NO20151209L - Methods of Preparation of Compounds - Google Patents

Methods of Preparation of Compounds

Info

Publication number
NO20151209L
NO20151209L NO20151209A NO20151209A NO20151209L NO 20151209 L NO20151209 L NO 20151209L NO 20151209 A NO20151209 A NO 20151209A NO 20151209 A NO20151209 A NO 20151209A NO 20151209 L NO20151209 L NO 20151209L
Authority
NO
Norway
Prior art keywords
formula
cyano
salt
compound
alkyl
Prior art date
Application number
NO20151209A
Other languages
Norwegian (no)
Inventor
Shanghui Hu
Carlos Alberto Martinez
Junhua Tao
William Eugene Tully
Patrick Gerard Thomas Kelleher
Yves Rene Dumond
Original Assignee
Warner Lambert Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IB2005/001924 external-priority patent/WO2006000904A2/en
Publication of NO20151209L publication Critical patent/NO20151209L/en
Application filed by Warner Lambert Co filed Critical Warner Lambert Co

Links

Abstract

Det beskrives framgangsmåter for framstilling av (S)-(+)-3-aminometyl-5-metyl-heksanoisk syre og strukturelt beslektede forbindelser.Methods for preparing (S) - (+) - 3-aminomethyl-5-methyl-hexanoic acid and structurally related compounds are described.

Description

OMRÅDE FOR OPPFINNELSENFIELD OF THE INVENTION

Den foreliggende oppfinnelse vedrører framgangsmåter for å fremstille forbindelser slik det er angitt i innledningen til krav 1 og 2. Fremgangsmåtene er spesielt nyttige for å framstille y-aminosyrer som oppviser bindingsaffinitet til den humane a.25 - kalsiumkanal subenhet, inkluderende pregabalin og beslektede forbindelser. The present invention relates to methods for preparing compounds as stated in the preamble to claims 1 and 2. The methods are particularly useful for preparing γ-amino acids which exhibit binding affinity to the human α.25 calcium channel subunit, including pregabalin and related compounds.

DISKUSJONDISCUSSION

Pregabalin, (S)-(+)-3-aminometyl-5-metyl-hekasonisk syre er relatert til den endogene inhibitoriske neurotransmitter y-aminosmørsyre (GABA), som er involvert i reguleringen av neuronal aktivitet i hjernen. Pregabalin oppviser anti-anfall-aktivitet, som beskrevet i US patent nr. 5,563,175 av R. B. Silverman et al., og er tenkt å være nyttig for å behandle, blant andre tilstander, smerte, fysiologiske tilstander assosiert med psykomotor-stimulerende midler, inflammasjon, gastrointestinal skade, alkoholisme, insomnia og forskjellige psykiatriske forstyrrelser, inkludert mani og bipolar forstyrrelse. Se, respektivt, US patentnr 6,242,488 av L. Bueno et al., US patent 6,326,374 av L. Magnus & C. A. Segal, og US patent 6,001,876 av L. Singh; US patent 6,194,459 to H. C. Akunne et al.; US patent 6,329,429 to D. Schrier et al.; US patent 6,127,418 av L. Bueno et al.; US patent 6,426,368 to L. Bueno et al US patent 6,306,910 av L. Magnus & C. A. Segal; og US patentr 6,359,005 av A. C. Pande, som heri inkorporeres med henvisning i sin helhet for alle formål. Pregabalin, (S)-(+)-3-aminomethyl-5-methyl-hexasonic acid is related to the endogenous inhibitory neurotransmitter γ-aminobutyric acid (GABA), which is involved in the regulation of neuronal activity in the brain. Pregabalin exhibits anti-seizure activity, as described in US Patent No. 5,563,175 to R.B. Silverman et al., and is thought to be useful in treating, among other conditions, pain, physiological conditions associated with psychomotor stimulants, inflammation, gastrointestinal damage, alcoholism, insomnia and various psychiatric disorders, including mania and bipolar disorder. See, respectively, US Patent No. 6,242,488 to L. Bueno et al., US Patent 6,326,374 to L. Magnus & C. A. Segal, and US Patent 6,001,876 to L. Singh; US patent 6,194,459 to H.C. Akunne et al.; US Patent 6,329,429 to D. Schrier et al.; US Patent 6,127,418 to L. Bueno et al.; US Patent 6,426,368 to L. Bueno et al US Patent 6,306,910 to L. Magnus & C.A. Segal; and US Patent No. 6,359,005 to A. C. Pande, which is hereby incorporated by reference in its entirety for all purposes.

Pregabalin har blitt framstilt på forskjellige måter. Typisk, en racemisk blanding av 3-aminometyl-5-metyl-heksanoisk syre syntetiseres og deretter resolveres til dets fl-og S-enantiomerer. Slike framgangsmåter kan benytte et azid-mellomprodukt, et malonat-mellomprodukt, eller Hofm an-syntese. Se respektivt US patent 5,563,175 av R. B. Silverman et al.; US patent 6,046,353, 5,840,956, og 5,637,767 til Pregabalin has been manufactured in different ways. Typically, a racemic mixture of 3-aminomethyl-5-methyl-hexanoic acid is synthesized and then resolved into its fl - and S -enantiomers. Such procedures may employ an azide intermediate, a malonate intermediate, or Hofmann synthesis. See respectively US patent 5,563,175 by R.B. Silverman et al.; US Patent 6,046,353, 5,840,956, and 5,637,767 to

T. M. Grote et al.; og US patent 5,629,447 og 5,616,793 to B. K. Huckabee & T.M. Grote et al.; and US Patent 5,629,447 and 5,616,793 to B. K. Huckabee &

D. M. Sobieray, som alle heri inkorporeres med henvisning i sin helhet for alle formål. I hver av disse framgangsmåter omdannes racematet med en kiral syre (et resolverende middel) for å danne et par av diastereoisomeriske salter, som separeres med kjente teknikker så som fraksjonert krystallisasjon og kromatografi. Disse framgangsmåter involverer således betydelig prosessering i tillegg til framstil ling av racematet, som sammen med det resolverende middel, gir økte produksjons-kostnader. Imidlertid, de uønskede R-enantiomer kastes ofte siden den ikke kan resirkuleres effektivt, og reduserer dermed den effektive gjennomstrømning for prosessen med 50 %. D. M. Sobieray, all of which are hereby incorporated by reference in their entirety for all purposes. In each of these procedures, the racemate is reacted with a chiral acid (a resolving agent) to form a pair of diastereoisomeric salts, which are separated by known techniques such as fractional crystallization and chromatography. These procedures thus involve considerable processing in addition to the production of the racemate, which, together with the resolving agent, results in increased production costs. However, the unwanted R-enantiomer is often discarded since it cannot be efficiently recycled, thus reducing the effective throughput for the process by 50%.

Pregabalin har også blitt syntetisert direkte ved anvendelse av kirale hjelpemidler, (4f?,5S)-4-metyl-5-fenyl-2-oksazolidinon. Se for eksempel US patenter 6,359,169, 6,028,214, 5,847,151, 5,710,304, 5,684,189, 5,608,090, og 5,599,973, alle til R. B. Silverman et al, som heri inkorporeres med referanse i sin helhet for alle formål. Selv om disse framgangsmåter tilveiebringer pregabalin i stor enantiomeriske renhet, er de mindre hensiktsmessige for storskala syntese på grunn av at de benytter forholdsvis kostnadsdyre reagenser (for eksempel det kirale hjelpemiddel) som er vanskelig å håndtere, og likeledes et spesial kryogenisk utstyr for å nå den nødvendige operasjonstemperatur, som kan være så lav som -78°C. Pregabalin has also been synthesized directly using the chiral auxiliaries, (4f?,5S)-4-methyl-5-phenyl-2-oxazolidinone. See, for example, US Patents 6,359,169, 6,028,214, 5,847,151, 5,710,304, 5,684,189, 5,608,090, and 5,599,973, all to R.B. Silverman et al, which are hereby incorporated by reference in their entirety for all purposes. Although these procedures provide pregabalin in high enantiomeric purity, they are less suitable for large-scale synthesis due to the use of relatively expensive reagents (such as the chiral auxiliary) which are difficult to handle, as well as special cryogenic equipment to achieve the required operating temperature, which can be as low as -78°C.

En nylig publisert US patentsøknad beskriver en framgangsmåte for å framstille pregabalin via asymmetrisk hydrogenering av en cyano-substituert olefin for å produsere en kiral cyano-forløper av (S)-3-aminometyl-5-metylheksanoisk syre. Se US patentsøknad nr 2003/0212290 A1 av Burk et al., publisert 13. november 2003, som heri inkorporeres med referanse i sin helhet for alle formål. Cyano-forløperen reduseres deretter for å gi pregabalin. Den asymmetriske hydrogenering benytter en kiral katalysator som utgjøres av en overgangsmetallbinding til en biofosfin-ligand så som (f?,f?)-Me-DUPHOS. Framgangsmåten resulterer i betydelig anriking av pregabalin over (f?)-3-(aminometyl)-5-metylheksanoisk syre. A recently published US patent application describes a process for preparing pregabalin via asymmetric hydrogenation of a cyano-substituted olefin to produce a chiral cyano precursor of (S)-3-aminomethyl-5-methylhexanoic acid. See US Patent Application No. 2003/0212290 A1 by Burk et al., published November 13, 2003, which is hereby incorporated by reference in its entirety for all purposes. The cyano precursor is then reduced to give pregabalin. The asymmetric hydrogenation uses a chiral catalyst consisting of a transition metal bond to a biophosphine ligand such as (f?,f?)-Me-DUPHOS. The procedure results in significant enrichment of pregabalin over (f?)-3-(aminomethyl)-5-methylhexanoic acid.

Framgangsmåten beskrevet i US patent 2003/0212290 A1 representerer en kommersielt gjennomførbar framgangsmåte for framstilling av pregabalin, men ytterligere forbedringer vil være ønskelig av forskjellige grunner. For eksempel, fosfin-ligander, inkluderende liganden (R,R)-Me-DUPHOS, er ofte vanskelig å framstille på grunn av at de oppviser to kirale sentre, som gjør at de blir dyrere. Videre, asymmetrisk hydrogenering krever anvendelse av spesielt utstyr i stand til å håndtere H2, som også fordyrer reaksjonen. The method described in US patent 2003/0212290 A1 represents a commercially feasible method for the production of pregabalin, but further improvements would be desirable for various reasons. For example, phosphine ligands, including the ligand (R,R)-Me-DUPHOS, are often difficult to prepare because they exhibit two chiral centers, which makes them more expensive. Furthermore, asymmetric hydrogenation requires the use of special equipment capable of handling H2, which also makes the reaction more expensive.

SAMMENDRAG AV OPPFINNELSENSUMMARY OF THE INVENTION

Den foreliggende oppfinnelse tilveiebringer materialer og framgangsmåter for å framstille enantiomerisk anrikete y-aminosyrer (formel 1) så som pregabalin (formel 9). The present invention provides materials and methods for preparing enantiomerically enriched γ-amino acids (formula 1) such as pregabalin (formula 9).

I et aspekt vedrører foreliggende oppfinnelsen en fremgangsmåte for framstilling av en forbindelse av formel 1, In one aspect, the present invention relates to a method for producing a compound of formula 1,

eller et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat derav, or a pharmaceutically acceptable complex, salt, solvate or hydrate thereof,

R<1>og R<2>er forskjellige og er hver uavhengig valgt blant hydrogenatom, C1-12alkyl, C3-12sykloalkyl, og substituert C3-12sykloalkyl, R<1> and R<2> are different and are each independently selected from hydrogen atom, C1-12alkyl, C3-12cycloalkyl, and substituted C3-12cycloalkyl,

kjennetegnet ved at framgangsmåten omfatter:characterized by the procedure including:

(a) redusere en cyano-enhet av en forbindelse av formel 8,(a) reducing a cyano unit of a compound of formula 8;

eller et salt derav for å gi forbindelsen av formel 1, eller et salt derav, og (b) valgfritt omdanne forbindelsen av formel 1 eller et salt derav til et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat derav, hvor or a salt thereof to give the compound of formula 1, or a salt thereof, and (b) optionally converting the compound of formula 1 or a salt thereof into a pharmaceutically acceptable complex, salt, solvate or hydrate thereof, wherein

R<1>og R<2>i formel 8 er som definert i formel 1, ogR<1> and R<2> in formula 8 are as defined in formula 1, and

R5 i formel 8 er hydrogenatom, C1-12alkyl, C3.12sykloalkyl, eller aryl-Ci_6alkyl.R 5 in formula 8 is hydrogen atom, C 1-12 alkyl, C 3-12 cycloalkyl, or aryl-C 1-6 alkyl.

I et andre aspekt vedrører foreliggende oppfinnelse en fremgangsmåte for å fremstille en forbindelse av formel 9, In a second aspect, the present invention relates to a method for preparing a compound of formula 9,

eller et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat derav, or a pharmaceutically acceptable complex, salt, solvate or hydrate thereof,

kjennetegnet ved at framgangsmåten omfatter:characterized by the procedure including:

(a) redusere en cyano-enhet av en forbindelse av formel 16,(a) reducing a cyano unit of a compound of formula 16;

eller et salt derav, for å gi en forbindelse av formel 9 eller et salt derav; (b) valgfritt omdanne forbindelsen av formel 9 eller et salt derav til et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat; hvor forbindelsen av formel 16 er valgfritt framstilt ved dekarboksylering av en forbindelse av formel 11, or a salt thereof, to give a compound of formula 9 or a salt thereof; (b) optionally converting the compound of formula 9 or a salt thereof into a pharmaceutically acceptable complex, salt, solvate or hydrate; wherein the compound of formula 16 is optionally prepared by decarboxylation of a compound of formula 11,

eller et salt derav; og or a salt thereof; and

hvor R3 i formel 11 er C1-12alkyl, C3-12sykloalkyl, eller aryl-Ci-6alkyl, og R5 i formel 16 er hydrogenatom, C1-12alkyl, C3-12sykloalkyl, eller aryl-Ci-6alkyl. where R 3 in formula 11 is C 1-12 alkyl, C 3-12 cycloalkyl, or aryl-C 1-6 alkyl, and R 5 in formula 16 is hydrogen atom, C 1-12 alkyl, C 3-12 cycloalkyl, or aryl-C 1-6 alkyl.

Den foreliggende oppfinnelse inkluderer alle komplekser og salter, enten de er farmasøytisk akseptable eller ikke, solvater, hydrater og polymorfe former av de beskrevne forbindelser. Visse forbindelser kan inneholde en alkenyl eller syklisk gruppe slik at cis/ trans (eller ZIE) stereoisomerer er mulig, eller kan inneholde en keto- eller oksimgruppe slik at tautomerisme kan forekomme. I slike tilfeller inkluderer foreliggende oppfinnelse generelt alle ZIE- isomerer og tautomeriske former, en den er rene, vesentlig rene eller blandinger. The present invention includes all complexes and salts, whether pharmaceutically acceptable or not, solvates, hydrates and polymorphic forms of the described compounds. Certain compounds may contain an alkenyl or cyclic group so that cis/trans (or ZIE) stereoisomers are possible, or may contain a keto or oxime group so that tautomerism may occur. In such cases, the present invention generally includes all ZIE isomers and tautomeric forms, whether pure, substantially pure or mixtures.

KORT BESKRIVELSE AV FIGURENEBRIEF DESCRIPTION OF THE FIGURES

Fig. 1 avbilder et skjema for framstilling av enantiomerisk anrikete y-aminosyrer (formel 1). Fig. 2 avbilder et skjema for framstilling av cyano-substituerte diestere (formel 4). Fig. 1 depicts a scheme for the production of enantiomerically enriched γ-amino acids (formula 1). Fig. 2 depicts a scheme for the preparation of cyano-substituted diesters (formula 4).

DETALJERT BESKRIVELSEDETAILED DESCRIPTION

DEFINISJONER OG FORKORTELSERDEFINITIONS AND ABBREVIATIONS

Med mindre annet er angitt benytter beskrivelsen definisjonene gitt nedenfor. Noen av definisjonene av formlene kan inkludere en bindestrek ("-") for å indikere en binding mellom atomer eller et tilfestingspunkt til et navngitt eller ikke-navngitt atom eller gruppe av atomer. Andre definisjoner og formler kan inkludere et likhetstegn ("=") eller et identitetssymbol ("=') for å indikere en dobbeltbinding eller en trippebinding, respektivt. Visse former kan også inkludere én eller flere stjerner ("<*>") for å indikere stereogenisk (asymmetrisk eller kirale) sentre, selv om fravær av en stjerne ikke indikerer at forbindelsen mangler et stereosenter. Slike formler kan referere til racematet til individuelle enantiomerer eller til individuelle diastereomerer, som kan eller ikke trenger å være rene eller vesentlig rene. ;"Substituerte" grupper er de hvor én eller flere hydrogenatomer har blitt erstattet med én eller flere ikke-hydrogengrupper, gitt at valenskravene oppfylles, og at en kjemisk stabil forbindelse er resultatet av substitueringen. ;"Ca" eller "omtrentlig" idet de anvendes i forbindelse med en målbar numerisk verdi, refererer til den tiltenkte verdi av variabelen og til alle verdier av variabelen som er innenfor den eksperimentelle feil av den indikerte verdi, for eksempel innen 95 % konfidensintervall for gjennomsnittet eller innen ±10 prosent av den indikerte verdi, hvor den er størst. ;"Alkyl" refererer til en rettkjedete og forgrenet mettet hydrokarbongruppe, som generelt har et spesifisert antall karbonatomer (det vil si Ci^alkyl refererer til en alkylgruppe som er 1, 2, 3, 4, 5, eller 6 karbonatomer, og C1-12alkyl referer til en alkylgruppe som har 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, eller 12 karbonatomer). Eksempler på alkylgrupper inkluderer, uten begrensning, metyl, etyl, n-propyl,/'-propyl, n-butyl, s-butyl,/-butyl, f-butyl, pent-1-yl, pent-2-yl, pent-3-yl, 3-metylbut-1-yl, 3-metylbut-2-yl, 2-metylbut-2-yl, 2,2,2-trimetylet-1-yl, n-heksyl, og lignende. ;"Alkenyl" refererer til rettkjedete eller forgrenede hydrokarbongrupper som haren eller flere umettede karbon-karbon-bindinger, og som generelt har et spesifikt antall karbonatomer. Eksempler på alkenylgrupper inkluderer, uten begrensning, etenyl, 1-propen-1-yl, 1-propen-2-yl, 2-propen-1-yl, 1-buten-1-yl, 1-buten-2-yl, 3-buten-1-yl, 3-buten-2-yl, 2-buten-1-yl, 2-buten-2-yl, 2-metyl-1-propen-1-yl, 2-metyl-2-propen-1-yl, 1,3-butadien-1-yl, 1,3-butadien-2-yl, og lignende. ;"Alkynyl" refererer til rettkjedete eller forgrenede hydrokarbongrupper som har en eller flere trippel karbon-karbon-bindinger, og som generelt har et spesifikt antall karbonatomer. Eksempler på alkenylgrupper inkluderer, uten begrensning, etynyl, 1-propyn-1-yl, 2-propyn-1-yl, 1-butyn-1-yl, 3-butyn-1-yl, 3-butyn-2-yl, 2-butyn-1-yl, og lignende. ;"Alkanoyl" og "alkanoylamino" refererer, respektivt, til alkyl-C(O)- og alkyl-C(0)-NH-, hvor alkyl er definert ovenfor, og inkluderer generelt et spesifisert antall karbonatomer, inkluderende karbonylkarbonet. Eksempler på alkanoylgrupper inkluderer, uten begrensning, formyl, acetyl, propionyl, butyryl, pentanoyl, heksanoyl, og lignende. ;"Alkenoyl" og "alkynoyl" refererer, respektivt til alkenyl-C(O)- og alkynyl-C(O)-, hvor alkenyl og alkynyl er som definert ovenfor. Referanser til alkenoyl og alkynoyl inkluderer generelt et spesifisert antall karbonatomer, ekskluderende karbonylkarbonet. Eksempler på alkenoylgrupper inkluderer, uten begrensning, propenoyl, 2-metylpropenoyl, 2-butenoyl, 3-butenoyl, 2-metyl-2-butenoyl, 2-metyl-3-butenoyl, 3-metyl-3-butenoyl, 2-pentenoyl, 3-pentenoyl, 4-pentenoyl, og lignende. Eksempler på alkynoylgrupper inkluderer, uten begrensning, propynoyl, 2-butynoyl, 3-butynoyl, 2-pentynoyl, 3-pentynoyl, 4-pentynoyl, og lignende. ;"Alkoksy", "alkoksykarbonyl", og "alkoksykarbonylamino," refererer, respektivt, til alkyl-O-, alkenyl-O, og alkynyl-O; til alkyl-O-C(O)-, alkenyl-O-C(O)-, alkynyl-O-C(O)-; og til alkyl-0-C(0)-NH-, alkenyl-0-C(0)-NH-, og alkynyl-0-C(0)-NH-, hvor alkyl, alkenyl, og alkynyl er definert ovenfor. Eksempler på alkoksygrupper inkluderer, uten begrensning, metoksy, etoksy, n-propoksy, /-propoksy, n-butoksy, s-butoksy, t-butoksy, /7-pentoksy, s-pentoksy, og lignende. Eksempler på alkoksykarbonylgrupper inkluderer, uten begrensning, metoksy karbonyl, etoksykarbonyl, n-propoksy karbonyl, /-propoksykarbonyl, n-butoksykarbonyl, s-butoksykarbonyl, f-butoksykarbonyl, n-pentoksykarbonyl, s-pentoksylarbonyl, og lignende. ;"Alkylamino", "alkylaminokarbonyl", "dialkylaminokarbonyl", "alkylsulfonyl", "sulfonylaminoalkyl" og "alkylsulfonylaminokarbonyl" referererer, respektivt til alkyl-NH-, alkyl-NH-C(O)-, alkyl2-N-C(0)-, alkyl-S(02)-, HS(02)-NH-alkyl-, og alkyl-S(O)-NH-C(O)- hvor alkyl er som definert ovenfor. ;"Aminoalkyl" og "cyanoalkyl" refererer, respektivt, til NH2-alkyl og N=C-alky|, hvor alkyl er definert ovenfor. ;"Halo," "halogen" og "halogeno" kan anvendes om hverandre, og refererer til fluor, klor, brom og iod. ;"Haloalkyl", "haloalkenyl", "haloalkynyl", "haloalkanoyl", "haloalkenoyl", "halo-alkynoyl", "haloalkoksy" og "haloalkoksykarbonyl" refererer, respektivt, til alkyl, alkenyl, alkynyl, alkanoyl, alkenoyl, alkynoyl, alkoksy, og alkoksykarbonylgrupper substituert med ett eller flere halogenatomer, hvor alkyl, alkenyl, alkynyl, alkanoyl, alkenoyl, alkynoyl, alkoksy, og alkoksykarbonyl er som definert over. Eksempler på halooalkylgrupper inkluderer, uten begrensning, trifluorometyl, triklormetyl, penta-fluoretyl, pentakloretyl, og lignende. ;"Hydroksyalkyl" og "oksoalkyl" referer, respektivt til HO-alkyl og 0=alkyl, hvor alkyl er som definert ovenfor. Eksempler på hydroksyalkyl og oksoalkylgrupper inkluderer, rensning, hydroksymetyl, hydroksyetyl, 3-hydroksypropyl, oksometyl, oksoetyl, 3-oksopropyl, og lignende. ;"Sykloalkyl" refererer til mettet monosyklisk og bisyklisk hydrokarbonringer, generelt som har et spesifisert antall karbonatomer som utgjør ringen (dvs. C3-7sykloalkyl) refererer til en sykloalkylgruppe som har 3, 4, 5, 6 eller 7 karbonatomer som ringmedlemmer. Sykloalkylet kan være festet til en morgruppe eller til et substrat av ethvert ringatom, med mindre slik tilpasning vil ødelegge valenskravene. Likeledes, sykloalkylgruppene kan inkludere en eller flere ikke-hydrogensubstituenter med minst slik substituering vil ødelegge valenskravene. Nyttige substituenter inkluderer, uten begrensning, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, alkoksy, alkoksykarbonyl, alkanoyl, og halo, som definert ovenfor, og hydroksy, merkapto, nitro, og amino. ;Eksempler på monosyklisk sykloalkylgrupper inkluderer, uten begrensning, syklopropyl, syklobutyl, syklopentyl, sykloheksyl og lignende. Eksempler på bisykliske sykloalkylgrupper inkluderer, uten begrensning, bisyklo[1.1.0]butyl, bisyklo[1.1.1]pentyl, bisyklo[2.1.0]pentyl, bisyklo[2.1.1]heksyl, bisyklo[3.1.0]heksyl, bisyklo [2.2.1 ]heptyl, bisyklo[3.2.0]heptyl, bisyklo[3.1.1]heptyl, bisyklo[4.1.0]heptyl, bisyklo[2.2.2]oktyl, bisyklo 3.2.1]oktyl, bisyklo[4.1.1]oktyl, bisyklo[3.3.0]oktyl, bisyklo [4.2.0]oktyl, bisyklo[3.3.1]nonyl, bisyklo[4.2.1]nonyl, bisyklo[4.3.0]nonyl, bisyklo [3.3.2]decyl, bisyklo[4.2.2]decyl, bisyklo[4.3.1]decyl, bisyklo[4.4.0]decyl, bisyklo [3.3.3]undecyl, bisyklo[4.3.2]undecyl, bisyklo[4.3.3]dodecyl, og lignende, som kan være festet til en morgruppe eller substrat ved en vilkårlig av ringatomene, med mindre slik tilfesting vil ødelegge valenskravene. ;"Sykloalkenyl" refererer monosykliske og bisykliske hydrogenkarbonringer som har en eller flere enn en umettet karbon-karbon-bindinger og som generelt har et spesifisert antall karbonatomer som utgjør ringen (dvs. C3.7sykloalkenyl referer til sykloalkenylgruppe som har 3, 4, 5, 6 eller 7 karbonatomer somTingmedlemmer). Sykloalkenylen kan være festet til en morgruppe eller til et substrat av et vilkårlig ringatom, med mindre slik tilfesting vil ødelegge valenskravene. Likeledes, syklo-alkenylgruppene kan inkludere en eller flere ikke-hydrogensubstituenter med mindre slik substitusjon vil ødelegge valenskravene. Nyttige substituenter inkluderer, uten begrensning, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, alkoksy, alkoksykarbonyl, alkanoyl, og halo, som definert ovenfor, og hydroksy, merkapto, nitro, og amino. ;"Sykloalkanoyl" og "sykloalkenoyl" refererer til sykloalkyl-C(O)- og sykloalkenyl-C(O)-, respektivt, hvor sykloalkyl og sykloalkenyl er som definert ovenfor. Referanser til sykloalkanoyl og sykloalkenoyl inkluderer generelt et spesifisert antall karbonatomer, ekskluderende karbonylkarbonet. Eksempler på sykloalkanoylgrupper inkluderer, uten begrensning, syklopropanoyl, syklobutanoyl, syklopentanoyl, sykloheksanoyl, sykloheptanoyl, 1-syklobutenoyl, 2-syklobutenoyl, 1-syklopentenoyl, 2-syklopentenoyl, 3-syklopentenoyl, 1-sykloheksenoyl, 2-sykloheksenoyl, 3-sykloheksenoyl, og lignende. ;"Sykloalkoksy" og "sykloalkoksykarbonyl" referer, respektivt, til sykloalkyl-O- og sykloalkenyl-0 og til sykloalkyl-O-C(O)- og sykloalkenyl-O-C(O)-, hvor sykloalkyl og sykloalkenyl er som definert ovenfor. Referanser til sykloalkoksy og sykloalkoksy- ;karbonyl inkluderer generelt et spesifisert antall karbonatomer, eksluderende karbonylkarbonet. Eksempler på sykloalkoksygrupper inkluderer, uten begrensning, syklopropoksy, syklobutoksy, syklopentoksy, sykloheksoksy, 1 -syklobutenoksy, 2-syklobutenokdy, 1-syklopentenoksy, 2-syklopentenoksy, 3-syklopentenoksy, 1-sykloheksenoksy, 2-sykloheksenoksy, 3-sykloheksenoksy, og lignende. Eksempler på sykloalkoksykarbonylgrupper inkluderer, uten begrensning, syklopropoksy-karbonyl, syklobutoksykarbonyl, syklopentoksykarbonyl, sykloheksoksy karbonyl, 1-syklobutenoksykarbonyl, 2-syklobutenoksykarbonyl, 1-syklopentenoksy karbonyl, 2-syklopentenoksykarbonyl, 3-syklopentenoksykarbonyl, 1 -sykloheksenoksykarbonyl, 2-sykloheksenoksykarbonyl, 3-sykloheksenoksykarbonyl, og lignende. ;"Aryl" og "arylen" refererer til monovalente og divalente aromatiske grupper, respektivt, inkluderende 5- og 6- leddete monosykliske aromatiske grupper som inneholder 0 til 4 heteroatomer uavhengig valgt blant nitrogen, oksygen og svovel. Eksempler på monosykliske arylgrupper inkluderer, uten begrensning, fenyl, pyrrolyl, furanyl, tiofeneyl, tiasolyl, isotiasolyl, imidasolyl, triasolyl, tetrasolyl, pyrasolyl, oksasolyl, isooksasolyl, pyridinyl, pyrasinyl, pyridasinyl, pyrimidinyl, og lignende. Aryl og arylengrupper inkluderer også bisykliske grupper, trisykliske grupper, etc, inkluderende fusjonerte 5- og 6-leddede ringer beskrevet ovenfor. Eksempler på multisykliske arylgrupper inkluderer, uten begrensning, naftyl, bifenyl, antrasenyl, pyrenyl, karbasolyl, bensoksasolyl, bensodioasolyl, bensotiasolyl, bensoimidasolyl, bensotiofeneyl, quinolinyl, isoquinolinyl, indolyl, bensofuranyl, purinyl, indolisinyl, og lignende. Aryl- og arylengruppene kan være festet til en målgruppe eller til et substrat i et vilkårlig ringatom, med mindre slik tilfesting vil ødelegge valenskravene. Likeledes, aryl- og arylengrupper kan inkludere en eller flere ikke-hydrogensubstituenter med mindre slik substitusjon vil ødelegge valenskravene. Nyttige substituenter inkluderer, uten begrensning, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, sykloalkyl, sykloalkenyl, alkoksy, sykloalkoksy, alkanoyl, sykloalkanoyl, sykloalkenoyl, alkoksykarbonyl, sykloalkoksykarbonyl, og halo, som definert ovenfor, og hydroksy, merkapto, nitro, amino, og alkylamino. ;"Heteroring" "heterosyklyl" refererer til mettet, partielt umettet eller umettet monosyklisk eller bisykliske ringer som har 5 til 7 eller fra 7 til 11 ringmedlemmer, respektivt. Disse grupper er ringmedlemmer som utgjøres av karbonatomer og fra 1 til 4 heteroatomer som er uavhengig nitrogen, oksygen eller svovel, og kan inkludere enhver bisyklisk gruppe hvor enhver av de ovenfor definert monosykliske heteroringer er fusjonert til en benzenring. Nitrogen- og svovelheteroatomer kan valgfritt være oksidert. Den heterosykliske ring kan være festet til en målgruppe eller til et substrat i et vilkårlig heteroatom eller karbonatom, med mindre slik tilfesting vil ødelegge valenskravene. Likeledes, enhver av karbonene eller nitrogenring-medlemmene kan inkludere en ikke-hydrogensubstituenter med mindre slik substitusjon vil ødelegge valenskravene. Nyttige substituenter inkluderer, uten begrensning, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, sykloalkyl, sykloalkenyl, alkoksy, sykloalkoksy, alkanoyl, sykloalkanoyl, sykloalkenoyl, alkoksykarbonyl, sykloalkoksykarbonyl, og halo, som definert ovenfor, og hydroksy, merkapto, nitro, amino, og alkylamino. ;Eksempler på heteroringer inkluderer, uten begrensning, akridinyl, asosinyl, benzimidazolyl, benzofuranyl, benzzotiofuranyl, besotiofenyl, benzzksazolyl, benztiazolyl, benztriazolyl, benztetrazolyl, benzisoksazolyl, benzisotiazolyl, benzimidazolinyl, karbazolyl, 4a/-/-karbasolyl, karbolinyl, kromanyl, kromenyl, sinnolinyl, dekahydroquinolinyl, 2H, 6H-1,5,2-ditiasinyl, dihydrofuro[2,3-bjtetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imizolinyl, imidazolyl, 1A7-indasolyl, indolenyl, indolinyl, indolisinyl, indolyl, 3/-/-indolyl, isobensofuranyl, isokromanyl, isoindasolyl, isoindolinyl, isoindolyl, isoquinolinyl, isotiasolyl, isoksasolyl, morfolinyl, naftyridinyl, oktahydroisoquinolinyl, oksadiasolyl, 1,2,3-oksadiasolyl, 1,2,4-oksadiasolyl, 1,2,5-oksadiasolyl, 1,3,4-oksadiasolyl, oksasolidinyl, oksasolyl, oksasolidinyl, pyrimidinyl, fenantridinyl, fenantrolinyl, fenasinyl, fenotiasinyl, fenoksatiinyl, fenoksasinyl, ftalasinyl, piperasinyl, piperidinyl, fteridinyl, purinyl, pyranyl, pyrasinyl, pyrasolidinyl, pyrasolinyl, pyrasolyl, pyridasinyl, pyridooksasol, pyridoimidasol, pyridotiasol, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2/-/-pyrrolyl, pyrrolyl, quinasolinyl, quinolinyl, 4/-/-quinolisinyl, quinoksalinyl, quinuklidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H- 1,2,5-tiadiasinyl, 1,2,3-tiadiasolyl, 1,2,4-tiadiasolyl, 1,2,5-tiadiasolyl, 1,3,4-tiadiasolyl, tiantrenyl, thiasolyl, tienyl, tienotiasolyl, tienooksasolyl, tienoimidasolyl, tiofenyl, triasinyl, 1,2,3-triasolyl, 1,2,4-triasolyl, 1,2,5-triasolyl, 1,3,4-triasolyl, og xantenyl. ;"Heteroaryl" og "heteroarylen" refererer, respektivt til monovalente og divalente heteroringer eller heterosyklylgrupper, som definert ovenfor, som er aromatiske. Heteroaryl og heteroarylengruppene representerer en undergruppe av aryl- og arylengrupper, respektivt. ;"Arylalkyl" og "heteroarylalkyl" refererer, respektivt til aryl-alkyl og heteroaryl-alkyl, hvor aryl, heteroaryl, og alkyl er som definert ovenfor, Eksempler inkluderer, uten begrensning, benzyl, fluorenylmetyl, imidasol-2-yl-metyl, og lignende. ;"Arylalkanoyl", "heteroarylalkanoyl", "arylalkenoyl", "heteroarylalkenoyl", "arylalkynoyl" og "heteroarylalkynoyl" refererer, respektivt, til aryl-alkanoyl, heteroaryl-alkanoyl, aryl-alkenoyl, heteroaryl-alkenoyl, aryl-alkynoyl, and heteroarylalkynoyl, hvor aryl, heteroaryl, alkanoyl, alkenoyl, og alkynoyl er definert ovenfor. Eksempler inkluderer, uten begrensning, benzoyl, benzylkarbonyl, fluorenoyl, fluorenylmetylkarbonyl, imidasol-2-oyl, imidasol-2-yl-metylkarbonyl, fenyletenkarbonyl, 1-fenyletenkarbonyl, 1-fenyl-propenkarbonyl, 2-fenyl-propenkarbonyl, 3-fenyl-propenkarbonyl, imidasol-2-yl-etenkarbonyl, 1-(imidasol-2-yl)-etenkarbonyl, 1-(imidasol-2-yl)-propenkarbonyl, 2-(imidasol-2-yl)-propenkarbonyl, 3-(imidasol-2-yl)-propenkarbonyl, fenyletynkarbonyl, fenylpropynkarbonyl, (imidasol-2-yl)-etynkarbonyl, (imidasol-2-yl)-propynkarbonyl, og lignende. ;"Arylalkoksy" og "heteroarylalkoksy" refererer, respektivt, til aryl-alkoksy og heteroaryl-alkoksy, hvor aryl, heteroaryl, og alkoksy er som definert ovenfor. Eksempler inkluderer, uten begrensning, bensyloksy, fluorenylmetyloksy, imidasol-2-yl-metyloksy, og lignende. ;"Aryloksy" og "heteroaryloksy" refererer, respektivt til aryl-O- og heteroaryl-O-, hvor aryl og heteroaryl er definert ovenfor. Eksempler inkluder, uten begrensning, fenoksy, imidasol-2-yloksy, og lignende. ;"Aryloksykarbonyl", "heteroaryloksykarbonyl", "aryloksykarbonyl" og "heteroaryl-alkoksykarbonyl" refererer, respektivt, til aryloksy-C(O)-, heteroaryloksy-C(O)-, arylalkoksy-C(O)-, og heteroarylalkoksy-C(O)-, hvor aryloksy, heteroaryloksy, arylalkoksy, og heteroarylalkoksy er definert ovenfor. Eksempler inkluderer, uten begrensning, fenoksykarbonyl, imidasol-2-yloksykarbonyl, bensyloksykarbonyl, fluorenylmetyloksykarbonyl, imidasol-2-yl-metyloksykarbonyl, og lignende. ;"Avgangsgruppe" refererer til enhver gruppe som forlater et molekyl i løpet av en fragmentertngsprosess, inkluderende substitusjonsreaksjoner, elimineringsreaksjoner og addisjon-elimineringsreaksjoner. Avgangsgrupper kan være nukleofugale, hvor gruppen forlater med et par av elektroner som tidligere fungerte som bindingen mellom avgangsgruppen og molekylet, eller kan være elektrofugale, hvor gruppen som forlater ikke har dette elektronpar. Evnen til en nukleofugal avgangsgruppe til å forlate avhenger av dets basestyrke, hvor de sterkeste baser er de svakeste avgangsgrupper. Vanlige nukleofugale avgangsgrupper inkluderer nitrogen (for eksempel fra diasoniumsalter); sulfonater, inkluderende alkysulfonater (for eksempel mesylat, fluoroalkylsulfonater (for eksempel triflat, heksaflat, nonaflat, og tresylat), og arylsulfonater (for eksempel tosylat, brosylat, klosylat, og nosylat). Andre inkluderer karbonater, halidioner, karboksylationer, fenolationer og alkoksider. Noen sterke baser så som NH2" og OH" kan bli bedre avgangsgrupper med behandling med en syre. Vanlige elektrofugale avgangsgrupper inkluderer protonet, CO2, og metaller. ;"Enantiomerisk overskudd" eller "ee" er et mål, for en gitt prøve, for overskuddet av en enantiomer i forhold til en racemisk prøve av en kiral forbindelse og uttrykkes som en prosentandel. Enantiomerisk overskudd er definert som 100 x (er -1) / (er + 1), hvor "er" er forholdet av den mer forekomne enantiomer i forhold til en mindre fore-kommende enantiomer. ;"Diastereomerisk overskudd" eller "de" er et mål, for en gitt prøve for overskuddet av diastereomer over en prøve som har like mengder av diastereomerer og uttrykkes som en prosentandel. Diastereomerisk overskudd er definert som 100 x (dr -1) / (dr + 1), hvor "er" er forholdet av en mer hyppig diastereomer til en mindre hyppig diastereomer. ;"Stereoselektiv," "enantioselektive," "diastereoselektive," og varianter derav, referer til en gitt prosess (for eksempel esterhydrolyse, hydrogenering, hydroformulering,%-allyl palladiumkobling hydrosilatiering, hydrocyanering, olefin metatese, hydroacylering, allylaminisomerisering, etc.) som gir mer av en stereoisomer, enantiomer, eller diastereoisomer enn av den andre, respektivt. ;"Høyt nivå av stereoselektivitet"," "høyt nivå av enantioselektivitet", "høyt nivå av diastereoselektivitet" og varianter derav, refererer til en gitt prosess som gir produkter som har et overskudd av en stereoisomer, enantiomer, eller diastereoisomer, som omfatter minst ca 90 % av produktene. For et par av enantiomerer eller diastereomerer, vil et høyt nivå av enantioselektivitet eller diastereoselektivitet korrespondere til en ee eller de på minst ca 80 %. ;"Stereoisomerisk anriket," "enantiomerisk anriket," "diastereomerisk anriket," og varianter derav, referer, respektivt, til en prøve av forbindelsen som har mer av en stereoisomer, enantiomer eller diastereomer enn den andre. Graden av anrikning kan måles med % av totalt produkt, eller for et par av enantiomerer eller diastereomerer, med ee eller de. ;"I hovedsak ren stereoisomer," "i hovedsak ren enantiomer," "i hovedsak ren diastereomer," og varianter derav, referer, respektivt, til en prøve inneholdende en stereoisomer, enantiomer, eller diastereomer, som omfatter minst 95 % av prøven. For par av enantiomerer og diastereomerer, vil en betydelig ren enantiomer eller diastereomer korrespondere til prøven som har en ee eller de på ca 90 % eller mer. ;En "ren stereoisomer," "ren enantiomer," "rene diastereomer," og varianter derav, refererer, respektivt, til en prøve inneholdende en stereoisomer, enantiomer, eller diastereomer, som omfatter minst ca 99,5 % av prøven. For par av en enantiomerer og diastereomerer, vil en ren enantiomer eller ren diastereomer" korrespondere til prøver som har en ee eller de på 99 % eller mer. ;"Motsatt enantiomer" refererer til et molekyl som er i en ikke-superimposabelt speilbilde av et referansemolekyl, som kan oppnåes ved å invertere alle de av de stereogeniske sentre i referansemolekylet. For eksempel, dersom referansemolekylet har S absolutt stereokjemisk konfigurasjon, da har den motsatte enantiomer R absolutt stereokjemisk konfigurasjon. Likeledes, dersom referansemolekylet har S,S absolutte stereokjemisk konfigurasjon, da har den motsatte enantiomer R, R stereokjemisk konfigurasjon, og så videre. ;"Stereoisomerer" av en spesifisert forbindelse refererer til den motsatte enantiomer av forbindelsen og til enhver diastereoisomer eller geometriske isomerer ( ZIE) av forbindelsen. For eksempel, dersom den spesifiserte forbindelse har S, R, Z stereokjemisk konfigurasjon, vil dets stereoisomer inkludere dets motsatte enantiomer med R, S, Z konfigurasjon, dets diastereomerer har S,S,Z konfigurasjon og R, R, Z konfigurasjon, og det geometriske isomerer har S, R, E konfigurasjon, R, S, E konfigurasjon, S, S, E konfigurasjon, og R, R, E konfigurasjon. ;"Enantioselektiv verdi" eller "E" referer til forholdet mellom spesifisitetskonstanter for hver enantiomer av forbindelsen som undergår en kjemisk reaksjon eller omdanning og kan beregnes (for S-enantiomer) fra uttrykket. ; ; hvor Ks og KR er første ordens hastighetskonstanter for omdanningen av S- og R-enantiomerer, respektivt; Ksmog Krmer Michaelis konstanter for S- og R- ;enantiomerer, respektivt; x er den fraksjonene omdanning av substratet; eep og eeser enantiomerisk overskudd av produktet og substrat (reaktant), respektivt. ;"Lipase enhet" eller "LU" referer til mengden av enzym (ig) som frigjør 1 u.mol av titrerbar smørsyre/per min i det den settes i forbindelse med tributyrin og en emulsifiserer (gummi arabikum) ved 30°C og pH 7. ;"Solvat" referer til et molekylkompleks omfattende en beskrevet eller krevd forbindelse og en støkiometrisk eller ikke-støkiometrisk mengde av én eller flere oppløsningsmolekyler(foreksempel EtOH). ;"Hydrater" referer til et solvat omfattende en beskrevet eller krevd forbindelse og en støkiometrisk eller ikke-støkiometrisk mengde av vann. ;"Farmasøytisk akseptable komplekser, salter, solvater eller hydrater" referer til komplekser, syrer, baseaddisjonssalter, solvater eller hydrater i krevde og beskrevne forbindelser, som er innen rammen av medisinsk vurdering, egnet for anvendelse i kontakt med vev til pasienter uten unødig toksisitet, irritasjon, allergisk respons og lignende, i samsvar med en rimelig nytte/risiko-forhold, og effektiv for deres tiltenkte bruk. ;"Pre-katalysator" eller "katalysator-forløper" refererer til en forbindelse eller sett av forbindelser som omdannes til katalysator før anvendelse. ;"Behandling" referer til å reversere, lindre, inhibere prosessen av, eller hindre en forstyrrelsestilstand hvortil slike termer gjelder, eller forhindre en eller flere symptomer av slike forstyrrelser eller tilstander. ;"Behandling" referer til handlingen " å behandle" som definert umiddelbart ovenfor. ;Tabell 1 angir forkortelser som brukes i beskrivelsen. ; I noen av reaksjonsskjemaene og eksemplene nedenfor, kan visse forbindelser framstilles ved anvendelse av beskyttende grupper, som hindrer uønsket kjemisk reaksjon i ellers reaktive seter. Beskyttende grupper kan også anvendes for å forbedre løselighet eller på annen måte modifisere fysikalske egenskaper til forbindelsen. For en beskrivelse av strategi for beskyttende grupper, en beskrivelse av materialer og metoder for å installere og fjerne beskyttende grupper, og en sammenligning av nyttige beskyttende grupper for vanlige funksjonelle grupper, inkluderende aminer, karboksylsyrer, alkoholer, ketoner aldehyder og lignende, se T. W. Greene og P.G. Wuts, Protecting Groups in Organic Chemistry (1999) og P. Kocienski, Protective Groups (2000), som inkorporeres heri med henvisning i deres helhet for alle formål. ;I tillegg, noen av skjemaene og eksemplene nedenfor kan utelate detaljer i vanlige reaksjoner, inkluderende oksideringer, reduksjoner, og likeledes, som er kjent for fagkyndige personen innen fagfeltet organisk kjemi. Detaljene av slike reaksjoner kan fines i et antall avhandlinger, inkluderende Richard Larock, Comprehensive Organic Transformations (1999), og multi-volume serien editert av Michael B. Smith og andre, Compendium of Organic Synthetic Methods (1974-2003). Generelt, utgangsmateriale og reagenser kan oppnåes fra konvensjonelle kilder eller framstilles fra litteraturkilder. ;Generelt, de kjemiske omdanninger beskrevet i beskrivelsen kan utføres ved anvendelse av i hovedsak støkiometriske mengder av reaktanter, selv om visse reaksjoner kan ha nytte av å anvende et overskudd av en eller flere av reaktantene. Videre, mange av reaksjonene beskrevet i beskrivelsen, inkluderende den enantioselektive hydrolyse av den racemiske diester (formel 4) beskrevet i detalj nedenfor, kan utføres ved ca RT, men bestemte reaksjoner kan kreve anvendelse av høyere eller lavere temperaturer, avhengig av reaksjonskinetikk, utbytte og lignende. Videre, mange av de kjemiske omdanninger kan benytte én eller flere kompatible oppløsningsmidler, som kan påvirke reaksjonsraten av utbyttet. Avhengig av naturen til reaktantene, den ene eller flere oppløsningsmidler kan være polar protisk oppløsningsmidler, polare aprotiske oppøsningsmidler, ikke-polare oppløsnings-midler, eller enhver kombinasjon. Enhver referanse i beskrivelsen til et konsentrasjonsområde, er tem peratu rom rådet, etpH-område, et katalysator-lastingsområde, og så videre, enten man uttrykkelig bruker ordet "område" eller ikke, inkluderer de indikerte endepunkter. ;Det beskrives materialer og framgangsmåter for å framstille optisk aktiv y-aminosyrer (formel 1) inkluderende farmasøytisk akseptable salter, estere, amider eller prodrug derav. Forbindelsene av formel 1 inkluderer substituenter R<1>og R<2>, som er definert ovenfor. Nyttige forbindelser av formel 1 som involverer de hvor R<1>er hydrogenatom og R2 er C1-12alkyl, C3-12sykloalkyl, eller substituert C3-12sykloalkyl, eller de hvor R<2>er et hydrogenatom og R<1>er C1-12alkyl, C3-12sykloalkyl, eller substituert C3-12sykloalkyl. Spesielt nyttige forbindelser av formel 1 inkluderer de hvor R<1>er et hydrogenatom og R2 er C1-6alkyl eller C3-7sykloalkyl, eller de hvor R2 er et hydrogenatom og R<1>er C1-6alkyl eller C3.7sykloalkyl. Spesielt nyttige forbindelser av formel 1 inkluderer de hvor R<1>er et hydrogenatom og R<2>er C1-4alkyl, så som pregabalin (formel 9). ;Fig. 1 viser en prosess for framstilling av optisk aktive y-aminosyrer (formel 1). Prosessen inkluderer trinnene å kontakte eller kombinere en reaksjonsblanding, som omfattes av en cyano-substituert diester (formel 4) og vann, med et enzym for å gi en produktblanding som inkluderer en optisk aktiv dikarboksylisk syre monoester (formel 3) og en optisk aktiv diester (formel 5). Den cyano-substituerte diester (formel 4) har et stereogenisk senter, som angies med en stjerne ("<*>"), og som beskrevet nedenfor, kan framstilles i samsvar med et reaksjonsskjema vist i fig 2. Før man settes i forbindelse med enzymet, omfatter cyano-substituent diester (formel 4) typisk en racemisk (ekvimolar) blanding av diesteren av formel 5 og dets motsatte enantiomer. Substituenter R<1>, R<2>, og R<3>i formel 3, formel 4, og formel 5, og substituent R<4>i formel 4 og formel 5 er som definert ovenfor i forbindelse med formel 1. Generelt, med mindre annet er forskjellig angitt, idet en bestemt identifiserer (R<1>, Unless otherwise stated, the description uses the definitions given below. Some of the definitions of the formulas may include a hyphen ("-") to indicate a bond between atoms or a point of attachment to a named or unnamed atom or group of atoms. Other definitions and formulas may include an equal sign ("=") or an identity symbol ("=') to indicate a double bond or a triple bond, respectively. Certain forms may also include one or more asterisks ("<*>") to indicate indicate stereogenic (asymmetric or chiral) centers, although the absence of an asterisk does not indicate that the compound lacks a stereocenter. Such formulas may refer to the racemate of individual enantiomers or to individual diastereomers, which may or may not be pure or substantially pure. ; "Substituted" groups are those in which one or more hydrogen atoms have been replaced by one or more non-hydrogen groups, provided that the valence requirements are met, and that a chemically stable compound results from the substitution. ;"Ca" or "about" as used in connection with a measurable numerical value, refers to the intended value of the variable and to all values of the variable that are within the experimental error of the indicated rte value, for example within a 95% confidence interval for the mean or within ±10 per cent of the indicated value, whichever is greater. ;"Alkyl" refers to a straight-chain and branched saturated hydrocarbon group, which generally has a specified number of carbon atoms (that is, C1-alkyl refers to an alkyl group that is 1, 2, 3, 4, 5, or 6 carbon atoms, and C1- 12alkyl refers to an alkyl group having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms). Examples of alkyl groups include, without limitation, methyl, ethyl, n-propyl, /'-propyl, n-butyl, s-butyl, /-butyl, f-butyl, pent-1-yl, pent-2-yl, pent -3-yl, 3-methylbut-1-yl, 3-methylbut-2-yl, 2-methylbut-2-yl, 2,2,2-trimethyleth-1-yl, n-hexyl, and the like. "Alkenyl" refers to straight-chain or branched hydrocarbon groups having single or multiple unsaturated carbon-carbon bonds, and generally having a specific number of carbon atoms. Examples of alkenyl groups include, without limitation, ethenyl, 1-propen-1-yl, 1-propen-2-yl, 2-propen-1-yl, 1-buten-1-yl, 1-buten-2-yl, 3-buten-1-yl, 3-buten-2-yl, 2-buten-1-yl, 2-buten-2-yl, 2-methyl-1-propen-1-yl, 2-methyl-2- propen-1-yl, 1,3-butadiene-1-yl, 1,3-butadiene-2-yl, and the like. ;"Alkynyl" refers to straight chain or branched hydrocarbon groups having one or more carbon-carbon triple bonds, and generally having a specific number of carbon atoms. Examples of alkenyl groups include, without limitation, ethynyl, 1-propyn-1-yl, 2-propyn-1-yl, 1-butyn-1-yl, 3-butyn-1-yl, 3-butyn-2-yl, 2-butyn-1-yl, and the like. ;"Alkanoyl" and "alkanoylamino" refer, respectively, to alkyl-C(O)- and alkyl-C(O)-NH-, where alkyl is defined above, and generally includes a specified number of carbon atoms, including the carbonyl carbon. Examples of alkanoyl groups include, without limitation, formyl, acetyl, propionyl, butyryl, pentanoyl, hexanoyl, and the like. ;"Alkenoyl" and "alkynoyl" refer, respectively, to alkenyl-C(O)- and alkynyl-C(O)-, where alkenyl and alkynyl are as defined above. References to alkenoyl and alkynyl generally include a specified number of carbon atoms, excluding the carbonyl carbon. Examples of alkenoyl groups include, without limitation, propenoyl, 2-methylpropenoyl, 2-butenoyl, 3-butenoyl, 2-methyl-2-butenoyl, 2-methyl-3-butenoyl, 3-methyl-3-butenoyl, 2-pentenoyl, 3-pentenoyl, 4-pentenoyl, and the like. Examples of alkynoyl groups include, without limitation, propynoyl, 2-butynoyl, 3-butynoyl, 2-pentynoyl, 3-pentynoyl, 4-pentynoyl, and the like. ;"Alkoxy," "Alkoxycarbonyl," and "Alkoxycarbonylamino," refer, respectively, to alkyl-O-, alkenyl-O, and alkynyl-O; to alkyl-O-C(O)-, alkenyl-O-C(O)-, alkynyl-O-C(O)-; and to alkyl-O-C(0)-NH-, alkenyl-O-C(0)-NH-, and alkynyl-O-C(0)-NH-, where alkyl, alkenyl, and alkynyl are defined above. Examples of alkoxy groups include, without limitation, methoxy, ethoxy, n-propoxy, /-propoxy, n-butoxy, s-butoxy, t-butoxy, /7-pentoxy, s-pentoxy, and the like. Examples of alkoxycarbonyl groups include, without limitation, methoxy carbonyl, ethoxycarbonyl, n-propoxy carbonyl, /-propoxycarbonyl, n-butoxycarbonyl, s-butoxycarbonyl, f-butoxycarbonyl, n-pentoxycarbonyl, s-pentoxylcarbonyl, and the like. ;"Alkylamino", "alkylaminocarbonyl", "dialkylaminocarbonyl", "alkylsulfonyl", "sulfonylaminoalkyl" and "alkylsulfonylaminocarbonyl" refer, respectively, to alkyl-NH-, alkyl-NH-C(O)-, alkyl2-N-C(0)- , alkyl-S(02)-, HS(02)-NH-alkyl-, and alkyl-S(O)-NH-C(O)- where alkyl is as defined above. "Aminoalkyl" and "cyanoalkyl" refer, respectively, to NH 2 alkyl and N=C alkyl, where alkyl is defined above. ;"Halo," "halogen" and "halogeno" are used interchangeably and refer to fluorine, chlorine, bromine and iodine. ;"Haloalkyl", "haloalkenyl", "haloalkynyl", "haloalkanoyl", "haloalkenoyl", "halo-alkynoyl", "haloalkoxy" and "haloalkoxycarbonyl" refer, respectively, to alkyl, alkenyl, alkynyl, alkanoyl, alkenoyl, alkynyl . Examples of haloalkyl groups include, without limitation, trifluoromethyl, trichloromethyl, pentafluoroethyl, pentachloroethyl, and the like. "Hydroxyalkyl" and "oxoalkyl" refer, respectively, to HO-alkyl and O=alkyl, where alkyl is as defined above. Examples of hydroxyalkyl and oxoalkyl groups include, purification, hydroxymethyl, hydroxyethyl, 3-hydroxypropyl, oxomethyl, oxoethyl, 3-oxopropyl, and the like. ;"Cycloalkyl" refers to saturated monocyclic and bicyclic hydrocarbon rings, generally having a specified number of carbon atoms making up the ring (ie, C3-7cycloalkyl) refers to a cycloalkyl group having 3, 4, 5, 6 or 7 carbon atoms as ring members. The cycloalkyl may be attached to a parent group or to a substrate of any ring atom, unless such adaptation would destroy the valency requirements. Likewise, the cycloalkyl groups may include one or more non-hydrogen substituents at least such substitution would destroy the valency requirements. Useful substituents include, without limitation, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, alkoxy, alkoxycarbonyl, alkanoyl, and halo, as defined above, and hydroxy, mercapto, nitro, and amino. Examples of monocyclic cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like. Examples of bicyclic cycloalkyl groups include, without limitation, bicyclo[1.1.0]butyl, bicyclo[1.1.1]pentyl, bicyclo[2.1.0]pentyl, bicyclo[2.1.1]hexyl, bicyclo[3.1.0]hexyl, bicyclo [2.2.1 ]heptyl, bicyclo[3.2.0]heptyl, bicyclo[3.1.1]heptyl, bicyclo[4.1.0]heptyl, bicyclo[2.2.2]octyl, bicyclo 3.2.1]octyl, bicyclo[4.1. 1]octyl, bicyclo[3.3.0]octyl, bicyclo [4.2.0]octyl, bicyclo[3.3.1]nonyl, bicyclo[4.2.1]nonyl, bicyclo[4.3.0]nonyl, bicyclo [3.3.2] decyl, bicyclo[4.2.2]decyl, bicyclo[4.3.1]decyl, bicyclo[4.4.0]decyl, bicyclo [3.3.3]undecyl, bicyclo[4.3.2]undecyl, bicyclo[4.3.3]dodecyl, and the like, which can be attached to a parent group or substrate at any of the ring atoms, unless such attachment would destroy the valence requirements. ;"Cycloalkenyl" refers to monocyclic and bicyclic hydrocarbon rings having one or more unsaturated carbon-carbon bonds and generally having a specified number of carbon atoms making up the ring (ie, C3.7cycloalkenyl refers to cycloalkenyl group having 3, 4, 5, 6 or 7 carbon atoms as Ting members). The cycloalkenyl may be attached to a parent group or to a substrate of any ring atom, unless such attachment would destroy the valence requirements. Likewise, the cycloalkenyl groups may include one or more non-hydrogen substituents unless such substitution would destroy the valency requirements. Useful substituents include, without limitation, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, alkoxy, alkoxycarbonyl, alkanoyl, and halo, as defined above, and hydroxy, mercapto, nitro, and amino. ;"Cycloalkanoyl" and "cycloalkenoyl" refer to cycloalkyl-C(O)- and cycloalkenyl-C(O)-, respectively, where cycloalkyl and cycloalkenyl are as defined above. References to cycloalkanoyl and cycloalkenoyl generally include a specified number of carbon atoms, excluding the carbonyl carbon. Examples of cycloalkanoyl groups include, without limitation, cyclopropanoyl, cyclobutanoyl, cyclopentanoyl, cyclohexanoyl, cycloheptanoyl, 1-cyclobutenoyl, 2-cyclobutenoyl, 1-cyclopentenoyl, 2-cyclopentenoyl, 3-cyclopentenoyl, 1-cyclohexenoyl, 2-cyclohexenoyl, 3-cyclohexenoyl, and such. ;"Cycloalkoxy" and "cycloalkoxycarbonyl" refer, respectively, to cycloalkyl-O- and cycloalkenyl-O and to cycloalkyl-O-C(O)- and cycloalkenyl-O-C(O)-, wherein cycloalkyl and cycloalkenyl are as defined above. References to cycloalkyloxy and cycloalkylcarbonyl generally include a specified number of carbon atoms, excluding the carbonyl carbon. Examples of cycloalkoxy groups include, without limitation, cyclopropoxy, cyclobutoxy, cyclopentoxy, cyclohexoxy, 1-cyclobutenoxy, 2-cyclobutenoxy, 1-cyclopentenoxy, 2-cyclopentenoxy, 3-cyclopentenoxy, 1-cyclohexenoxy, 2-cyclohexenoxy, 3-cyclohexenoxy, and the like . Examples of cycloalkoxycarbonyl groups include, without limitation, cyclopropoxycarbonyl, cyclobutoxycarbonyl, cyclopentoxycarbonyl, cyclohexoxycarbonyl, 1-cyclobutenoxycarbonyl, 2-cyclobutenoxycarbonyl, 1-cyclopentenoxycarbonyl, 2-cyclopentenoxycarbonyl, 3-cyclopentenoxycarbonyl, 1-cyclohexenoxycarbonyl, 2-cyclohexenoxycarbonyl, 3- cyclohexenoxycarbonyl, and the like. ;"Aryl" and "arylene" refer to monovalent and divalent aromatic groups, respectively, including 5- and 6-membered monocyclic aromatic groups containing 0 to 4 heteroatoms independently selected from nitrogen, oxygen and sulfur. Examples of monocyclic aryl groups include, without limitation, phenyl, pyrrolyl, furanyl, thiophenyl, thiazolyl, isothiazolyl, imidazolyl, triazolyl, tetrasolyl, pyrazolyl, oxazolyl, isoxasolyl, pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, and the like. Aryl and arylene groups also include bicyclic groups, tricyclic groups, etc, including fused 5- and 6-membered rings described above. Examples of multicyclic aryl groups include, without limitation, naphthyl, biphenyl, anthracenyl, pyrenyl, carbazolyl, benzoxazolyl, benzodioazolyl, benzothiazolyl, benzoimidazolyl, benzothiophenyl, quinolinyl, isoquinolinyl, indolyl, benzofuranyl, purinyl, indolisinyl, and the like. The aryl and arylene groups may be attached to a target group or to a substrate in an arbitrary ring atom, unless such attachment would destroy the valence requirements. Likewise, aryl and arylene groups may include one or more non-hydrogen substituents unless such substitution would destroy the valency requirements. Useful substituents include, without limitation, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkenyl, alkoxy, cycloalkoxy, alkanoyl, cycloalkanoyl, cycloalkenoyl, alkoxycarbonyl, cycloalkoxycarbonyl, and halo, as defined above, and hydroxy, mercapto, nitro , amino, and alkylamino. "Heteroring" "heterocyclyl" refers to saturated, partially unsaturated or unsaturated monocyclic or bicyclic rings having 5 to 7 or from 7 to 11 ring members, respectively. These groups are ring members consisting of carbon atoms and from 1 to 4 heteroatoms which are independently nitrogen, oxygen or sulfur, and may include any bicyclic group in which any of the above defined monocyclic heterorings is fused to a benzene ring. Nitrogen and sulfur heteroatoms can optionally be oxidized. The heterocyclic ring may be attached to a target group or to a substrate in an arbitrary heteroatom or carbon atom, unless such attachment would destroy the valence requirements. Likewise, any of the carbon or nitrogen ring members may include a non-hydrogen substituent unless such substitution would destroy the valency requirements. Useful substituents include, without limitation, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkenyl, alkoxy, cycloalkoxy, alkanoyl, cycloalkanoyl, cycloalkenoyl, alkoxycarbonyl, cycloalkoxycarbonyl, and halo, as defined above, and hydroxy, mercapto, nitro , amino, and alkylamino. ;Examples of heterorings include, without limitation, acridinyl, azosinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, besothiophenyl, benzxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4a/-/-carbazolyl, carbolinyl, cromanyl, chromenyl, sinnolinyl, decahydroquinolinyl, 2H, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-bjtetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imizolinyl, imidazolyl, 1A7-indazolyl, indolenyl, indolinyl, indolisinyl, indolyl, 3/-/ -indolyl, isobenzofuranyl, isocromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxasolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl . pyrazinyl, pyrazolidinyl, pyrasolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2/-/-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4/-/-quinolisinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H- 1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, tianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxasolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, and xanthenyl. "Heteroaryl" and "heteroarylene" refer, respectively, to monovalent and divalent heterorings or heterocyclyl groups, as defined above, which are aromatic. The heteroaryl and heteroarylene groups represent a subset of aryl and arylene groups, respectively. ;"Arylalkyl" and "heteroarylalkyl" refer, respectively, to aryl-alkyl and heteroaryl-alkyl, where aryl, heteroaryl, and alkyl are as defined above, Examples include, without limitation, benzyl, fluorenylmethyl, imidazol-2-ylmethyl, and such. ;"Arylalkanoyl", "heteroarylalkanoyl", "arylalkenoyl", "heteroarylalkenoyl", "arylalkynoyl" and "heteroarylalkynoyl" refer, respectively, to arylalkanoyl, heteroarylalkanoyl, arylalkenoyl, heteroarylalkenoyl, arylalkynoyl, and heteroarylalkynoyl, where aryl, heteroaryl, alkanoyl, alkenoyl, and alkynoy are defined above. Examples include, without limitation, benzoyl, benzylcarbonyl, fluorenoyl, fluorenylmethylcarbonyl, imidazol-2-oyl, imidazol-2-ylmethylcarbonyl, phenylethenecarbonyl, 1-phenylethenecarbonyl, 1-phenyl-propenecarbonyl, 2-phenyl-propenecarbonyl, 3-phenyl- propenecarbonyl, imidazol-2-yl-ethenecarbonyl, 1-(imidazol-2-yl)-ethenecarbonyl, 1-(imidazol-2-yl)-propenecarbonyl, 2-(imidazol-2-yl)-propenecarbonyl, 3-(imidazole -2-yl)-propenecarbonyl, phenylethynecarbonyl, phenylpropynecarbonyl, (imidazol-2-yl)-ethynecarbonyl, (imidazol-2-yl)-propynecarbonyl, and the like. ;"Arylalkyloxy" and "heteroarylalkyloxy" refer, respectively, to arylalkyloxy and heteroarylalkyloxy, where aryl, heteroaryl, and alkyloxy are as defined above. Examples include, without limitation, benzyloxy, fluorenylmethyloxy, imidazol-2-ylmethyloxy, and the like. ;"Aryloxy" and "heteroaryloxy" refer, respectively, to aryl-O- and heteroaryl-O-, where aryl and heteroaryl are defined above. Examples include, without limitation, phenoxy, imidazol-2-yloxy, and the like. ;"Aryloxycarbonyl", "heteroaryloxycarbonyl", "aryloxycarbonyl" and "heteroaryl-alkoxycarbonyl" refer, respectively, to aryloxy-C(O)-, heteroaryloxy-C(O)-, arylalkoxy-C(O)-, and heteroarylalkoxy- C(O)-, where aryloxy, heteroaryloxy, arylalkyloxy, and heteroarylalkyloxy are defined above. Examples include, without limitation, phenoxycarbonyl, imidazol-2-yloxycarbonyl, benzyloxycarbonyl, fluorenylmethyloxycarbonyl, imidazol-2-ylmethyloxycarbonyl, and the like. "Leaving group" refers to any group that leaves a molecule during a fragmentation process, including substitution reactions, elimination reactions, and addition-elimination reactions. Leaving groups can be nucleofugal, where the group leaves with a pair of electrons that previously served as the bond between the leaving group and the molecule, or can be electrofugal, where the leaving group does not have this electron pair. The ability of a nucleofugal leaving group to leave depends on its base strength, with the strongest bases being the weakest leaving groups. Common nucleofugal leaving groups include nitrogen (for example from diazonium salts); sulfonates, including alkyl sulfonates (for example, mesylate), fluoroalkyl sulfonates (for example, triflate, hexaflat, nonaflate, and tresylate), and aryl sulfonates (for example, tosylate, brosylate, closylate, and nosylate). Others include carbonates, halide ions, carboxylations, phenolations, and alkoxides. Some strong bases such as NH2" and OH" can become better leaving groups with treatment with an acid. Common electrofugal leaving groups include the proton, CO2, and metals. ;"Enantiomeric excess" or "ee" is a measure, for a given sample, of the excess of one enantiomer relative to a racemic sample of a chiral compound and is expressed as a percentage Enantiomeric excess is defined as 100 x (er -1) / (er + 1), where "er" is the ratio of the more abundant enantiomer relative to a less abundant enantiomer. ;"Diastereomeric excess" or "de" is a measure, for a given sample of the excess of diastereomer over a sample having equal amounts of diastereomers and expression es as a percentage. Diastereomeric excess is defined as 100 x (dr -1) / (dr + 1), where "is" is the ratio of a more frequent diastereomer to a less frequent diastereomer. ;"Stereoselective," "enantioselective," "diastereoselective," and variants thereof, refer to a given process (eg, ester hydrolysis, hydrogenation, hydroformulation, %-allyl palladium coupling hydrosilylation, hydrocyanation, olefin metathesis, hydroacylation, allylamine isomerization, etc.) as gives more of one stereoisomer, enantiomer, or diastereoisomer than of the other, respectively. ;"High level of stereoselectivity", "high level of enantioselectivity", "high level of diastereoselectivity" and variants thereof refer to a given process that yields products having an excess of one stereoisomer, enantiomer, or diastereoisomer, comprising at least about 90% of the products. For a pair of enantiomers or diastereomers, a high level of enantioselectivity or diastereoselectivity will correspond to an ee or those of at least about 80%. ;"Stereoisomeric enriched," "enantiomerically enriched," "diastereomerically enriched," and variants thereof refer, respectively, to a sample of the compound having more of one stereoisomer, enantiomer, or diastereomer than the other.The degree of enrichment may be measured by % of total product, or for a pair of enantiomers or diastereomers, by ee or de. ;"Essentially pure stereoisomer," "essentially pure enantiomer," "essentially pure diastereomer," and variations thereof refer, respectively, to a sample containing one stereoisomer, enanti omer, or diastereomer, comprising at least 95% of the sample. For pairs of enantiomers and diastereomers, a substantially pure enantiomer or diastereomer will correspond to the sample having an ee or ones of about 90% or more. ;A "pure stereoisomer," "pure enantiomer," "pure diastereomer," and variants thereof, refer, respectively, to a sample containing one stereoisomer, enantiomer, or diastereomer, comprising at least about 99.5% of the sample. For pairs of enantiomers and diastereomers, a pure enantiomer or pure diastereomer" will correspond to samples that have an ee or those of 99% or more. ; "Opposite enantiomer" refers to a molecule that is in a non-superimposable mirror image of a reference molecule, which can be obtained by inverting all of the stereogenic centers in the reference molecule. For example, if the reference molecule has S absolute stereochemical configuration, then the opposite enantiomer has R absolute stereochemical configuration. Likewise, if the reference molecule has S,S absolute stereochemical configuration, then the opposite enantiomer has R, R stereochemical configuration, and so on. ;"Stereoisomers" of a specified compound refers to the opposite enantiomer of the compound and to any diastereoisomer or geometric isomers (ZIE) of the compound. For example, if the specified compound has S, R, Z stereochemical configuration, its stereoisomer will include its opposite enantiomers with R, S, Z configuration, its diastereomers have S,S,Z configuration and R, R, Z configuration, and the geometric isomers have S, R, E configuration, R, S, E configuration, S, S, E configuration, and R, R, E configuration. ;"Enantioselective value" or "E" refers to the ratio of specificity constants for each enantiomer of the compound undergoing a chemical reaction or transformation and can be calculated (for S-enantiomers) from the expression. ; ; where Ks and KR are first-order rate constants for the conversion of S- and R-enantiomers, respectively; Ksmog Krmer Michaelis constants for S- and R- ;enantiomers, respectively; x is the fractional conversion of the substrate; eep and eeser enantiomeric excess of the product and substrate (reactant), respectively. ;"Lipase unit" or "LU" refers to the amount of enzyme (ig) that releases 1 u.mol of titratable butyric acid/per min when it is combined with tributyrin and an emulsifier (gum arabic) at 30°C and pH 7. "Solvate" refers to a molecular complex comprising a described or claimed compound and a stoichiometric or non-stoichiometric amount of one or more solvent molecules (eg EtOH). "Hydrates" refers to a solvate comprising a described or claimed compound and a stoichiometric or non-stoichiometric amount of water. ;"Pharmaceutically acceptable complexes, salts, solvates or hydrates" refers to complexes, acids, base addition salts, solvates or hydrates of claimed and described compounds, which are within the scope of medical judgment, suitable for use in contact with tissues of patients without undue toxicity, irritation, allergic response and the like, consistent with a reasonable benefit/risk ratio, and effective for their intended use. ;"Pre-catalyst" or "catalyst precursor" refers to a compound or set of compounds that is converted to catalyst prior to use. ;"Treatment" refers to reversing, alleviating, inhibiting the process of, or preventing a disorder to which such terms apply, or preventing one or more symptoms of such disorders or conditions. ;"Processing" refers to the act of "processing" as defined immediately above. ;Table 1 indicates abbreviations used in the description. ; In some of the reaction schemes and examples below, certain compounds can be prepared by the use of protecting groups, which prevent unwanted chemical reaction in otherwise reactive sites. Protecting groups can also be used to improve solubility or otherwise modify physical properties of the compound. For a description of protecting group strategy, a description of materials and methods for installing and removing protecting groups, and a comparison of useful protecting groups for common functional groups, including amines, carboxylic acids, alcohols, ketones, aldehydes, and the like, see T. W. Greene and P.G. Wuts, Protecting Groups in Organic Chemistry (1999) and P. Kocienski, Protective Groups (2000), which are incorporated herein by reference in their entirety for all purposes. Additionally, some of the diagrams and examples below may omit details of common reactions, including oxidations, reductions, and the like, which are known to those skilled in the art of organic chemistry. The details of such reactions can be found in a number of treatises, including Richard Larock, Comprehensive Organic Transformations (1999), and the multi-volume series edited by Michael B. Smith and others, Compendium of Organic Synthetic Methods (1974-2003). In general, starting material and reagents can be obtained from conventional sources or prepared from literature sources. In general, the chemical transformations described in the specification can be carried out using substantially stoichiometric amounts of reactants, although certain reactions may benefit from using an excess of one or more of the reactants. Furthermore, many of the reactions described in the specification, including the enantioselective hydrolysis of the racemic diester (formula 4) described in detail below, can be carried out at about RT, but certain reactions may require the use of higher or lower temperatures, depending on reaction kinetics, yield and the like. Furthermore, many of the chemical transformations may use one or more compatible solvents, which may affect the reaction rate of the yield. Depending on the nature of the reactants, the one or more solvents may be polar protic solvents, polar aprotic solvents, non-polar solvents, or any combination. Any reference in the description to a concentration range, temperature range, pH range, catalyst loading range, and so on, whether or not the word "range" is expressly used, includes the endpoints indicated. Materials and procedures are described for producing optically active γ-amino acids (formula 1) including pharmaceutically acceptable salts, esters, amides or prodrugs thereof. The compounds of formula 1 include substituents R<1> and R<2>, which are defined above. Useful compounds of formula 1 involving those wherein R<1>is hydrogen atom and R2 is C1-12alkyl, C3-12cycloalkyl, or substituted C3-12cycloalkyl, or those wherein R<2>is a hydrogen atom and R<1>is C1- 12alkyl, C3-12cycloalkyl, or substituted C3-12cycloalkyl. Particularly useful compounds of formula 1 include those wherein R<1> is a hydrogen atom and R 2 is C 1-6 alkyl or C 3-7 cycloalkyl, or those wherein R 2 is a hydrogen atom and R< 1> is C 1-6 alkyl or C 3-7 cycloalkyl. Particularly useful compounds of formula 1 include those where R<1> is a hydrogen atom and R<2> is C 1-4 alkyl, such as pregabalin (formula 9). Fig. 1 shows a process for the production of optically active γ-amino acids (formula 1). The process includes the steps of contacting or combining a reaction mixture comprising a cyano-substituted diester (formula 4) and water with an enzyme to provide a product mixture which includes an optically active dicarboxylic acid monoester (formula 3) and an optically active diester (formula 5). The cyano-substituted diester (formula 4) has a stereogenic center, which is indicated by an asterisk ("<*>"), and as described below, can be prepared in accordance with a reaction scheme shown in Fig. 2. Before coupling with enzyme, the cyano-substituted diester (formula 4) typically comprises a racemic (equimolar) mixture of the diester of formula 5 and its opposite enantiomer. Substituents R<1>, R<2>, and R<3> in formula 3, formula 4, and formula 5, and substituent R<4> in formula 4 and formula 5 are as defined above in connection with formula 1. Generally , unless otherwise specified, with a specific identifier (R<1>,

R<2>, R<3>, etc.) er definert for første gang i forbindelse med en formel, så vil den samme substituent identifiserer anvendt i påfølgende formler, ha den samme betydning som i den tidligere formel. R<2>, R<3>, etc.) is defined for the first time in connection with a formula, then the same substituent identifier used in subsequent formulas will have the same meaning as in the previous formula.

Enzymet (eller biokatalysatoren) kan være ethvert protein som, idet det har liten eller ingen effekt på forbindelsen av formel 5, vil katalysere hydrolysen av dets motsatte enantiomer for å gi dikarboksylisk syre monoestere (formel 3). Nyttige enzymer for enantioselektiv hydrolyse av forbindelsen av formel 4 til formel 3 kan således inkludere hydrolaser, inkluderende lipaser, visse proteaser og andre enantioselektive esteraser. Slike enzymer kan oppnåes fra en rekke naturlige kilder, inkluderende dyreorganer og mikroorganismer. Se for eksempel tabell 2 for en ikke-begrensende liste av kommersielt tilgjengelige hydrolaser. The enzyme (or biocatalyst) can be any protein which, having little or no effect on the compound of formula 5, will catalyze the hydrolysis of its opposite enantiomer to give dicarboxylic acid monoesters (formula 3). Thus, useful enzymes for enantioselective hydrolysis of the compound of formula 4 to formula 3 may include hydrolases, including lipases, certain proteases and other enantioselective esterases. Such enzymes can be obtained from a variety of natural sources, including animal organs and microorganisms. For example, see Table 2 for a non-limiting list of commercially available hydrolases.

Som vist i eksempelseksjonen, nyttige enzymer for den enantioselektive omdanning av den cyano-substituerte diester (formel 4 og formel 12) til den ønskede optiske aktive dikarboksyliske syremonoester (formel 3 og formel 11) inkluderer lipaser. Spesielt nyttige lipaser inkluderer enzymer avledet fra mikroorganismen termomyses lanuginosus, så som de som er tilgjengelige fra Novo-Nordisk A/S under varemerkenavnet LIPOLASE® (CAS no. 9001-62-1). LIPOLASE® enzymer er oppnådd ved neddykket fermentering av en aspergillus orysae mikroorganisme genetisk modifisert med DNA fra termomyses lanuginosus DSM 4109 som koder for aminosyresekvensen til lipasen. LIPOLASE® 100L og LIPOLASE® 100T er tilgjengelig som en væskeløsning og en granular løsning, respektivt. For hver halve nominelle aktivitet på 100 kLU/g. Andre former av LIPOLASE® inkluderer LIPOLASE® 50L, som har halvparten av aktiviteten av LIPOLASE® 100L, og LIPOZYME® 100L, som har den same aktivitet som LIPOLASE® 100L, men som er gradert for næringsstoffet. As shown in the Examples section, useful enzymes for the enantioselective conversion of the cyano-substituted diester (Formula 4 and Formula 12) to the desired optically active dicarboxylic acid monoester (Formula 3 and Formula 11) include lipases. Particularly useful lipases include enzymes derived from the microorganism thermomyses lanuginosus, such as those available from Novo-Nordisk A/S under the trade name LIPOLASE® (CAS no. 9001-62-1). LIPOLASE® enzymes are obtained by submerged fermentation of an aspergillus orysae microorganism genetically modified with DNA from Thermomyses lanuginosus DSM 4109 which codes for the amino acid sequence of the lipase. LIPOLASE® 100L and LIPOLASE® 100T are available as a liquid solution and a granular solution, respectively. For every half nominal activity of 100 kLU/g. Other forms of LIPOLASE® include LIPOLASE® 50L, which has half the activity of LIPOLASE® 100L, and LIPOZYME® 100L, which has the same activity as LIPOLASE® 100L, but is graded for the nutrient.

Forskjellige screeningsteknikker kan anvendes for å identifisere egnede enzymer. For eksempel, et stort antall kommersielle tilgjengelige enzymer kan screenes ved anvendelse av høy gjennomstrømningsteknikker beskrevet i eksempelseksjonen nedenfor. Andre enzymer (eller mikrobielle kilder for enzymer) kan screenes ved anvendelse av anrikningsisomeringsteknikker. Slike teknikker involverer typisk anvendelse av karbon-begrensede eller nitrogen-begrensede media tilsatt anrikningssubstrat, som kan være det racemiske substrat (formel 4) eller en strukturelt lignende forbindelse. Potensielt nyttige mikroorgansimer utvelges for videre undersøkelse basert på deres evne til å vokse i media inneholdende anrikningssubstratet. Disse mikroorganismer evalueres deretter for deres evne til enantioselektivt å katalysere esterhydrolyse ved å sette suspensjonen i forbindelse med de mikrobielle celler med rasematisk substrat og teste for nærvær av det ønskede optiske aktive dikarbosyliske syre monoester (formel 3) ved anvendelse av analytiske metoder så som kiral HPLC, gassvæske kromatografi, LC/MS, og lignende. Various screening techniques can be used to identify suitable enzymes. For example, a large number of commercially available enzymes can be screened using the high-throughput techniques described in the examples section below. Other enzymes (or microbial sources of enzymes) can be screened using enrichment isomerization techniques. Such techniques typically involve the use of carbon-limited or nitrogen-limited media supplemented with enrichment substrate, which may be the racemic substrate (formula 4) or a structurally similar compound. Potentially useful microorganisms are selected for further investigation based on their ability to grow in media containing the enrichment substrate. These microorganisms are then evaluated for their ability to enantioselectively catalyze ester hydrolysis by contacting the suspension of the microbial cells with racemic substrate and testing for the presence of the desired optically active dicarboxylic acid monoester (formula 3) using analytical methods such as chiral HPLC , gas liquid chromatography, LC/MS, and the like.

Straks en mikroorganisme som har den nødvendige hydrolytiske aktivitet har blitt isolert, kan enzym-engineering benyttes for forbedre egenskapene til en enzymet det produserer. For eksempel, og uten begrensning, enzym-engineering kan anvendes for å øke utbytte og enantioselektiviteten av esterhydrolysen, for å gjøre temperaturen og pH-områdene bredere til enzymet, og for å forbedre enzymets toleranse mot organiske oppløsningsmidler. Nyttige enzymengineeringsteknikker inkluderer rasjonelle designmetoder, så som seterettet hydrogenese, og in vitro-rettet evolusjonsteknikker som benyttes suksessive runder med vilkårlig mutagenese, gene ekspresjon og høy gjennomstrømningsscreening for å opptimalisere ønskede egenskaper. Se for eksempel, K. M. Koeller & C.-H. Wong, "Enzymes for chemical synthesis," Nature 409:232-240 (11 Jan. 2001), og referanser angitt deri, og den komplette beskrivelse av disse er inkorporert heri med henvisning. As soon as a microorganism that has the necessary hydrolytic activity has been isolated, enzyme engineering can be used to improve the properties of an enzyme it produces. For example, and without limitation, enzyme engineering can be used to increase the yield and enantioselectivity of the ester hydrolysis, to make the temperature and pH ranges wider for the enzyme, and to improve the enzyme's tolerance to organic solvents. Useful enzyme engineering techniques include rational design methods, such as site-directed hydrogenesis, and in vitro directed evolution techniques that employ successive rounds of random mutagenesis, gene expression, and high-throughput screening to optimize desired properties. See for example, K. M. Koeller & C.-H. Wong, "Enzymes for chemical synthesis," Nature 409:232-240 (Jan. 11, 2001), and references therein, the complete description of which is incorporated herein by reference.

Enzymet kan være i form av hele mikrobielle celler, permeabiliserte mikrobielle ler, ekstraktet av mikrobielle celler, partielt rensede enzymer, rensede enzymer og lignende. Enzymet kan omfatte en dispersjon av partikler som har en gjennom-snittelig partikkelstørrelse, basert på volum, på mindre enn ca 0,1 mm (fin fordelt dispersjon) eller på ca 0,1 mm eller større (grov dispersjon). Grove enzym dispersjoner gir mulige prosesseringsfordeler over finfordelte dispersjoner. For eksempel, grove enzympartikler kan anvendes repeterende i batch-prosesser eller i semikontinuerlige eller kontinuerlige prosesser, og kan vanligvis (for eksempel ved filtrering) fra andre komponenter i bioomdanningen enklere enn finfordelte enzymer. The enzyme can be in the form of whole microbial cells, permeabilized microbial clays, the extract of microbial cells, partially purified enzymes, purified enzymes and the like. The enzyme may comprise a dispersion of particles having an average particle size, based on volume, of less than about 0.1 mm (finely distributed dispersion) or of about 0.1 mm or greater (coarse dispersion). Coarse enzyme dispersions offer possible processing advantages over finely divided dispersions. For example, coarse enzyme particles can be used repetitively in batch processes or in semi-continuous or continuous processes, and can usually (for example by filtration) from other components of the bioconversion easier than finely divided enzymes.

Nyttige grove enzymdispersjoner inkluderer kryssbindende enzymkrystaller (CLECer) og kryssbundne enzymaggregater (CLEAer) som hovedsaklig utgjøres av enzymer. Andre grove dispersjoner kan inkludere enzymer immobilisert på eller innen et uløselig støttemedium. Nyttige faststoff støttemedier inkluderer polymermatriser, kalsiumalginat, polyaktrylamid, EUPERGIT®, og andre polymeriske materialer, og likeledes uorganiske matriser så som CELITE®. Foren generell beskrivelse av CLECer og andre enzymimmobiliseringsteknikker, se U.S. patent 5,618,710 av M. A. Navia & N. L. St. Clair. Foren generell diskusjon av CLEAer, inkluderende framstilling og anvendelse, se U.S. patensøknad nr 2003/0149172 av L. Cao & J. Elzinga et al. Se også A. M. Anderson, Biocat. Biotransform, 16:181 Useful coarse enzyme dispersions include cross-linked enzyme crystals (CLECs) and cross-linked enzyme aggregates (CLEAs) which are mainly composed of enzymes. Other coarse dispersions may include enzymes immobilized on or within an insoluble support medium. Useful solid support media include polymer matrices, calcium alginate, polyactrylamide, EUPERGIT®, and other polymeric materials, as well as inorganic matrices such as CELITE®. For general description of CLECs and other enzyme immobilization techniques, see U.S. Pat. patent 5,618,710 by M.A. Navia & N.L. St. Clair. For general discussion of CLEAs, including formulation and application, see U.S. patent application no. 2003/0149172 by L. Cao & J. Elzinga et al. See also A. M. Anderson, Biocat. Biotransform, 16:181

(1998) og P. Lopez-Serrano et al., Biotechnol. Lett. 24:1379-83 (2002) for en diskusjon av applikasjon av CLEC og CLEA teknologi for en lipase. De fullstendige beskrivelser av ovenfor nevnte referanse inkorporeres heri med henvisning for alle formål. (1998) and P. Lopez-Serrano et al., Biotechnol. Easy. 24:1379-83 (2002) for a discussion of the application of CLEC and CLEA technology for a lipase. The complete descriptions of the above-mentioned reference are incorporated herein by reference for all purposes.

Reaksjonsblandingen kan omfatte en enkeltfase eller kan omfatte multiple faser (for eksempel et to- eller tre-fasesystem). Således, for eksempel, den enantioselektive hydrolyse vist i fig. 1 kan foregå i en enkelt vandig fase, som inneholder enzymet, det opprinnelige racemiske substrat (formel 4), den uønskede optisk aktive diester (formel 5) og den ønskede optiske aktive dikarbosyliske syre monoester (formel 3). Alternativt, reaksjonsblandingen kan omfatte et multifasesystem som inkluderer en vandig fase i kontakt med en faststofffase (for eksempel enzym eller produkt), en vandig fase i kontakt med en organisk fase, eller en vandig fase i kontakt med en organisk fase og et faststofffase. For eksempel, den enantioselektive hydrolyse kan utføres i et to-fase system som utgjøres av en faststoff fase, som inneholder enzymet, og en vandig fase, som inneholder det opprinnelige racemiske substrat, den uønskede optisk aktive diester, og den ønskede optisk aktive dikarboksylisk syre monoester. The reaction mixture may comprise a single phase or may comprise multiple phases (for example a two- or three-phase system). Thus, for example, the enantioselective hydrolysis shown in fig. 1 can take place in a single aqueous phase, which contains the enzyme, the original racemic substrate (formula 4), the undesired optically active diester (formula 5) and the desired optically active dicarboxylic acid monoester (formula 3). Alternatively, the reaction mixture may comprise a multiphase system that includes an aqueous phase in contact with a solid phase (eg enzyme or product), an aqueous phase in contact with an organic phase, or an aqueous phase in contact with an organic phase and a solid phase. For example, the enantioselective hydrolysis can be carried out in a two-phase system consisting of a solid phase, which contains the enzyme, and an aqueous phase, which contains the original racemic substrate, the undesired optically active diester, and the desired optically active dicarboxylic acid monoester.

Alternativt, den enantioselektive hydrolyse kan utføres i et tre-fase system sammensatt av en faststoff fase, som inneholder enzymet, en organisk fase som innledningsvis inneholder det racemiske substrat (formel 4), og en vandig fase som innledningsvis inneholder en liten fraksjon av det racemiske substrat. Siden den ønskede optisk aktive dikarbosyliske syre monoester (formel 3) har en lavere pKa enn den ikke-reagerte optisk aktive diester (formel 5) og derfor oppviser større vandig løselighet, blir den organiske fase anriket med den ikke-reagerte diester, mens den vandige fase ble anriket med den ønskede dikarbosyliske syre monoester i det reaksjonen foregår. Alternatively, the enantioselective hydrolysis can be carried out in a three-phase system composed of a solid phase, which contains the enzyme, an organic phase which initially contains the racemic substrate (formula 4), and an aqueous phase which initially contains a small fraction of the racemic substrate. Since the desired optically active dicarboxylic acid monoester (formula 3) has a lower pKa than the unreacted optically active diester (formula 5) and therefore exhibits greater aqueous solubility, the organic phase is enriched with the unreacted diester, while the aqueous phase was enriched with the desired dicarboxylic acid monoester as the reaction takes place.

Mengdene av det racemiske substrat (formel 4) og biokatalysatoren anvendt i den enantioselektive hydrolyse vil avhenge, blant andre, av forholdene mellom partikulært cyano-substituert diester og enzym. Generelt, imidlertid, reaksjonen kan benytte et substrat som har en innledende konsentrasjon på ca 0,1 M til ca 3,0 M, og i mange tilfeller har en innledende konsentrasjon på ca 1,5 M til ca 3,0 M. Ytterligere, reaksjonen kan generelt benytte en enzymlasting på ca 1 % til ca 10 %, og i mange tilfeller kan benytte en enzymlasting på ca 3 5 til ca 4 % (vol/vol). The amounts of the racemic substrate (formula 4) and the biocatalyst used in the enantioselective hydrolysis will depend, among other things, on the ratio between particulate cyano-substituted diester and enzyme. In general, however, the reaction may utilize a substrate that has an initial concentration of about 0.1 M to about 3.0 M, and in many cases has an initial concentration of about 1.5 M to about 3.0 M. Furthermore, the reaction can generally use an enzyme loading of about 1% to about 10%, and in many cases can use an enzyme loading of about 35 to about 4% (vol/vol).

Den enantioselektive hydrolyse kan utføres over et bredt spekter av temperaturer og pH. For eksempel, kan reaksjonen utføres ved en temperatur av fra ca 10°C til en temperatur på ca 50°C, men utføres typisk ved ca RT. Slike temperaturer muliggjør generelt fullstendig omdanning (for eksempel ca 42 % til ca 50 %) av racematet (formel 4) innen en rimelig tidsperiode (ca 21 til ca 241) uten deaktivering av enzymet. Ytterligere, den enantioselektive hydrolyse kan utføres ved en pH på ca 5 til en pH på ca 10, mer typisk ved en pH på ca 6 til en pH på ca 9, og ofte med en pH på ca 6,5 til en pH på ca 7,5. The enantioselective hydrolysis can be carried out over a wide range of temperatures and pH. For example, the reaction can be carried out at a temperature of from about 10°C to a temperature of about 50°C, but is typically carried out at about RT. Such temperatures generally allow complete conversion (eg, about 42% to about 50%) of the racemate (Formula 4) within a reasonable period of time (about 21 to about 241) without deactivation of the enzyme. Further, the enantioselective hydrolysis can be carried out at a pH of about 5 to a pH of about 10, more typically at a pH of about 6 to a pH of about 9, and often at a pH of about 6.5 to a pH of about 7.5.

I fravær av pH-regulering, vil reaksjonsblandingens pH bli redusert i det hydrolysen av substratet (formel 4) går på grunn av dannelse av den dikarbosyliske syre monoester (formel 3). For å kompensere for denne forandring kan hydrolysereaksjon kjøres med indre pH-kontroll (dvs. i nærvær av en egnet buffer) eller kan kjøres med ekstern pH-kontroll gjennom tilsetning av en base. Egnede buffere inkluderer kaliumfosfat, natriumfosfat, natriumacetat, ammoniumacetat, kalsiumacetat. BES, BICINE, HEPES, MES, MOPS, PIPES, TAPS, TES, TRICINE, Tris, TRIZMA®, eller andre buffere som har en pKa på ca 6 til en pKa på ca 9. Bufferkonsentrasjonen er generelt i området fra ca 5 mM til ca 1 mM, og typisk områder fra ca 50 mM til ca 200 mm. Egnede baser inkluderer vandige løsninger som utgjøres av KOH, NaOH, NH4OH, etc, som har konsentrasjoner i området fra ca 0.5 M til ca 15 M, og mer typisk i området fra ca 5 M til ca 10 M. Andre uorganiske tilsetningsstoffer så som kalsiumacetat kan også anvendes. In the absence of pH regulation, the pH of the reaction mixture will be reduced as the hydrolysis of the substrate (formula 4) proceeds due to formation of the dicarboxylic acid monoester (formula 3). To compensate for this change, the hydrolysis reaction can be run with internal pH control (ie in the presence of a suitable buffer) or can be run with external pH control through the addition of a base. Suitable buffers include potassium phosphate, sodium phosphate, sodium acetate, ammonium acetate, calcium acetate. BES, BICINE, HEPES, MES, MOPS, PIPES, TAPS, TES, TRICINE, Tris, TRIZMA®, or other buffers that have a pKa of about 6 to a pKa of about 9. The buffer concentration is generally in the range of about 5 mM to about 1 mM, and typically ranges from about 50 mM to about 200 mm. Suitable bases include aqueous solutions consisting of KOH, NaOH, NH4OH, etc., having concentrations in the range from about 0.5 M to about 15 M, and more typically in the range from about 5 M to about 10 M. Other inorganic additives such as calcium acetate can also be used.

Etter eller under den enzymatiske omdanning av racematet (formel 4) kan den ønskede optiske aktive dikarbosyliske syre monoester (formel 3) isoleres fra produktblandingen ved anvendelse av standard teknikker. For eksempel, i tilfelle en enkel (vandig) fase batch-reaksjon, kan produktblandingen ekstraheres en eller flere ganger med en ikke-polar organisk oppløsningsmiddel, så som heksan eller heptan, som separerer den ønskede dikarbosyliske monoester (formel 2) og den ikke-reagerte diester (formel 5) i vandige og organiske faser, respektivt. Alternativt, i tilfelle en multi-fase reaksjon som benytter vandig og organiske faser anriket med den ønskede monoester (formel 3) og den ikke-reagerte diester (formel 5), respektivt, kan monoesteren og diesteren separeres batch-vis etter reaksjon, eller kan separeres semikontinuerlig eller kontinuerlig under den enantioselektive hydrolyse. After or during the enzymatic conversion of the racemate (formula 4), the desired optically active dicarboxylic acid monoester (formula 3) can be isolated from the product mixture using standard techniques. For example, in the case of a single (aqueous) phase batch reaction, the product mixture can be extracted one or more times with a non-polar organic solvent, such as hexane or heptane, which separates the desired dicarboxylic monoester (formula 2) and the non- reacted diesters (formula 5) in aqueous and organic phases, respectively. Alternatively, in the case of a multi-phase reaction using aqueous and organic phases enriched with the desired monoester (formula 3) and the unreacted diester (formula 5), respectively, the monoester and diester can be separated batchwise after reaction, or can are separated semi-continuously or continuously during the enantioselective hydrolysis.

Som angitt i fig 1, det ikke-reagerte diester (formel 5) kan isoleres fra den organiske fase og racemiseres for å gi det racemiske substrat (formel 4). Det resulterende rasemat (formel 4) kan resirkuleres eller kombineres med ikke-omdannet racemisk substrat, som deretter undergår enzymatisk omdanning til formel 3 som beskrevet ovenfor. Resirkulering av ikke-reagert diester (formel 5) øker det totale utbytte for den enantioselektive hydrolyse over 50 %, og øker dermed atom-økonomien i framgangsmåten og senker kostnadene assosiert med deponering av uønskede enantiomerer. As indicated in Figure 1, the unreacted diester (formula 5) can be isolated from the organic phase and racemized to give the racemic substrate (formula 4). The resulting racemic feed (formula 4) can be recycled or combined with unconverted racemic substrate, which then undergoes enzymatic conversion to formula 3 as described above. Recycling of unreacted diester (formula 5) increases the overall yield of the enantioselective hydrolysis above 50%, thereby increasing the atom economy of the process and lowering the costs associated with disposal of undesired enantiomers.

Behandlingen av diesteren (formel 5) med en base som er tilstrekkelig sterk til å abstrahere et surt a-proton for malonatenheten resulterer generelt i inversjon av det stereogeniske senter og generering av det racemiske substrat. Nyttige baser inkluderer organiske baser så som alkoksider (f.eks natriumetoksid), lineære alifatiske aminer, og sykliske aminer, og uorganiske baser så som KOH, NaOH, NH4OH, og lignende. Reaksjonen utføres i et kompatibelt oppløsningsmiddel, inkluderende polart optiske oppløsningsmidler så som EtOH eller aprotiske polare oppløsningsmidler så som MTBE. Reaksjonstemperaturer over RT vil typisk forbedre utbyttet av racemiseringsprosessen. Treatment of the diester (formula 5) with a base sufficiently strong to abstract an acidic α-proton for the malonate unit generally results in inversion of the stereogenic center and generation of the racemic substrate. Useful bases include organic bases such as alkoxides (eg, sodium ethoxide), linear aliphatic amines, and cyclic amines, and inorganic bases such as KOH, NaOH, NH 4 OH, and the like. The reaction is carried out in a compatible solvent, including polar optical solvents such as EtOH or aprotic polar solvents such as MTBE. Reaction temperatures above RT will typically improve the yield of the racemization process.

Som vist i fig. 1, den i hovedsak enantio-rene dikarbosyliske syre monoester (formel 3) kan omdannes til en optisk aktiv y-aminosyre (formel 1) ved anvendelse av minst tre forskjellige metoder. I en metode hydrolyseres monoesteren (formel 3) i nærvær av en syrekatalysator eller en basekatalysator for å gi en optisk cyano-substituert dikarboksylisk syre (formel 6) eller korresponderende salt. Cyano-enheten av den resulterende dikarbosyliske syre (eller dets salt) reduseres for å gi en optisk aktiv y-amino dikarboksylisk syre (formel 7) eller et korresponderende salt, som deretter dekarboksyleres med behandling med en syre, med oppvarming, eller begge, for å gi den ønskede optisk aktive y-aminosyre (formel 1). Cyano-enheten kan reduseres via reaksjon med H2i nærvær av en katalytisk mengde av Raney nikkel, palladium, platina, og lignende, eller gjennom reaksjon med et reduserende middel så som iAIH4, BH3-Me2S, og lignende. Nyttige syrer for hydrolyse og dekarboksylerings-reaksjoner inkluderer mineralsyrer, så som HCIO4, Hl, H2SO4, HBr, HCI, og lignende. Nyttige basekatalysatorer for hydrolysereaksjonen inkluderer forskjellige alkalie og alkalie jordmetall hydroksider, og oksider, inkluderende LiOH, NaOH, KOH, og lignende. As shown in fig. 1, the essentially enantio-pure dicarboxylic acid monoester (formula 3) can be converted to an optically active γ-amino acid (formula 1) using at least three different methods. In one method, the monoester (formula 3) is hydrolyzed in the presence of an acid catalyst or a base catalyst to give an optically cyano-substituted dicarboxylic acid (formula 6) or corresponding salt. The cyano unit of the resulting dicarboxylic acid (or its salt) is reduced to give an optically active γ-amino dicarboxylic acid (formula 7) or a corresponding salt, which is then decarboxylated by treatment with an acid, with heating, or both, to to give the desired optically active γ-amino acid (formula 1). The cyano unit can be reduced via reaction with H 2 i in the presence of a catalytic amount of Raney nickel, palladium, platinum, and the like, or by reaction with a reducing agent such as iAIH 4 , BH 3 -Me 2 S, and the like. Useful acids for hydrolysis and decarboxylation reactions include mineral acids, such as HCIO 4 , H 1 , H 2 SO 4 , HBr, HCI, and the like. Useful base catalysts for the hydrolysis reaction include various alkali and alkaline earth metal hydroxides, and oxides, including LiOH, NaOH, KOH, and the like.

I en annen framgangsmåte undergår dikarboksylisk syre monoester (formel 3) reduktiv syklering for å danne den optisk aktive syklisk 3-karboksy-pyrrolidin-2-one In another approach, the dicarboxylic acid monoester (formula 3) undergoes reductive cyclization to form the optically active cyclic 3-carboxy-pyrrolidin-2-one

(formel 2) som deretter behandles med en syre for å gi den ønskede enantiomerisk anrikede y-aminosyre (formel 1). Den reduktive ringdannelse kan utføres ved å reagere monoesteren (formel 3) med H2i nærvær av en katalytisk mengde av Raney nikkel, palladium, platina og lignende. En eller flere syrer kan anvendes for å hydrolysere og dekarboksylere den resulterende laktamsyre (formel 2) inkluderende mineralsyrer så som HCI04, Hl, H2SO4, HBr, og HCI, og organiske syrer så som HOAc, TFA, p-TSA, og lignende. Konsentrasjonen av syrene kan være i området fra ca 1N til ca 12 N, og mengden av syrene kan være i området fra ca 1 ek til ca 7 ek. Hydrolysen og dekarboksyleringsreaksjonene kan utføres ved en temperatur på ca RT eller høyere, eller ved en temperatur på ca 60°C eller høyere, eller ved en temperatur i området fra ca 60°C til ca 130°C. (formula 2) which is then treated with an acid to give the desired enantiomerically enriched γ-amino acid (formula 1). The reductive cyclization can be carried out by reacting the monoester (formula 3) with H 2 i in the presence of a catalytic amount of Raney nickel, palladium, platinum and the like. One or more acids may be used to hydrolyze and decarboxylate the resulting lactam acid (formula 2) including mineral acids such as HCI04, H1, H2SO4, HBr, and HCl, and organic acids such as HOAc, TFA, p-TSA, and the like. The concentration of the acids can be in the range from about 1N to about 12 N, and the amount of the acids can be in the range from about 1 ek to about 7 ek. The hydrolysis and decarboxylation reactions can be carried out at a temperature of about RT or higher, or at a temperature of about 60°C or higher, or at a temperature in the range from about 60°C to about 130°C.

I en tredje metode blir ester-enheten av den dikarboksyliske syre monoester (formel 3) først hydrolyser! for å gi den cyano-substituerte dikarbosyliske syre (formel 6 eller dets salt) som beskrevet ovenfor. Den resulterende dikarboksyliske syre (eller dets salt) dekarboksyleres deretter for å gi en optisk aktiv cyano-substituert karboksylisk syre eller dets salt (formel 8 hvor R<5>er et hydrogenatom, selv om R5 kan være C1-12alkyl, C3-12sykloalkyl, eller aryl-Ci-6alkyl som angitt nedenfor) De samme betingelser anvendes for å dekarboksylere laktamsyren (formel 2) eller y-amino dikarboksylisk syre (formel 7) kan anvendes. I stedet for først å hydrolysere esterenheten, kan dikarboksylisk syre monoesteren (formel 3) først dekarboksyleres direkte til en cyano-substituert monoester (formel 8) ved oppvarming av den vandige løsning av dikarboksylisk syre monoester (som et salt) til en temperatur av fra ca 50°C til refluks. Krapcho-betingelser (DMSO/ NaCI/vann) kan også anvendes. I begge tilfeller kan cyano-enheten av forbindelsen av formel 8 deretter reduseres for å gi den optisk aktive y-aminosyre (formel 1). I tillegg til Raney nikkel, kan et antall andre katalysatorer anvendes for å redusere cyano-enheten av forbindelsen av formel 3, 6 og 8. Disse inkluderer, uten begrensning, heterogene katalysatorer inneholdende fra ca 0,1 % til ca 20 %, og mer typisk fra ca 1 % til ca 5 %, basert på vekt, av overgangsmetaller så som Ni, Pd, Pt, Rh, Re, Ru, og Ir, inkluderende oksider og kombinasjoner derav, som typisk støttet på forskjellige materialer, inkluderende Al203, C, CaC03, SrC03, BaS04, MgO, Si02, Ti02, Zr02, og lignende. Mange av disse metaller, inkluderende Pd, kan dopes med et amin, et sulfid, eller et andre metall så som Pb, Cu, eller Zn. Nyttige katalysatorer inkluderer således palladiumkatalysatorer så som Pd/C, Pd/SrC03, Pd/Al203, Pd/MgO, Pd/CaC03, Pd/BaS04, PdO, Pd svart, PdCI2, og lignende, inneholdende fra ca 1 % til ca 5% Pd, basert på vekt. Andre nyttige katalysatorer inkluderer Rh/C, Ru/C, Re/C, Pt02, Rh/C, Ru02, og lignende. In a third method, the ester unit of the dicarboxylic acid monoester (formula 3) is first hydrolyzed! to give the cyano-substituted dicarboxylic acid (formula 6 or its salt) as described above. The resulting dicarboxylic acid (or its salt) is then decarboxylated to give an optically active cyano-substituted carboxylic acid or its salt (formula 8 where R<5>is a hydrogen atom, although R5 may be C1-12alkyl, C3-12cycloalkyl, or aryl-C 1-6 alkyl as indicated below) The same conditions are used to decarboxylate the lactam acid (formula 2) or γ-amino dicarboxylic acid (formula 7) can be used. Instead of first hydrolyzing the ester unit, the dicarboxylic acid monoester (formula 3) can first be directly decarboxylated to a cyano-substituted monoester (formula 8) by heating the aqueous solution of the dicarboxylic acid monoester (as a salt) to a temperature of from about 50°C to reflux. Krapcho conditions (DMSO/NaCl/water) can also be used. In either case, the cyano unit of the compound of formula 8 can then be reduced to give the optically active γ-amino acid (formula 1). In addition to Raney nickel, a number of other catalysts can be used to reduce the cyano unit of the compound of formula 3, 6 and 8. These include, without limitation, heterogeneous catalysts containing from about 0.1% to about 20%, and more typically from about 1% to about 5%, based on weight, of transition metals such as Ni, Pd, Pt, Rh, Re, Ru, and Ir, including oxides and combinations thereof, typically supported on various materials, including Al 2 O 3 , C , CaCO 3 , SrCO 3 , BaSO 4 , MgO, SiO 2 , TiO 2 , ZrO 2 , and the like. Many of these metals, including Pd, can be doped with an amine, a sulfide, or another metal such as Pb, Cu, or Zn. Useful catalysts thus include palladium catalysts such as Pd/C, Pd/SrCO 3 , Pd/Al 2 O 3 , Pd/MgO, Pd/CaCO 3 , Pd/BaSO 4 , PdO, Pd black, PdCl 2 , and the like, containing from about 1% to about 5% Pd, based on weight. Other useful catalysts include Rh/C, Ru/C, Re/C, PtO 2 , Rh/C, RuO 2 , and the like.

Den katalytiske reduksjon av cyano-enheten utføres typisk i nærvær av en eller flere polare oppløsningsmidler, inkluderende uten begrensning, vann, alkoholer, etere, estere og syrer, så som MeOH, EtOH, IPA, THF, EtOAc, og HOAc. Reaksjonen kan utføres ved temperaturer i området fra ca 5°C til ca 100°C, og reaksjoner ved RT er mest vanlig. Generelt, substrat-til-katalysator-forholdet, kan være i området fra ca 1:1 til ca 1000:1, basert på vekt, og H2-trykk kan være i området fra atmosfærisk trykk, 0 psig, til ca 1500 psig. Mer typisk, substrat-til-katalysator-forholdene er i områdene fra ca 4:1 til ca 20:1, og H2- trykkområdet fra ca 25 psig til ca 150 psig. The catalytic reduction of the cyano moiety is typically carried out in the presence of one or more polar solvents, including without limitation, water, alcohols, ethers, esters, and acids, such as MeOH, EtOH, IPA, THF, EtOAc, and HOAc. The reaction can be carried out at temperatures in the range from about 5°C to about 100°C, and reactions at RT are most common. In general, the substrate-to-catalyst ratio may range from about 1:1 to about 1000:1, based on weight, and the H 2 pressure may range from atmospheric pressure, 0 psig, to about 1500 psig. More typically, substrate-to-catalyst ratios range from about 4:1 to about 20:1, and H 2 pressures range from about 25 psig to about 150 psig.

Alle de foregående metoder kan anvendes for å omdanne den i hovedsak enantiomerene monoester (formel 3) til den optisk aktive y-aminosyre (formel 1), men hver gi visse fordeler i forhold til de andre. For eksempel, etter syreopparbeidelse av prosessen som benytter en reduktiv ringdannelse kan laktamsyren (formel 2) isoleres og renses ved å ekstrahere den over i et organisk oppløsnings-middel, mens den cyano-substituerte dikarboksyliske syre (formel 6) kan være mer vanskelig å isolere på grunn av dets til sammenligning høyere vandige løselighekt. Isolering av laktamsyren (formel 2) reduserer overføring av vannløselige urenheter til den finale produktblanding, og muliggjør høyere reaktantkonsentrasjoner (for eksempel ca 1 M til ca 2 M) under hydrolyse og dekarboksylering, og øker dermed prosessgjennomstrømningen. Videre, direkte dekarboksylering ved oppvarming av den vandige løsning av den dikarboksyliske syre monoester (formel 3) gir cyano-monoesteren (formel 8) i høy enantiomerisk renhet. Denne forbindelse kan separeres fra reaksjonsmedium ved ekstrahering i et organisk oppløsningsmiddel eller ved direkte faseseparasjon, som sikrer effektiv fjerning av uorganiske urenheter med vannfasen. Høy reaksjonsgjennomstrømning og det å unngå sterke syre-betingelser er to fordeler med denne løsning. All of the preceding methods can be used to convert the essentially enantiomeric monoester (formula 3) into the optically active γ-amino acid (formula 1), but each provides certain advantages over the others. For example, after acid work-up of the process using a reductive ring formation, the lactam acid (formula 2) can be isolated and purified by extracting it into an organic solvent, while the cyano-substituted dicarboxylic acid (formula 6) can be more difficult to isolate due to its comparatively higher aqueous solubility. Isolation of the lactam acid (formula 2) reduces the transfer of water-soluble impurities to the final product mixture, and enables higher reactant concentrations (for example, about 1 M to about 2 M) during hydrolysis and decarboxylation, thereby increasing process throughput. Furthermore, direct decarboxylation by heating the aqueous solution of the dicarboxylic acid monoester (formula 3) gives the cyano monoester (formula 8) in high enantiomeric purity. This compound can be separated from the reaction medium by extraction in an organic solvent or by direct phase separation, which ensures effective removal of inorganic impurities with the water phase. High reaction throughput and avoiding strong acid conditions are two advantages of this solution.

Fig. 2 illustrerer en framgangsmåte for å framstille cyano-substituerte diestere (formel 4), som kan fungere som substrater for den enzymatiske enantioselektive hydrolyse vist i fig. 1. Prosessen inkluderer en krysset aldolkondensasjon, som omfatter å omdanne et usymmetrisk keton eller et aldehyd (formel 17) med en malonisk syre diester (formel 18) i nærvær av en katalytisk mengde av en base for å gi en a,p-ikke-mettet malonisk syre diester/(formel 19), hvor R<1>,R<2>,R<3>, ogR<4>er som definert i forbindelse med formel 1. Denne type krysset aldolreaksjon er kjent som en knoevenagel kondensasjon, som er beskrevet i et antall litteraturoversikter. Se f.eks., B. K. Wilk, Tetrahedron 53:7097-7100 (1997) og referansene angitt deri, hvis fullstendige beskrivelser inkorporeres heri med referanser for alle formål. Fig. 2 illustrates a procedure for producing cyano-substituted diesters (formula 4), which can function as substrates for the enzymatic enantioselective hydrolysis shown in fig. 1. The process includes a crossed aldol condensation, which involves converting an unsymmetrical ketone or an aldehyde (formula 17) with a malonic acid diester (formula 18) in the presence of a catalytic amount of a base to give an a,p-non- saturated malonic acid diester/ (formula 19), where R<1>, R<2>, R<3>, and R<4> are as defined in connection with formula 1. This type of crossed aldol reaction is known as a Knoevenagel condensation, which is described in a number of literature reviews. See, e.g., B. K. Wilk, Tetrahedron 53:7097-7100 (1997) and the references cited therein, the complete descriptions of which are incorporated herein by reference for all purposes.

Generelt, enhver base i stand til å generere et enolat ion fra malonisk syre diester (formel 18), kan anvendes, inkluderende sekundære aminer, så som di-n-propylamin, di-/-propylamin, pyrrolidin, etc, og deres salter. Reaksjonen kan inkludere en karboksylisk syre, så som HOAc, for å nøytralisere produktet for å minimere enolisering av det usymmetriske keton eller aldehyd (formel 17). Reaksjoner som involverer usymmetriske ketoner kan også benytte Lewis-syrer, så som titan tetraklorid, sinkklorid, sinkacetat, og lignende for å framme reaksjon. Reaksjonen kjøres typisk i et hydrokarbon oppløsningsmiddel under refluks betingelser. Nyttige oppløsningsmidler inkluder heksan, heptan, sykloheksan, toluen, metyl f-butyl eter, og lignende, med azeotropisk fjerning av vann. In general, any base capable of generating an enolate ion from the malonic acid diester (formula 18) can be used, including secondary amines, such as di-n-propylamine, di-/-propylamine, pyrrolidine, etc., and their salts. The reaction may include a carboxylic acid, such as HOAc, to neutralize the product to minimize enolization of the unsymmetrical ketone or aldehyde (Formula 17). Reactions involving unsymmetrical ketones may also utilize Lewis acids, such as titanium tetrachloride, zinc chloride, zinc acetate, and the like to promote reaction. The reaction is typically run in a hydrocarbon solvent under reflux conditions. Useful solvents include hexane, heptane, cyclohexane, toluene, methyl f-butyl ether, and the like, with azeotropic removal of water.

I et påfølgende trinn, undergår en cyanokilde så som HCN, aceton cyanohydrin, et alkalimetall cyanid (NaCN, KCN, etc), eller et alkalisk jordmetall cyanid ( magnesium cyanid etc), konjugataddisjon til p-karboner av den a,p-umettede malkonisk syre diester (formel 19). Reaksjonen utføres typisk i en eller flere polare protisk oppløsningsmidler, inkluderende EtOH, MeOH, n-propanol, isopropanol, eller polar aprotiske oppløsningsmidler, så som DMSO, og lignende. Påfølgende syreopparbeidelse gir cyano-substituert diester (formel 4). For en applikasjon av framgangsmåten avbildet i fig. 2 for å framstille et pregabalin forløper (formel 2) Se US patent 5,637,767 to Grote et al., som heri inkorporeres med referanse i sin helhet for alle formål. In a subsequent step, a cyano source such as HCN, acetone cyanohydrin, an alkali metal cyanide (NaCN, KCN, etc), or an alkaline earth metal cyanide (magnesium cyanide etc), undergoes conjugate addition to the p-carbons of the a,p-unsaturated malconic acid diesters (formula 19). The reaction is typically carried out in one or more polar protic solvents, including EtOH, MeOH, n-propanol, isopropanol, or polar aprotic solvents, such as DMSO, and the like. Subsequent acid work-up gives the cyano-substituted diester (formula 4). For an application of the method depicted in fig. 2 to prepare a pregabalin precursor (Formula 2) See US Patent 5,637,767 to Grote et al., which is hereby incorporated by reference in its entirety for all purposes.

De ønskede (S)- eller (R)-enantiomerer av enhver forbindelse beskrevet heri, kan ytterligere anrikes gjennom klassisk resolusjon, kiral kromatografi, eller rekrystallisering. For eksempel, de optiske aktivey-aminosyrer (formel 1 eller formel 9) kan omdannes med en enantiomerisk ren forbindelse (for eksempel syre elle base) for å gi et par av diastereoisomerer, hver sammensatt av en enkelt enantiomer, som separeres via fraksjonen rekrystallisering eller kromatografi. Den ønskede enantiomer regenereres deretter fra den egnede diastereoisomer. Videre, den ønskede enantiomer kan videre ofte anrikes med rekrystallisering i et egnet oppløsningsmiddel, dersom den er tilgjengelig i tilstrekkelig mengde (foreksempel typisk ikke mye mindre enn ca 85 % ee, og i noen tilfeller ikke mye mindre enn ca 90 % ee). The desired (S)- or (R)-enantiomers of any compound described herein can be further enriched through classical resolution, chiral chromatography, or recrystallization. For example, the optically active amino acids (formula 1 or formula 9) can be converted with an enantiomerically pure compound (eg acid or base) to give a pair of diastereoisomers, each composed of a single enantiomer, which are separated via fractional recrystallization or chromatography. The desired enantiomer is then regenerated from the appropriate diastereoisomer. Furthermore, the desired enantiomer can often be further enriched by recrystallization in a suitable solvent, if it is available in sufficient quantity (for example typically not much less than about 85% ee, and in some cases not much less than about 90% ee).

Som beskrevet gjennom beskrivelsen, mange av de beskrevne forbindelser har stereoisomerer. Noen av disse forbindelser kan eksistere som enkle enantiomerer (enantio-rene forbindelser) eller blandinger av rene enantiomerer (anrikede eller racemiske prøver) som avhengig av det relative overskudd av en enantiomer i forhold til den andre i en prøve, kan oppvise optisk aktivitet. Slike stereoisomerer, som er ikke-superimposable speilbilder, oppviser en stereogenisk akse eller en eller flere stereogeniske sentre (dvs. kiralitet). Andre beskrevne forbindelser kan være stereoisomerer som ikke er speilbilder. Slike stereoisomerer, som er kjent som er diastereoisomerer, kan være kirale eller akirale (inneholder intet stereogenisk senter). De inkluderer molekyler inneholdende en alkynyl eller syklisk gruppe, så som cis/ trans (eller ZIE) stereoisomerer er mislig, eller molekyler inneholdende to eller flere stereogeniske sentre, hvor inversjon av et enkelt stereogenisk senter generer en korresponderende diastereoisomer. Med mindre annet er angitt eller på annen måte framgår tydelig (for eksempel gjennom anvendelse av stereobindinger, stereosenterbeskrivelser, etc.) inkluderer rammen av foreliggende oppfinnelse, generelt referanseforbindelsen og dets stereoisomerer, enten de er hver rene (for eksempel enantiomeren) eller blandinger (for eksempel enantiomerisk anrikede eller racemiske). As described throughout the specification, many of the disclosed compounds have stereoisomers. Some of these compounds can exist as single enantiomers (enantiomers) or mixtures of pure enantiomers (enriched or racemic samples) which, depending on the relative excess of one enantiomer in relation to the other in a sample, can exhibit optical activity. Such stereoisomers, which are non-superimposable mirror images, exhibit a stereogenic axis or one or more stereogenic centers (ie, chirality). Other disclosed compounds may be stereoisomers that are not mirror images. Such stereoisomers, which are known to be diastereoisomers, may be chiral or achiral (containing no stereogenic center). They include molecules containing an alkynyl or cyclic group, such that cis/trans (or ZIE) stereoisomers are miscible, or molecules containing two or more stereogenic centers, where inversion of a single stereogenic center generates a corresponding diastereoisomer. Unless otherwise stated or otherwise apparent (for example, through the use of stereobonds, stereocenter descriptions, etc.), the scope of the present invention generally includes the reference compound and its stereoisomers, whether each pure (for example, the enantiomer) or mixtures (for e.g. enantiomerically enriched or racemic).

Mange av forbindelsene kan også inneholde en keto- eller oxim-gruppe, slik at tautomerisme kan oppstå. I slike tilfeller, inkluderer generelt den foreliggende oppfinnelse tautomeriske former, enten de er hver rene eller blandinger. Many of the compounds may also contain a keto or oxime group, so that tautomerism may occur. In such cases, the present invention generally includes tautomeric forms, whether each pure or mixtures.

Mange av forbindelsene beskrevet i denne beskrivelsen, inkludert de som er representert med formel 1 og formel 9, er i stand til å danne farmasøytisk akseptable salter. Disse salter inkluderer, uten begrensning, syreaddisjonssalter (inkluderende diacidiske) og basesalter. Farmasøytisk akseptable syreaddisjonssalter inkluderer ikke-toksiske salter avledet fra uorganiske syrer så som hydroklorid, nitrisk, fosforisk, sulforisk, hydrobromisk, hydroiodisk, hydrofluorisk, fosforisk og lignende, og likeledes ikke-toksiske salter avledet fra organiske syrer så som alifatiske mono- og dikarbosyliske syrer, fenyl-substituerte alkanoiske syrer, hydroksyalkanoiske syrer, alkandioske syrer, aromatiske syrer, alifatiske og aromatiske sulfoniske syrer, acider, etc. Slike salter inkluderer således sulfat, pyrosulfat, bisulfat, sulfit, bisulfit, nitrat, fosfat, monohydrogenfosfat, dihydrogenfosfat, metafosfat, pyrofosfat, klorid, bromid, iodid, acetat, trifluoroacetat, propionat, kaprylat, isobutyrat, oksalat, malonat, sukinat, suberat, sebakat, fumarat, maleat, mandelat, bensoat, klorobensoat, metylbensoat, dinitrobensoat, ftalat, bensensulfonat, toluenesulfonat, fenylacetat, sitrat, laktat, malat, tartrat, metanesulfonat, og lignende. Many of the compounds described in this specification, including those represented by Formula 1 and Formula 9, are capable of forming pharmaceutically acceptable salts. These salts include, without limitation, acid addition salts (including diacidic) and base salts. Pharmaceutically acceptable acid addition salts include non-toxic salts derived from inorganic acids such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydroiodic, hydrofluoric, phosphoric and the like, and likewise non-toxic salts derived from organic acids such as aliphatic mono- and dicarboxylic acids , phenyl-substituted alkanoic acids, hydroxyalkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, trifluoroacetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phthalate, benzenesulfonate, toluenesulfonate, phenylacetate, citrate, lactate, malate, tartrate, methanesulfonate, and the like.

Farmasøytisk akseptable basesalter inkluderer ikke-toksiske salter avledet fra baser inkluderende metallkationer, så som alkali og alkalisk jordmetall kation, og likeledes aminer. Eksempler på egnede metallkationer inkluderer, uten begrensning, natrium-kationer, (Na<+>), katliumkationer (K<+>), magnesiumkationer (Mg<2+>), kalsiumkationer, (Ca<2+>), og lignende. Eksempler på egnede aminer inkluderer, uten begrensning, A/,A/'-dibensyletylendiamin, kloroprosain, kolin, dietanolamin, disykloheksylamin, etylendiamin, A/-metylglukamin, prokain, og f-butylamin. For en beskrivelse av nyttige syreaddisjon og bassalter, se S. M. Berge et al., "Pharmaceutical Salts," 66 J. of Pharm. Sei., 1-19 (1977); se også Stahl and Wermuth, Handbookof Pharmaceutical Salts: Properties, Selection, and Use (2002). Pharmaceutically acceptable base salts include non-toxic salts derived from bases including metal cations, such as alkali and alkaline earth metal cations, as well as amines. Examples of suitable metal cations include, without limitation, sodium cations, (Na<+>), potassium cations (K<+>), magnesium cations (Mg<2+>), calcium cations, (Ca<2+>), and the like. Examples of suitable amines include, without limitation, N,N'-dibenzylethylenediamine, chloroprozain, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, procaine, and t-butylamine. For a description of useful acid addition and base salts, see S. M. Berge et al., "Pharmaceutical Salts," 66 J. of Pharm. Sci., 1-19 (1977); see also Stahl and Wermuth, Handbook of Pharmaceutical Salts: Properties, Selection, and Use (2002).

Man kan framstille et farmasøytisk akseptabelt syreaddisjonssalt (eller basesalt) ved å sette en forbindelsesfri base (eller frie syrer) eller zwitterion i kontakt med en tilstrekkelig mengde av en ønsket syre (eller base) for å produsere et ikke-toksisk salt. Dersom saltet presipiteres fra løsning, kan det isoleres ved filtrering; ellers kan saltet gjenvinnes ved evaporering av oppløsningsmiddel. Man kan også generere den frie base (eller frie syre) ved å sette syreaddisjonssaltet i forbindelse med en base (eller med basesaltet med en syre). Selv om visse fysiske egenskaper fra den frie base (eller den frie syre) og dets respektive syreaddisjonssalt (eller basesalt) kan avvike, (for eksempel løselighet, krystallstruktur, hygroskopisitet, etc), er en forbindelses frie base og syreaddisjonssalt (eller dets frie syre og basesalt) ellers det samme for formål med denne beskrivelse. A pharmaceutically acceptable acid addition salt (or base salt) can be prepared by contacting a compound-free base (or free acids) or zwitterion with a sufficient amount of a desired acid (or base) to produce a non-toxic salt. If the salt is precipitated from solution, it can be isolated by filtration; otherwise, the salt can be recovered by solvent evaporation. One can also generate the free base (or free acid) by combining the acid addition salt with a base (or with the base salt with an acid). Although certain physical properties of the free base (or free acid) and its respective acid addition salt (or base salt) may differ, (for example solubility, crystal structure, hygroscopicity, etc), a compound's free base and acid addition salt (or its free acid and base salt) otherwise the same for purposes of this description.

Beskrevne og krevde forbindelser kan eksistere i både usolvatiserte og solvatiserte former, og som andre typer komplekser i tillegg til salter. Nyttige komplekser inkluderer klatrater eller forbindelse-vert-inklusjonskomplekser hvor forbindelsen og verten foreligger i støkiometriske eller ikke-støkiometriske mengder. Nyttige komplekser kan også inneholde to eller flere organiske, uorganiske eller organiske og uorganiske komponenter i støkiometrisk eller ikke-støkiometriske mengder. De resulterende komplekser kan ioniseres, partielt ioniseres, eller ikke-ioniseres. For en oversikt over slike komplekser, se J. K. Haleblian, J. Pharm. Sei. 64(8): 1269-88 Described and claimed compounds can exist in both unsolvated and solvated forms, and as other types of complexes in addition to salts. Useful complexes include clathrates or compound-host inclusion complexes where the compound and host are present in stoichiometric or non-stoichiometric amounts. Useful complexes may also contain two or more organic, inorganic or organic and inorganic components in stoichiometric or non-stoichiometric amounts. The resulting complexes can be ionized, partially ionized, or non-ionized. For a review of such complexes, see J. K. Haleblian, J. Pharm. Pollock. 64(8): 1269-88

(1975). Farmasøytisk akseptable solvater inkluderer også hydrater og solvater hvor krystalliseringsoppløsningsmiddel kan være isotopisk substituert, for eksempel, D20, d6-acetone, d6-DMSO, etc. Generelt, for formålet med denne beskrivelse, referanse til en usolvatisert form av en forbindelse inkluderer også det korresponderende solvat eller hydrerte form av forbindelsen. (1975). Pharmaceutically acceptable solvates also include hydrates and solvates where the crystallization solvent may be isotopically substituted, for example, D2O, d6-acetone, d6-DMSO, etc. In general, for the purposes of this specification, reference to an unsolvated form of a compound also includes the corresponding solvate or hydrated form of the compound.

De beskrevne forbindelser inkluderer også alle farmasøytisk akseptable isotopiske variasjoner, hvor minst ett atom er erstattet med et atom som har det samme atomnummer, men en atomisk masse som er forskjellig fra den atomiske masse som vanligvis finnes i naturen. Eksempler på isotoper egnet for inkludering i de beskrevne forbindelser inkluderer, uten begrensning, isotoper av hydrogen, så som<2>H og<3>H; isotoper av karbon, så som 13C og<14>C; isotoper av nitrogen, så som 15N; isotoper av oksygen, så som<17>0 og<18>0; isotoper av fosfor, så som31P and<32>P; isotoper av svovel, så som<35>S; isotoper av fluor, så som 18F; og isotoper av klor, så som<36>CI. Anvendelse av isotopiske variasjoner (for eksempel, deuterium,<2>H) kan gi visse terapeutiske fordeler resulterende fra større metabolsk stabilitet, for eksempel, øket in vovo halveringstid eller reduserte doseringskrav. Videre, visse isotopvariasjoner av de beskrevne forbindelser kan inkorporere en radioaktiv isotop, (for eksempel tritium, 3H, eller<14>C), som kan være nyttig i medikament og/eller substrat vevsfordelingsstudier. The described compounds also include all pharmaceutically acceptable isotopic variations, where at least one atom is replaced by an atom having the same atomic number, but an atomic mass different from the atomic mass normally found in nature. Examples of isotopes suitable for inclusion in the disclosed compounds include, without limitation, isotopes of hydrogen, such as <2>H and <3>H; isotopes of carbon, such as 13C and<14>C; isotopes of nitrogen, such as 15N; isotopes of oxygen, such as<17>0 and<18>0; isotopes of phosphorus, such as31P and<32>P; isotopes of sulfur, such as<35>S; isotopes of fluorine, such as 18F; and isotopes of chlorine, such as<36>CI. The use of isotopic variations (eg, deuterium,<2>H) may provide certain therapeutic advantages resulting from greater metabolic stability, eg, increased in vivo half-life or reduced dosage requirements. Furthermore, certain isotopic variations of the disclosed compounds may incorporate a radioactive isotope, (eg, tritium, 3H, or <14>C), which may be useful in drug and/or substrate tissue distribution studies.

EKSEMPLEREXAMPLES

De følgende eksempler er tiltenkt å være illustrerende og ikke-begrensende, og representerer spesifikke utførelser av foreliggende oppfinnelse. The following examples are intended to be illustrative and non-limiting, and represent specific embodiments of the present invention.

GENERELLE MATERIALER OG METODERGENERAL MATERIALS AND METHODS

Enzymscreening ble utført ved anvendelse av en 96 brønnsplate som er beskrevet i D. Yazbeck et al., Synth. Catal. 345:524-32 (2003), og den fullstendige beskrivelse av denne inkorporeres heri med henvisning for alle formål. Alle enzymer anvendt for screeningsplaten, (se tabell 2) var tilgjengelig fra kommersielle enzymleverandører inkluderende Amano (Nagoya, Japan), Roche (Basel, Switzerland), Novo Nordisk (Bagsvaerd, Denmark), Altus Biologics Inc. (Cambridge, MA), Biocatalytics (Pasadena, CA), Toyobo (Osaka, Japan), Sigma-Aldrich (St. Louis, MO) and Fluka (Buchs, Switzerland). Screeningsreaksjonene ble utført i en Eppendorf Thermomixer-R (VWR). Påfølgende enzymatiske resolusjoner i større skala benyttet LIPOLASE® 100L og LIPOLASE®100T, som er tilgjengelig fra Novo-Nordisk A/S (CAS nr. 9001-62-1). Enzyme screening was performed using a 96 well plate as described in D. Yazbeck et al., Synth. Catal. 345:524-32 (2003), and the full description thereof is incorporated herein by reference for all purposes. All enzymes used for the screening plate, (see Table 2) were available from commercial enzyme suppliers including Amano (Nagoya, Japan), Roche (Basel, Switzerland), Novo Nordisk (Bagsvaerd, Denmark), Altus Biologics Inc. (Cambridge, MA), Biocatalytics (Pasadena, CA), Toyobo (Osaka, Japan), Sigma-Aldrich (St. Louis, MO) and Fluka (Buchs, Switzerland). The screening reactions were performed in an Eppendorf Thermomixer-R (VWR). Subsequent enzymatic resolutions on a larger scale used LIPOLASE® 100L and LIPOLASE® 100T, which are available from Novo-Nordisk A/S (CAS no. 9001-62-1).

NUKLEÆR MAGNETISK RESONANSNUCLEAR MAGNETIC RESONANCE

Tre hundre MHz<1>H NMR og 75 MHz<13>C NMR spektra ble opptatt på en BRUKER 300 UltraShield™ utsyrt med en 5 mm auto omkoblingsbar PHQNP probe. Spektra ble generelt opptatt nær RT, og standard autolock, autoshim og autogain rutiner ble benyttet. Prøvene ble vanligvis spunnet ved 20 Hz for 1D eksperimentet.<1>H NMR spektra ble opptatt ved anvendelse av 30-graders tipvinkelpulser, 1.0 s resirkuleringsforsinkelse og 16 scans ved en resolusjon på 0.25 Hz/point. Opptaksvinduet var typisk 8000 Hz fra +18 til -2 ppm (Reference TMS at 0 ppm) og prosessering var med 0.3 Hz linjebredding. Typiske akvisasjonstider var 5-10 s. Regulære<13>C NMR spektra ble opptatt ved anvendelse av 30-graders tipvinkelpulser, 2.0 s resirkulerings forsinkelse og 2048 scan med en resolusjon på 1 Hz/point. Spektral bredde var typisk 25 KHz fra +235 til -15 ppm (Referanse TMS ved 0 ppm). Proton dekopling ble applisert kontinuerlig og 1 Hz linjebredding ble applisert under prosessering. Typiske opptakstider bar 102 min. Three hundred MHz<1>H NMR and 75 MHz<13>C NMR spectra were acquired on a BRUKER 300 UltraShield™ equipped with a 5 mm auto switchable PHQNP probe. Spectra were generally acquired close to RT, and standard autolock, autoshim and autogain routines were used. The samples were typically spun at 20 Hz for the 1D experiment.<1>H NMR spectra were acquired using 30-degree tip angle pulses, 1.0 s recycle delay and 16 scans at a resolution of 0.25 Hz/point. The recording window was typically 8000 Hz from +18 to -2 ppm (Reference TMS at 0 ppm) and processing was with 0.3 Hz line broadening. Typical acquisition times were 5-10 s. Regular<13>C NMR spectra were acquired using 30-degree tip angle pulses, 2.0 s recycle delay and 2048 scans with a resolution of 1 Hz/point. Spectral width was typically 25 KHz from +235 to -15 ppm (Reference TMS at 0 ppm). Proton decoupling was applied continuously and 1 Hz line broadening was applied during processing. Typical recording times were 102 min.

MASSESPEKTROMETRIMASS SPECTROMETRY

Massespektrometri ble utført på et HEWLETT PACKARD 1100MSD ved anvendelse av HP Chemstation Plus programvare. LCen ble utstyrt med en agilent 1100 kvartærnært LC system og en Agilent væskebehandler som et autosampel. Data ble opptatt under elektronspray ionisering med ACN/vann (inneholdende 0.1% maursyre) som oppløsningsmiddel (10 % ACN til 90 %, 7 min). Temperaturer: probe var 350 °C, kilde var 150 °C. Coron-uttømming var 3000 V for positivt ion og 3000 V for negativt ion. Mass spectrometry was performed on a HEWLETT PACKARD 1100MSD using HP Chemstation Plus software. The LC was equipped with an Agilent 1100 quaternary LC system and an Agilent liquid processor as an autosampler. Data were acquired during electron spray ionization with ACN/water (containing 0.1% formic acid) as solvent (10% ACN to 90%, 7 min). Temperatures: probe was 350 °C, source was 150 °C. Coron depletion was 3000 V for positive ion and 3000 V for negative ion.

HØYYTELSES VÆSKEKROMATOGRAFIHIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Høyytelses væskekromatografi (HPLC) ble utført på en serie 1100 AGILENT TECHNOLOGIES instrument utstyrt med et Agilent 220 HPLC autosampler, kvarternær pumper og en UV-detektor. LC var PC-kontrollert ved anvendelse av HP Chemstation Plus programvare. Normalfase kiral HPLC ble utført ved anvendelse av kirale HPLC-kolonner tilgjengelig fra Chiral Technologies (Exton, PA) and Phenomenex (Torrance, CA). High performance liquid chromatography (HPLC) was performed on a Series 1100 AGILENT TECHNOLOGIES instrument equipped with an Agilent 220 HPLC autosampler, quaternary pumps and a UV detector. LC was PC-controlled using HP Chemstation Plus software. Normal phase chiral HPLC was performed using chiral HPLC columns available from Chiral Technologies (Exton, PA) and Phenomenex (Torrance, CA).

GASS KROMATOGRAFIGAS CHROMATOGRAPHY

Gasskromatografi (GC) ble utført ved en agilent 6890N network GC system utstyrt med en FID-detektormed elektrometer, en 7683 Series split/splitless kapillær injektor, et rullebrett som monitorererfire eksterne hendelser, og et inboard printer/plotter. Enantiomerisk overskudd av diester (formel 13, R<3>=R<4>=Et) og monoester (formel 11, R<3>=Et) ble utført ved anvendelse av CHIRALDEX G-TA kolonne (30 m x 0,25 mm), med helium bærergass, og ved 135°C. Under slike betingelser dekomponer monoesteren til S-3-cyano-5-metyl-heksanoisk syre etylester, og ee ble bestemt basert på dekomponeringsproduktet. De kirale GC kolonner som ble anvendt i analysen var tilgjengelig fra Astec, Inc (Whippany, NJ). Gas chromatography (GC) was performed on an Agilent 6890N network GC system equipped with an FID detector with electrometer, a 7683 Series split/splitless capillary injector, a trackpad that monitors four external events, and an inboard printer/plotter. Enantiomeric excesses of diesters (formula 13, R<3>=R<4>=Et) and monoesters (formula 11, R<3>=Et) were carried out using CHIRALDEX G-TA column (30 m x 0.25 mm ), with helium carrier gas, and at 135°C. Under such conditions, the monoester decomposes to S-3-cyano-5-methyl-hexanoic acid ethyl ester, and ee was determined based on the decomposition product. The chiral GC columns used in the analysis were available from Astec, Inc (Whippany, NJ).

EKSEMPEL 1: Enzymscreening via enzymatisk hydrolyse av (R/S)-3-cyano-2-etoksykarbonyl-5-metyl-hekasonisk syre etylester (formel 20) for å gi (3S)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre (formel 21). EXAMPLE 1: Enzyme screening via enzymatic hydrolysis of (R/S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexasonic acid ethyl ester (Formula 20) to give (3S)-3-cyano-2-ethoxycarbonyl-5- methyl hexanoic acid (formula 21).

Ensymscreening ble utført ved anvendelse av et screeningskitt sammensatt av individuelle enzymer deponert i separate brønner i en 96 brønnsplate som ble framstilt på forhånd i samsvar med en framgangsmåte beskrevet i D. Yazbeck et al., Synth. Catal. 345:524-32 (2003). Hver av brønnene hadde et tomt volum på 0,3 ml, (grunn brønnplate). En brønn i 96 brønnsplaten inneholdt kun fosfatbuffer (10 u.L, 0,1 M, pH 7.2), og en andre brønn inneholdt kun ACN (10 u.L), og hver av de resterende brønner inneholdt en av de 94 enzymer angitt i tabell 2 (10 ul, 100 mg/mil). Før anvendelse ble screeningskittet fjernet fra lagring ved -80°C og enzymene ble tillatt å tines ved RT i 5 min. Kaliumfosfatbuffer (85 ul, 0,1 M, pH 7,2) ble dispensert i hver brønn ved anvendelse av en multikanal pipette. Konsentrert substrat (formel 20, 5ul) ble deretter tilsatt til hver brønn via en multikanal pipette og de 96 reaksjonsblandinger ble inkubert ved 30°C og 750 rpm. Reaksjonene ble stoppet og prøvetatt etter 241 ved å overføre hver av reaksjonsblandingene til separate brønner i en 96 brønnsplate. Hver av brønnene hadde et tomt volum på 2 mil (dyp brønnsplate) og inneholdt EtOAc (1 mil) og HCI (1N, 100 ul_). Komponentene i hver brønn ble blandet med aspirering av brønninnhildet med en pipette. Den andre plate ble sentrifugert og 100 DL av organisk supernatant ble overført fra hver brønn til separate brønner i en tredje 96 brønnsplate (grunn plate). Brønner i den tredje plate ble deretter forseglet ved anvendelse av en penetrerbar mattedeksel. Straks brønnene var forseglet ble den tredje plate overført til et GC system for bestemmelse av optisk renhet (ee). Enzyme screening was performed using a screening kit composed of individual enzymes deposited in separate wells in a 96-well plate that was prepared in advance according to a procedure described in D. Yazbeck et al., Synth. Catal. 345:524-32 (2003). Each of the wells had an empty volume of 0.3 ml, (shallow well plate). One well of the 96-well plate contained only phosphate buffer (10 u.L, 0.1 M, pH 7.2), and a second well contained only ACN (10 u.L), and each of the remaining wells contained one of the 94 enzymes listed in Table 2 ( 10 µl, 100 mg/mil). Before use, the screening kit was removed from storage at -80°C and the enzymes were allowed to thaw at RT for 5 min. Potassium phosphate buffer (85 µl, 0.1 M, pH 7.2) was dispensed into each well using a multichannel pipette. Concentrated substrate (formula 20, 5 µl) was then added to each well via a multichannel pipette and the 96 reaction mixtures were incubated at 30°C and 750 rpm. The reactions were stopped and sampled after 241 by transferring each of the reaction mixtures to separate wells in a 96 well plate. Each of the wells had a void volume of 2 mil (deep well plate) and contained EtOAc (1 mil) and HCl (1N, 100 ul). The components in each well were mixed by aspiration of the well contents with a pipette. The second plate was centrifuged and 100 DL of organic supernatant was transferred from each well to separate wells in a third 96 well plate (shallow plate). Wells in the third plate were then sealed using a penetrable mat cover. As soon as the wells were sealed, the third plate was transferred to a GC system for determination of optical purity (ee).

Tabell 3 lister enzym, varmerkenavn, leverandør og E-verdi for noen av enzymene som ble screenet. For et gitt enzym, ble E-verdien tolket som den relative reaktivitet av et par av enantiomerer (substrater). E-verdiene listet i tabell 3 ble beregnet for HPLC-data (fraksjonen omdanning, x, og ee) ved anvendelse av et dataprogram benevnt Ee2, som er tilgjengelig fra University of Graz. Generelt, enzym-oppvisende S-selektivitet og en E-verdi på mer enn 35 er egnet for oppskalering. Table 3 lists the enzyme, brand name, supplier and E-value for some of the enzymes that were screened. For a given enzyme, the E value was interpreted as the relative reactivity of a pair of enantiomers (substrates). The E values listed in Table 3 were calculated for HPLC data (fraction conversion, x, and ee) using a computer program named Ee2, which is available from the University of Graz. In general, enzymes exhibiting S selectivity and an E value greater than 35 are suitable for scale-up.

EKSEMPEL 2. Enzymatisk resolusjon av (R/S)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20) for å gi (3S)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 23) og (R)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 22) EXAMPLE 2. Enzymatic resolution of (R/S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 20) to give (3S)-3-cyano-2-ethoxycarbonyl-5-methyl- hexanoic acid potassium salt (formula 23) and (R)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 22)

En reaktor (392 I) utstyrt med overliggende omrøring ble fylt med kaliumfosfatbuffer (292,2 I, 10 mM, pH 8,0) og LIPOLASE® 100L, type EX (3,9 I). Blandingen ble omrørt ved 800 RPM i 1 min og KOH (2 M) ble tilsatt for å justere pH til 8,0. (R/S)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20, 100 kg) ble tilsatt, og den resulterende blanding ble titrert med NaOH aq (50 %) under hydrolyse for å opprettholde en pH på 8,0. Graden av reaksjonen ble monitorer! med HPLC A reactor (392 L) equipped with overhead stirring was charged with potassium phosphate buffer (292.2 L, 10 mM, pH 8.0) and LIPOLASE® 100L, type EX (3.9 L). The mixture was stirred at 800 RPM for 1 min and KOH (2 M) was added to adjust the pH to 8.0. (R/S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 20, 100 kg) was added and the resulting mixture was titrated with NaOH aq (50%) under hydrolysis to maintain a pH of 8.0. The degree of reaction was monitors! with HPLC

(Ci8kolonne, 4,6 mm x 150 mm, deteksjon ved 200 nm). Når man hadde nådd en omdanning på ca 40-45 % (f.eks. etter ca 24 t) ble reaksjonsblandingen overført til en separasjonstrakt. Den vandige blanding ble ekstrahert med heptan (205 I). EtOH (absolutt) ble tilsatt (opp til ca 5 % vol/vol) for å ødelegge en lett emulsjon som hadde blitt dannet, og de vandige og organiske sjikt ble separert. Ekstraheringstrinnene ble repetert to ganger, og det vandige sjikt inneholdende(3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 23) kan ytterligere konsentreres under vakuum (f.eks 25 til 50 % av dets opprinnelige volum). De organiske sjikt inneholdende (R)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 22) ble kombinert, tørket og konsentrert. Den resulterende dietylester ble deretter racemisert i samsvar med eksempel 6. MS m/z [M+H]<+>227.<1>H NMR (300 MHz, D20): 5 2,35 (dd, 6H), 2.70 (t, 3H), 2,85 (m, 1H), 2,99 (m, 1H), 3,25 (m, 1H), 4,75 (m, 1H), 5,60 (q, 2H).<13>C NMR (75 ppm, D20) 5 0172,19, 171,48, 122,85, 62,70, 59,49, 40,59, 31,83, 27,91, 23,94, 21,74, 14,77. (Ci8 column, 4.6 mm x 150 mm, detection at 200 nm). When a conversion of about 40-45% had been reached (e.g. after about 24 h), the reaction mixture was transferred to a separation funnel. The aqueous mixture was extracted with heptane (205 L). EtOH (absolute) was added (up to about 5% vol/vol) to break a light emulsion that had formed, and the aqueous and organic layers were separated. The extraction steps were repeated twice and the aqueous layer containing (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid potassium salt (Formula 23) can be further concentrated under vacuum (eg 25 to 50% of its original volume). The organic layers containing (R)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 22) were combined, dried and concentrated. The resulting diethyl ester was then racemized in accordance with Example 6. MS m/z [M+H]<+>227.<1>H NMR (300 MHz, D 2 O): δ 2.35 (dd, 6H), 2.70 ( t, 3H), 2.85 (m, 1H), 2.99 (m, 1H), 3.25 (m, 1H), 4.75 (m, 1H), 5.60 (q, 2H). <13>C NMR (75 ppm, D 2 O) δ 0172.19, 171.48, 122.85, 62.70, 59.49, 40.59, 31.83, 27.91, 23.94, 21, 74, 14,77.

EKSEMPEL 3. Enzymatisk resolusjon av ( R/ S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20) for å gi (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 23 og (R) 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 22). EXAMPLE 3. Enzymatic resolution of (R/S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 20) to give (3S)-3-cyano-2-ethoxycarbonyl-5-methyl- hexanoic acid potassium salt (formula 23) and (R) 3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 22).

En reaktor (3,92 I) utstyrt med overliggende omrøring fylles med kalsiumacetatbuffer (1,47 I, 100 mM, pH 7,0) og ( R/ S)- 3-Cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20,1 kg). Blandingen omrøres ved 1100 RPM i 5 min og KOH (5 M) tilsettes for å justere pH til 7,0. LIPOLASE® 100L, type EX (75 ml) tilsettes og den resulterende blanding titreres med KOH (5 M) under hydrolyse for å opprettholde en pH på 7,0. Graden av reaksjon monitoreres med HPLC (Ciskolonne, A reactor (3.92 L) equipped with overhead stirring is charged with calcium acetate buffer (1.47 L, 100 mM, pH 7.0) and ( R / S )-3-Cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 20.1 kg). The mixture is stirred at 1100 RPM for 5 min and KOH (5 M) is added to adjust the pH to 7.0. LIPOLASE® 100L, type EX (75 ml) is added and the resulting mixture is titrated with KOH (5 M) under hydrolysis to maintain a pH of 7.0. The degree of reaction is monitored with HPLC (Cis column,

4,6 mm x 150 mm, deteksjon ved 200 nm). Når man nådde en omdanning på ca 42 % til 45 % (f.eks. etter ca 20-251) ble reaksjonsblandingen overført til en separasjonstrakt. Den vandige blanding ekstraheres med heksan (100 % vol/vol). EtOH (absolutt) tilsettes (opp til ca 5 % vol/vol) for å ødelegge en liten emulsjon som var blitt dannet, og den vandige og organiske sjikt separeres. Ekstraheringstrinnene repeteres to ganger for å oppnå et vandig sjikt inneholdende (3S)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester kaliumsalt (formel 23) som kan 4.6 mm x 150 mm, detection at 200 nm). When a conversion of about 42% to 45% was reached (eg after about 20-251), the reaction mixture was transferred to a separatory funnel. The aqueous mixture is extracted with hexane (100% vol/vol). EtOH (absolute) is added (up to about 5% vol/vol) to destroy a small emulsion that had formed, and the aqueous and organic layers are separated. The extraction steps are repeated twice to obtain an aqueous layer containing (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester potassium salt (formula 23) which can

anvendes i påfølgende omdanninger uten isolasjon. De organiske sjikt inneholdende (R)-3-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 11) kombineres, tørkes og konsentreres. Den resulterende dimetylester blir deretter racemisert i samsvar med eksempel 6. used in subsequent conversions without insulation. The organic layers containing (R)-3-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 11) are combined, dried and concentrated. The resulting dimethyl ester is then racemized in accordance with Example 6.

EKSEMPEL 4. Framstilling av (S)-4-isobutyl-2-okso-pyrrolidin-3-karbosylisk syre (formel 10) fra (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 23). EXAMPLE 4. Preparation of (S)-4-isobutyl-2-oxo-pyrrolidine-3-carboxylic acid (formula 10) from (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid potassium salt (formula 23 ).

Et kar ble fylt med en vandig løsning inneholdende (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 23, 411 I fra eksempel 2). Raney nikkel (50 % aq løsning, Sigma-Aldrich) ble tilsatt til blandingen, og hydrogengass ble introdusert i karet i løpet av en 20 t periode for å opprettholde et trykk på 50 psig i rommet i væskebeholderen gjennom reaksjonen. Hydrogeneringsreaksjonen ble monitorert med optak av H2og HPLC-analyse (Ciskolonne, 4,6 mm x 150 mm, deteksjon ved 200 nm) av karinnholdet. Etter reaksjonen ble den vandige blanding filtrert for å fjerne Raney Ni katalysator. pH i den konsentrerte løsning ble justert til A vessel was filled with an aqueous solution containing (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid potassium salt (Formula 23, 411 I from Example 2). Raney nickel (50% aq solution, Sigma-Aldrich) was added to the mixture, and hydrogen gas was introduced into the vessel over a 20 h period to maintain a pressure of 50 psig in the liquid vessel space throughout the reaction. The hydrogenation reaction was monitored by uptake of H2 and HPLC analysis (Cis column, 4.6 mm x 150 mm, detection at 200 nm) of the vessel contents. After the reaction, the aqueous mixture was filtered to remove the Raney Ni catalyst. The pH of the concentrated solution was adjusted to

3,0 ved anvendelse av 37 % HCI (ca 14 I). Den resulterende løsning ble ekstrahert tre ganger med EtOAc (50 % vol/vol). De kombinerte organiske sjikt ble konsentrert under vakuum og ga (S)- 4-isobutyl-2-okso-pyrrolidin-3-karbosylisk syre (formel 10). MS m/z [M+H]<+>186,1130.<13>C NMR (75 ppm, CDCI3) 5 □175,67, 172,23, 54,09, 47,62, 43,69, 37,22, 26,31, 23,34, 22,54. Utbytte 40-42 %; 97 % ee. 3.0 using 37% HCI (about 14 I). The resulting solution was extracted three times with EtOAc (50% v/v). The combined organic layers were concentrated in vacuo to give (S)-4-isobutyl-2-oxo-pyrrolidine-3-carboxylic acid (Formula 10). MS m/z [M+H]<+>186.1130.<13>C NMR (75 ppm, CDCl3) 5 □175.67, 172.23, 54.09, 47.62, 43.69, 37 .22, 26.31, 23.34, 22.54. Yield 40-42%; 97% ee.

EKSEMPEL 5. Framstilling av pregabalin (formel 9) fra (S)- 4-isobutyl-2-okso-pyrrolidin-3-karbosylisk syre (formel 10). EXAMPLE 5. Preparation of pregabalin (formula 9) from (S)-4-isobutyl-2-oxo-pyrrolidine-3-carboxylic acid (formula 10).

Et reaksjonskar (60 I) ble fylt med (S)- 4-isobutyl-2-okso-pyrrolidin-3-karbosylisk syre (formel 10), HCI (36-38 %, 30 I), og vann (29 I). HOAc (1 I) ble tilsatt til løsningen og den resulterende oppstramming ble behandlet i 36-381 ved 80°C og i ytterligere 61 ved 110°C. Graden av reaksjon ble monitorert med HPLC (Ci8kolonne 4,6 mm x 150 mm, deteksjon ved 200 nm). Vann og overskudd av HCI ble evaporert for å gi en olje, som ble vasket med MTBE (2x15 L). Vann ble tilsatt til oljen og blandingen ble omrørt inntil løsningen hadde klarnet. pH i løsningen ble justert til 5,2-5,5 ved anvendelse av KOH (ca 6 kg), som resulterte i presipitering av pregabalin. Blandingen ble oppvarmet til 80°C og deretter avkjølt til 4°C. Etter 10 t, ble krystallinsk pregabalin filtrert og vasket med IPA (12 I). Filtratet ble konsentrert under vakuum for å gi en restolje. Vann (7,5 I) og EtOH (5,0 I) ble tilsatt til restoljen og den resulterende blanding ble oppvarmet til 80°C og deretter avkjølt til 4°C. Etter 10 t ble en andre mengde pregabalinkrystaller filtrert og vasket med IPA (1 I). De kombinerte pregabalin krystaller ble tørket i vakuumovn ved 45°C i 241. MS m/z [M+H]<+>160,1340. 1H NMR (300 MHz, D20): 5 2,97 (dd, J = 5, 4, 12,9 Hz, 1H), 2,89 (dd, J = 6, 6, 12,9 Hz, 1H), 2,05-2,34 (m, 2H), 1,50-1,70 (sept, J = 6,9Hz, 1H), 1,17 (t, J = 7,0 Hz, 2H), 0,85 (dd, J = 2,2, 6,6 Hz, 6H).<13>C NMR (75 ppm, D20) 5 □ 181,54, 44,32, 41,28, 32,20, 24,94, 22,55, 22,09. Utbytte 80-85 %; ee > 99,5 %. A reaction vessel (60 L) was charged with (S)-4-isobutyl-2-oxo-pyrrolidine-3-carboxylic acid (Formula 10), HCl (36-38%, 30 L), and water (29 L). HOAc (1 L) was added to the solution and the resulting solid was treated for 36-381 at 80°C and for a further 61 at 110°C. The degree of reaction was monitored by HPLC (Ci8 column 4.6 mm x 150 mm, detection at 200 nm). Water and excess HCl were evaporated to give an oil, which was washed with MTBE (2x15 L). Water was added to the oil and the mixture was stirred until the solution became clear. The pH of the solution was adjusted to 5.2-5.5 using KOH (about 6 kg), which resulted in precipitation of pregabalin. The mixture was heated to 80°C and then cooled to 4°C. After 10 h, crystalline pregabalin was filtered and washed with IPA (12 L). The filtrate was concentrated under vacuum to give a residual oil. Water (7.5 L) and EtOH (5.0 L) were added to the residual oil and the resulting mixture was heated to 80°C and then cooled to 4°C. After 10 h, a second amount of pregabalin crystals was filtered and washed with IPA (1 L). The combined pregabalin crystals were dried in a vacuum oven at 45°C for 241. MS m/z [M+H]<+>160.1340. 1H NMR (300 MHz, D 2 O): δ 2.97 (dd, J = 5, 4, 12.9 Hz, 1H), 2.89 (dd, J = 6, 6, 12.9 Hz, 1H), 2.05-2.34 (m, 2H), 1.50-1.70 (sept, J = 6.9Hz, 1H), 1.17 (t, J = 7.0 Hz, 2H), 0, 85 (dd, J = 2.2, 6.6 Hz, 6H).<13>C NMR (75 ppm, D2O) 5 □ 181.54, 44.32, 41.28, 32.20, 24.94 , 22.55, 22.09. Yield 80-85%; ee > 99.5%.

EKSEMPEL 6. Framstilling av(R/S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20) via racemisering av ( R)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 22) EXAMPLE 6. Preparation of (R/S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 20) via racemization of (R)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid acid ethyl ester (formula 22)

En reaktor ble fylt med ( R)- 3- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 22, 49,5 kg) og EtOH (250 I). Natriumetoksid (21 % vekt/vekt i EtOH, 79,0 I, 1,1 ek) ble tilsatt til blandingen, som ble oppvarmet til 80°C i 201. Etter fullføring av reaksjonen ble blandingen tillatt å avkjøles til RT og ble nøytralisert med tilsetning av HOAc (12.2 I). Etter evaporering av EtOH, ble MTBE (150 I) tilsatt til blandingen, og den resulterende løsning ble filtrert og evaporert for å gi ( R/ S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20) i kvantitativt utbytte. A reactor was charged with (R)-3-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 22, 49.5 kg) and EtOH (250 L). Sodium ethoxide (21% w/w in EtOH, 79.0 L, 1.1 eq) was added to the mixture, which was heated to 80 °C in 201. After completion of the reaction, the mixture was allowed to cool to RT and was neutralized with addition of HOAc (12.2 L). After evaporation of the EtOH, MTBE (150 L) was added to the mixture, and the resulting solution was filtered and evaporated to give ( R / S )-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 20 ) in quantitative yield.

EKSEMPEL 7. Framstilling av (S)-3- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 24) fra (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 21) EXAMPLE 7. Preparation of (S)-3-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 24) from (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 21)

En 50 ml rundbunnet flaske ble fylt med (3S)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 21, 3,138 g, 13,79 mmol), NaCI (927 mg, 1,15 ek), deionisert vann (477 uL, 1,92 ek) og DMSO (9,5 ml). Den resulterende blanding ble oppvarmet til 88°C og opprettholdt ved denne temperatur i 17 t. En prøve ble tatt fra LC og LC/MS analyse, som viste nærvær av utgangsmaterialet (formel 21) og produktene (formel 245 og formel 25). Temperaturen av blandingen ble deretter økt til 135°C og det ble tillatt å reagere i ytterligere 3,51. En andre prøve ble tatt for LC og LC/MS analyse, som viste fravær av utgangsmaterialet (formel 21) og viste, i tillegg til de ønskede produkter (formel 24 og formel 25), nærvær av ikke-identifiserte biprodukter. (S)-3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 24): 97,4 % ee etter 88°C; 97,5 % ee etter 135°C. A 50 mL round bottom flask was charged with (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 21, 3.138 g, 13.79 mmol), NaCl (927 mg, 1.15 eq) , deionized water (477 µL, 1.92 eq) and DMSO (9.5 mL). The resulting mixture was heated to 88°C and maintained at this temperature for 17 h. A sample was taken from LC and LC/MS analysis, which showed the presence of the starting material (Formula 21) and the products (Formula 245 and Formula 25). The temperature of the mixture was then raised to 135°C and allowed to react for an additional 3.51. A second sample was taken for LC and LC/MS analysis, which showed the absence of the starting material (formula 21) and showed, in addition to the desired products (formula 24 and formula 25), the presence of unidentified by-products. (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 24): 97.4% ee after 88°C; 97.5% ee after 135°C.

EKSEMPEL 8. Bestemmelse av optisk renhet (ee) av (S)- 4-isobutyl-2-okso-pyrrolidin-3-karbosylisk syre (formel 10). EXAMPLE 8. Determination of optical purity (ee) of (S)-4-isobutyl-2-oxo-pyrrolidine-3-carboxylic acid (formula 10).

Den optiske renhet av (S)- 4-isobutyl-2-okso-pyrrolidin-3-karbosylisk syre (formel 10) ble bestemt via en derivatiseringsmetode. En prøve av (S)- 4-isobutyl-2-okso-pyrrolidin-3-karbosylisk syre ble esterifisert med EtOH i nærvær av en katalytisk mengde av tørr HCI i dioksan ved 70°C. Den resulterende laktamester ble analysert ved HPLC (CHIRALPAK AD-H, 4,6 mm x 250 mm) ved anvendelse av en mobil fase av heksan og EtOH (95:5), med en strømningsrate på 1,0 ml/min, injeksjonsvolum på 10u.L, kolonnetemperatur på 35°C, og deteksjon ved 200 nm. The optical purity of (S)-4-isobutyl-2-oxo-pyrrolidine-3-carboxylic acid (formula 10) was determined via a derivatization method. A sample of (S)-4-isobutyl-2-oxo-pyrrolidine-3-carboxylic acid was esterified with EtOH in the presence of a catalytic amount of dry HCl in dioxane at 70°C. The resulting lactam ester was analyzed by HPLC (CHIRALPAK AD-H, 4.6 mm x 250 mm) using a mobile phase of hexane and EtOH (95:5), with a flow rate of 1.0 ml/min, injection volume of 10u.L, column temperature of 35°C, and detection at 200 nm.

EKSEMPEL 9. Bestemmelse av optisk renhet (ee) av pregabalin (formel 9).EXAMPLE 9. Determination of optical purity (ee) of pregabalin (formula 9).

Den optiske renhet av pregabalin ble analysert via en derivatiseringsmetode. En prøve av pregabalin ble derivatisert med Marfey's reagent (1-fluoro-2-4-dinitrofenyl-5-L-alaninamid) og deretter analysert med HPLC (LUNA Cis(2) kolonne, The optical purity of pregabalin was analyzed via a derivatization method. A sample of pregabalin was derivatized with Marfey's reagent (1-fluoro-2-4-dinitrophenyl-5-L-alanine amide) and then analyzed by HPLC (LUNA Cis(2) column,

0,46mm x 150 mm, 3u.m) ved anvendelse av en mobil vase av vandig NaP040.46mm x 150mm, 3u.m) using a mobile vase of aqueous NaPO4

(20 nM, pH 2,0) og ACN (90:10 i 10 min, 10:90 i 3 min, 90:10 i 5 min), en strømningsrate på 1,2 ml/min et injeksjonsvolum på 10 uL, kolonnetemperatur på 35°C, og deteksjon ved 200 nm. (20 nM, pH 2.0) and ACN (90:10 for 10 min, 10:90 for 3 min, 90:10 for 5 min), a flow rate of 1.2 mL/min, an injection volume of 10 µL, column temp. at 35°C, and detection at 200 nm.

EKSEMPEL 10. Enzymatisk resolusjon av ( R/ S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20) for å gi (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester natriumsalt (formel 23) og ( R)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 22) EXAMPLE 10. Enzymatic resolution of (R/S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 20) to give (3S)-3-cyano-2-ethoxycarbonyl-5-methyl- hexanoic acid ethyl ester sodium salt (formula 23) and (R)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 22)

En reaktor (16000 I) utstyrt med overhengende omrøring fylles med kalsiumacetat (254 kg), deionisert vann (1892,7 kg) og LIPOZYME® TL 100 I (næringsgradert LPOLASE®, 983,7 kg). Etter komplett blanding ble (R/S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 20, 9000 kg, 85 % renhetsanalyse) fylt i og blandingen ble omrørt i 24 t. NaOH (2068 kg av en 30 % løsning) tilsettes under reaksjonstiden for å opprettholde pH ved 7,0. Graden av reaksjon monitoreres med HPLC (Ciskolonne 4,6 mm x 150 mm, deteksjon ved 200 nm) Når man nådde en omdanning på ca 42 % til 45 % (f. eks etter ca 20-251) stoppet titratoren og omrøringen. Den organiske fase separeres umiddelbart, og den vandige fase vaskes to ganger med toluen (780 kg). Det vandige sjikt inneholdende (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester natriumsalt (formel 23) anvendes i påfølgende transformasjoner (eksempel 11) uten isolering. De organiske sjikt inneholdende(R)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 22) kombineres og konsentreres. 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester. Den resulterende dietylester racemiseres deretter i samsvar med eksempel 6. A reactor (16000 L) equipped with overhanging agitation is charged with calcium acetate (254 kg), deionized water (1892.7 kg) and LIPOZYME® TL 100 I (food grade LPOLASE®, 983.7 kg). After complete mixing, (R/S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 20, 9000 kg, 85% purity analysis) was charged and the mixture was stirred for 24 h. NaOH (2068 kg of a 30% solution) is added during the reaction time to maintain the pH at 7.0. The degree of reaction is monitored by HPLC (Cis column 4.6 mm x 150 mm, detection at 200 nm) When a conversion of about 42% to 45% was reached (e.g. after about 20-251) the titrator and stirring were stopped. The organic phase is immediately separated, and the aqueous phase is washed twice with toluene (780 kg). The aqueous layer containing (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester sodium salt (formula 23) is used in subsequent transformations (Example 11) without isolation. The organic layers containing (R)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 22) are combined and concentrated. 3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester. The resulting diethyl ester is then racemized in accordance with Example 6.

EKSEMPEL 11. Framstilling av (S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 24) fra (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre natriumsalt (formel 23) EXAMPLE 11. Preparation of (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 24) from (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid sodium salt (formula 23)

En reaktor (16000 I) utstyrt med overhengende røring fylles med en final vandig løsning fra eksempel 10 (9698,6 I, inneholdende (3S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre natriumsalt (formel 23), NaCI (630 kg) og toluen (900 I). Blandingen omrøres i 2 t under reflukserende betingelser (75-85°C). Omrøringen stoppes; den organiske fase separeres umiddelbart, og den vandige fase vaskes to ganger med toluen (900 I). De organiske sjikt, som inneholder (S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 24) kombineres og konsentreres. Etylesteren (formel 24) hydrolyseres deretter i samsvar med eksempel 12. A reactor (16000 L) equipped with overhead stirring is charged with a final aqueous solution from Example 10 (9698.6 L, containing (3S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid sodium salt (Formula 23), NaCl (630 kg) and toluene (900 L). The mixture is stirred for 2 h under refluxing conditions (75-85°C). Stirring is stopped; the organic phase is immediately separated and the aqueous phase is washed twice with toluene (900 L) The organic layers containing (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 24) are combined and concentrated. The ethyl ester (formula 24) is then hydrolyzed in accordance with Example 12.

EKSEMPEL 12. Framstilling av (S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 26) fra (S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 24). EXAMPLE 12. Preparation of (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid potassium salt (formula 26) from (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (formula 24).

En reaktor (12000 I) utstyrt med overhengende omrøring fylles med (S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre etylester (formel 24, 2196 I fra eksempel 11). KOH (1795,2 kg, 45 % løsning, vekt/vekt) og H20 (693,9 kg) tilsettes til reaksjonsblandingen med kraftig omrøring. Temperaturen opprettholdes ved 25°C. Etter 4 t overføres reaksjonsblandingen til et hydrogeneringskar (eksempel 13) uten ytterligere opparbeidelse. A reactor (12000 L) equipped with overhanging stirring is charged with (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid ethyl ester (Formula 24, 2196 L from Example 11). KOH (1795.2 kg, 45% solution, w/w) and H 2 O (693.9 kg) are added to the reaction mixture with vigorous stirring. The temperature is maintained at 25°C. After 4 h, the reaction mixture is transferred to a hydrogenation vessel (Example 13) without further work-up.

EKSEMPEL 13. Framstilling av pregabalin (formel 9) fra (S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 26). EXAMPLE 13. Preparation of pregabalin (formula 9) from (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid potassium salt (formula 26).

En hydrogenator (12000 I) fylles med vann (942,1 I) og med reaksjonsblandingen fra eksempel 12, som inneholder (S)- 3-cyano-2-etoksykarbonyl-5-metyl-heksanoisk syre kaliumsalt (formel 26, 4122,9 I). En Raney nikkelsuspensjon (219,6 kg, 50 % vekt/vekt i H2O) tilsettes. Hydrogeneringen utføres under 50 psig ved 35°C. Etter 61 filtreres Raney nikkel av og det resulterende filtrat overføres til en reaktor, (16000 I) for krystallisering. Etter tilsetning av H20 (1098 I), justeres pH i løsningen til 7,0-7,5 ved anvendelse av HOAc (864,7 kg). Det resulterende presipitat filtreres og vaskes en gang med H20 (549 I) og to ganger med IPA (2586 I hver gang). Faststoffet rekrystalliseres med IPA (12296 I) og H20 (6148 I). Blandingen oppvarmes til 70°C og avkjøles deretter til 4°C. Etter 5-101 filtreres det krystallinske faststoff, vaskes med IPA (5724 L), og tørkes i vakuumovn ved 45°C i 241 for å gi pregabalin som et hvitt krystallinsk faststoff (1431 kg, 30,0 % totalt utbytte, 99,5 % renhet og 99,75 % ee). A hydrogenator (12000 L) is charged with water (942.1 L) and with the reaction mixture from Example 12, containing (S)-3-cyano-2-ethoxycarbonyl-5-methyl-hexanoic acid potassium salt (Formula 26, 4122.9 IN). A Raney nickel suspension (219.6 kg, 50% w/w in H 2 O) is added. The hydrogenation is carried out below 50 psig at 35°C. After 61, the Raney nickel is filtered off and the resulting filtrate is transferred to a reactor, (16000 L) for crystallization. After addition of H 2 O (1098 I), the pH of the solution is adjusted to 7.0-7.5 using HOAc (864.7 kg). The resulting precipitate is filtered and washed once with H 2 O (549 L) and twice with IPA (2586 L each time). The solid is recrystallized with IPA (12296 L) and H 2 O (6148 L). The mixture is heated to 70°C and then cooled to 4°C. After 5-101 the crystalline solid is filtered, washed with IPA (5724 L), and dried in a vacuum oven at 45°C for 241 to give pregabalin as a white crystalline solid (1431 kg, 30.0% overall yield, 99.5 % purity and 99.75% ee).

Det skal forståes, som anvendt i denne spesifikasjon og de medfølgende patentkrav, entallsformene så som "en", "et", og "den", "det", kan referere til et enkelt objekt eller til et flertall av objekter med mindre sammenhengen klart indikerer noe annet. Således, for eksempel, henvisning til et materiale inneholdende "en forbindelse" kan inkludere en enkelt forbindelse eller to eller flere forbindelser. Det skal forståes at beskrivelsen ovenfor er tiltenkt å være illustrerende og ikke begrensende. Mange utførelser vil være åpenbare for fagkyndige ved lesing av beskrivelsen. Derfor, rammen av oppfinnelsen skal bestemmes med henvisning til de medfølgende patentkrav og inkluderer ekvivalenter av slike utførelser. Beskrivelsene av alle artikler og referanser, inkluderende patenter, patentsøknader og publikasjoner, inkorporeres heri med henvisning i deres helhet for alle formål. It shall be understood that, as used in this specification and the accompanying claims, the singular forms such as "a", "an", and "the", "that", may refer to a single object or to a plurality of objects unless the context is clear indicates otherwise. Thus, for example, reference to a material containing "a compound" may include a single compound or two or more compounds. It should be understood that the above description is intended to be illustrative and not limiting. Many embodiments will be obvious to those skilled in the art upon reading the description. Therefore, the scope of the invention shall be determined by reference to the accompanying patent claims and include equivalents of such embodiments. The descriptions of all articles and references, including patents, patent applications and publications, are incorporated herein by reference in their entirety for all purposes.

Claims (2)

1. Framgangsmåte for framstilling av en forbindelse av formel 1, 1. Process for the preparation of a compound of formula 1, eller et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat derav, R <1> og R2 er forskjellige og er hver uavhengig valgt blant hydrogenatom, C1 -12 alkyl, C3 -12 sykloalkyl, og substituert C3 .12 sykloalkyl, karakterisert ved at framgangsmåten omfatter:(a) redusere en cyano-enhet av en forbindelse av formel 8, or a pharmaceutically acceptable complex, salt, solvate or hydrate thereof, R<1> and R2 are different and are each independently selected from hydrogen atom, C1-12 alkyl, C3-12 cycloalkyl, and substituted C3-12 cycloalkyl, characterized in that the method comprises: (a) reducing a cyano unit of a compound of formula 8, eller et salt derav for å gi forbindelsen av formel 1, eller et salt derav, og (b) valgfritt omdanne forbindelsen av formel 1 eller et salt derav til et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat derav, hvor R<1> og R2 i formel 8 er som definert i formel 1, og R <5> i formel 8 er hydrogenatom, C1 -12 alkyl, C3 .12 sykloalkyl, eller aryl-Ci^ alkyl.or a salt thereof to give the compound of formula 1, or a salt thereof, and (b) optionally converting the compound of formula 1 or a salt thereof into a pharmaceutically acceptable complex, salt, solvate or hydrate thereof, wherein R<1> and R2 in formula 8 are as defined in formula 1, and R<5> in formula 8 is hydrogen atom, C1-12 alkyl, C3-12 cycloalkyl, or aryl-C1-12 alkyl. 2. Framgangsmåte for framstilling av en forbindelse av formel 9, 2. Process for the preparation of a compound of formula 9, eller et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat derav, karakterisert ved at framgangsmåten omfatter:(a) redusere en cyano-enhet av en forbindelse av formel 16, or a pharmaceutically acceptable complex, salt, solvate or hydrate thereof, characterized in that the method comprises: (a) reducing a cyano unit of a compound of formula 16, eller et salt derav, for å gi en forbindelse av formel 9 eller et salt derav; (b) valgfritt omdanne forbindelsen av formel 9 eller et salt derav til et farmasøytisk akseptabelt kompleks, salt, solvat eller hydrat; hvor forbindelsen av formel 16 er valgfritt framstilt ved dekarboksylering av en forbindelse av formel 11, or a salt thereof, to give a compound of formula 9 or a salt thereof; (b) optionally converting the compound of formula 9 or a salt thereof into a pharmaceutically acceptable complex, salt, solvate or hydrate; wherein the compound of formula 16 is optionally prepared by decarboxylation of a compound of formula 11, eller et salt derav; og hvor R <3> i formel 11 er C1-12 alkyl, C3-12 sykloalkyl, eller aryl-Ci-6 alkyl, og R <5> i formel 16 er hydrogenatom, C1-12 alkyl, C3-12 sykloalkyl, eller aryl-Ci-6 alkyl.or a salt thereof; and where R <3> in formula 11 is C1-12 alkyl, C3-12 cycloalkyl, or aryl-Ci-6 alkyl, and R <5> in formula 16 is hydrogen atom, C1-12 alkyl, C3-12 cycloalkyl, or aryl -C 1-6 alkyl.
NO20151209A 2004-06-21 2015-09-17 Methods of Preparation of Compounds NO20151209L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58167104P 2004-06-21 2004-06-21
PCT/IB2005/001924 WO2006000904A2 (en) 2004-06-21 2005-06-09 Preparation of pregabalin and related compounds

Publications (1)

Publication Number Publication Date
NO20151209L true NO20151209L (en) 2005-12-22

Family

ID=41651199

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20151209A NO20151209L (en) 2004-06-21 2015-09-17 Methods of Preparation of Compounds

Country Status (3)

Country Link
NO (1) NO20151209L (en)
TN (1) TNSN06421A1 (en)
ZA (1) ZA200609688B (en)

Also Published As

Publication number Publication date
TNSN06421A1 (en) 2008-02-22
ZA200609688B (en) 2009-11-25

Similar Documents

Publication Publication Date Title
NO338097B1 (en) Preparation of pregabalin and related compounds.
US20070141684A1 (en) Preparation of gamma-amino acids having affinity for the alpha-2-delta protein
NO20151209L (en) Methods of Preparation of Compounds
KR100843684B1 (en) Preparation of pregabalin and related compounds
EP1687270A1 (en) Method for preparing (s)-indoline-2-carboxylic acid and (s)-indoline-2-carboxylic acid methyl ester using hydrolytic enzyme
WO2010004577A1 (en) Preparation of enantiomerically enriched gamma-nitro acid and pregabalin
MX2008008282A (en) Preparation of gamma-amino acids having affinity for the alpha-2-delta protein

Legal Events

Date Code Title Description
RE Reestablishment of rights (par. 72 patents act)