equipment are adjusted to achieve the correct pressure drop and expansion of the refrigerant. The coolant is cooled down in the cooling water heat exchangers 22 and 24 and further cooled down in the heat exchanger 7.

Når begge kjølekretser' er operative, innstilles avbrenningen av fødegass via fakkelen, og fødegassen gjøres flytende. Anlegget er dermed i drift. When both cooling circuits are operational, the burning of feed gas is set via the torch, and the feed gas is liquefied. The plant is thus in operation.

Claims (4)

1. Anlegg for fremstilling av flytendegjort naturgass, omfattende en forkjølekrets (1) og en hovedkjølekrets (2) som inneholder kjølemedium for nedkjøling av naturgassen, idet hver av kjølekretsene (1, 2) omfatter minst én kompressor (4 hhv. 15, 16) for komprimering av kretsens kjølemedium, og minst én gassturbin (42) for drift av kompressorene, KARAKTERISERT VED at kompressorene (4, 15, 16) i forkjølekretsen (1) og hovedkjøle-kretsen (2) er mekanisk sammenkoplet og er innrettet til å drives av eneste, felles gassturbin (42).1. Plant for the production of liquefied natural gas, comprising a pre-cooling circuit (1) and a main cooling circuit (2) containing a cooling medium for cooling the natural gas, each of the cooling circuits (1, 2) comprising at least one compressor (4 and 15, 16 respectively) for compressing the circuit's refrigerant, and at least one gas turbine (42) for operating the compressors, CHARACTERIZED IN THAT the compressors (4, 15, 16) in the pre-cooling circuit (1) and the main cooling circuit (2) are mechanically interconnected and are designed to be operated of a single, shared gas turbine (42). 2. Anlegg ifølge krav 1, KARAKTERISERT VED at gassturbinen (42) er en enakslet turbin med et i hovedsaken fast turtall under drift, idet en hjelpemotor (46) er anordnet for oppstarting av gassturbinen (42) og kompressorene (4, 15, 16), og for eventuelt å assistere gassturbinen under drift.2. Plant according to claim 1, CHARACTERIZED IN THAT the gas turbine (42) is a single-shaft turbine with an essentially fixed speed during operation, an auxiliary motor (46) being arranged for starting the gas turbine (42) and the compressors (4, 15, 16 ), and to possibly assist the gas turbine during operation. 3. Anlegg ifølge krav 1 eller 2, KARAKTERISERT VED at forkjølekretsen (1) inneholder en to-trinns kompressor (4) og hovedkjølekretsen (2) inneholder en lavtrykkskompressor (15) og en høytrykkskompressor (16).3. Plant according to claim 1 or 2, CHARACTERIZED IN THAT the pre-cooling circuit (1) contains a two-stage compressor (4) and the main cooling circuit (2) contains a low-pressure compressor (15) and a high-pressure compressor (16). 4. Anlegg ifølge ett av kravene 1-3, KARAKTERISERT VED at det mellom hver kompressors (4 hhv. 15 hhv. 16) innløp (11 hhv. 17 hhv. 19) og utløp (13 hhv. 18 hhv. 20) er innkoplet omføringsventiler (12, 14 hhv. 33 hhv. 34) som er innrettet til å åpnes under oppstarting av anlegget, for å avlaste hjelpemotoren (46) og gassturbinen (42) under oppstartingen.4. Installation according to one of claims 1-3, CHARACTERIZED IN THAT between each compressor's (4 and 15 and 16) inlet (11 and 17 and 19) and outlet (13 and 18 and 20 respectively) are connected bypass valves (12, 14 and 33 and 34) which are arranged to open during start-up of the plant, to relieve the auxiliary engine (46) and the gas turbine (42) during start-up.
NO960911A 1996-03-06 1996-03-06 Installations for the production of liquefied natural gas NO960911A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NO960911A NO960911A (en) 1996-03-06 1996-03-06 Installations for the production of liquefied natural gas
AU21067/97A AU717114C (en) 1996-03-06 1997-03-03 An installation for producing liquefied natural gas
PCT/NO1997/000062 WO1997033131A1 (en) 1996-03-06 1997-03-03 An installation for producing liquefied natural gas
MYPI97000864A MY117996A (en) 1996-03-06 1997-03-04 An installation for producing liquefied natural gas
IDP970663A ID16118A (en) 1996-03-06 1997-03-04 INSTALLATION TO PRODUCE LIQUID NATURAL GAS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO960911A NO960911A (en) 1996-03-06 1996-03-06 Installations for the production of liquefied natural gas

Publications (3)

Publication Number Publication Date
NO960911D0 NO960911D0 (en) 1996-03-06
NO300293B1 true NO300293B1 (en) 1997-05-05
NO960911A NO960911A (en) 1997-05-05

Family

ID=19899118

Family Applications (1)

Application Number Title Priority Date Filing Date
NO960911A NO960911A (en) 1996-03-06 1996-03-06 Installations for the production of liquefied natural gas

Country Status (5)

Country Link
AU (1) AU717114C (en)
ID (1) ID16118A (en)
MY (1) MY117996A (en)
NO (1) NO960911A (en)
WO (1) WO1997033131A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9726297D0 (en) * 1997-12-11 1998-02-11 Bhp Petroleum Pty Ltd Liquefaction process and apparatus
US6446465B1 (en) * 1997-12-11 2002-09-10 Bhp Petroleum Pty, Ltd. Liquefaction process and apparatus
TW421704B (en) * 1998-11-18 2001-02-11 Shell Internattonale Res Mij B Plant for liquefying natural gas
US6332336B1 (en) * 1999-02-26 2001-12-25 Compressor Controls Corporation Method and apparatus for maximizing the productivity of a natural gas liquids production plant
TW480325B (en) 1999-12-01 2002-03-21 Shell Int Research Plant for liquefying natural gas
US6647744B2 (en) 2002-01-30 2003-11-18 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
US6658892B2 (en) 2002-01-30 2003-12-09 Exxonmobil Upstream Research Company Processes and systems for liquefying natural gas
CN102345966A (en) * 2002-09-30 2012-02-08 Bp北美公司 Reduced carbon dioxide emission system and method
BR0306492A (en) 2002-09-30 2004-10-13 Bp Corp North America Inc Methods to provide refrigerant compression power, refrigerant compression power and shared electrical power for a low carbon, low carbon gas liquefaction gas process, and system to provide refrigerant compression power and shared electric power for a hydrocarbon gas liquefaction process with low carbon dioxide emissions
US7069733B2 (en) 2003-07-30 2006-07-04 Air Products And Chemicals, Inc. Utilization of bogdown of single-shaft gas turbines to minimize relief flows in baseload LNG plants
EP1790926A1 (en) * 2005-11-24 2007-05-30 Shell Internationale Researchmaatschappij B.V. Method and apparatus for cooling a stream, in particular a hydrocarbon stream such as natural gas
US7691028B2 (en) * 2006-05-02 2010-04-06 Conocophillips Company Mechanical soft-start system for rotating industrial equipment
US9400134B2 (en) * 2006-08-02 2016-07-26 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
NO326634B1 (en) 2006-09-12 2009-01-26 Aker Engineering & Technology Method and system for starting and operating an electrically driven load
US8591199B2 (en) 2007-01-11 2013-11-26 Conocophillips Company Multi-stage compressor/driver system and method of operation
AU2009228000B2 (en) * 2008-09-19 2013-03-07 Woodside Energy Limited Mixed refrigerant compression circuit
WO2010054434A1 (en) * 2008-11-17 2010-05-20 Woodside Energy Limited Power matched mixed refrigerant compression circuit
US20100147024A1 (en) * 2008-12-12 2010-06-17 Air Products And Chemicals, Inc. Alternative pre-cooling arrangement
EP2426452A1 (en) 2010-09-06 2012-03-07 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a gaseous hydrocarbon stream

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR768875A (en) * 1933-02-20 1934-08-14 Brown Wind heater or similar heat exchange device in which at least one of the agents used is a gas
GB1072048A (en) * 1963-12-07 1967-06-14 Dowty Technical Dev Ltd Refrigeration systems
JPS4921699B1 (en) * 1970-11-28 1974-06-03
GB2149902B (en) * 1983-11-18 1987-09-03 Shell Int Research A method and a system for liquefying a gas in particular a natural gas
FR2714722B1 (en) * 1993-12-30 1997-11-21 Inst Francais Du Petrole Method and apparatus for liquefying a natural gas.

Also Published As

Publication number Publication date
WO1997033131A1 (en) 1997-09-12
MY117996A (en) 2004-08-30
AU717114C (en) 2005-09-01
AU2106797A (en) 1997-09-22
AU717114B2 (en) 2000-03-16
NO960911D0 (en) 1996-03-06
ID16118A (en) 1997-09-04
NO960911A (en) 1997-05-05

Similar Documents

Publication Publication Date Title
NO300293B1 (en) Plant for the production of liquefied natural gas
EP2629035B1 (en) Liquefaction device and floating liquefied gas production equipment comprising the device
JP5737894B2 (en) Boil-off gas reliquefaction equipment
TWI608206B (en) Increasing efficiency in an lng production system by pre-cooling a natural gas feed stream
KR101060381B1 (en) Motor Driven Compressor System for Natural Gas Liquefaction
CN1172149C (en) Apparatus for reliquefying compressed vapour
AU674813B2 (en) Process and apparatus for producing liquefied natural gas
CN101495828B (en) Method and apparatus for the reliquefaction of a vapour
JP5709793B2 (en) Natural gas liquefaction method and apparatus, computer simulation process thereof, liquefied natural gas product
EP2426452A1 (en) Method and apparatus for cooling a gaseous hydrocarbon stream
RU2436024C2 (en) Procedure and device for treatment of flow of hydrocarbons
KR101617177B1 (en) Method and apparatus for cooling and liquefying a hydrocarbon stream
US7131272B2 (en) Reduced carbon dioxide emission system and method for providing power for refrigerant compression and electrical power for a light hydrocarbon gas liquefaction process using cooled air injection to the turbines
RU2719258C2 (en) System and method of treating gas obtained during cryogenic liquid evaporation
RU2659858C2 (en) Single cascade process for vaporization and recovery of residual liquefied natural gas in application related to floating tanks
AU752201B2 (en) Liquefaction process and apparatus
WO2024104236A1 (en) Cryogenic cooling type boil-off gas reliquefaction system
WO2024104237A1 (en) Fluid cooling system with variable-working condition adjustment function
JPH06123553A (en) Method and device for separating air incorporating power generation equipment utilizing cold of liquefied natural gas
JP3211942B2 (en) Method and apparatus for driving coal gasification combined cycle system
WO2020228986A1 (en) Compressor train with combined gas turbine and steam turbine cycle
EP2426451A1 (en) Method and apparatus for cooling a gaseous hydrocarbon stream

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees