NO20111201A1 - System and method for increasing the pressure in boiling gas in an LNG fuel system - Google Patents
System and method for increasing the pressure in boiling gas in an LNG fuel system Download PDFInfo
- Publication number
- NO20111201A1 NO20111201A1 NO20111201A NO20111201A NO20111201A1 NO 20111201 A1 NO20111201 A1 NO 20111201A1 NO 20111201 A NO20111201 A NO 20111201A NO 20111201 A NO20111201 A NO 20111201A NO 20111201 A1 NO20111201 A1 NO 20111201A1
- Authority
- NO
- Norway
- Prior art keywords
- pump
- gas
- lng
- ejector
- heat exchanger
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000000446 fuel Substances 0.000 title description 6
- 238000009835 boiling Methods 0.000 title description 3
- 239000012530 fluid Substances 0.000 claims abstract description 41
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000003380 propellant Substances 0.000 claims abstract description 15
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 2
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 57
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000007788 liquid Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000009434 installation Methods 0.000 description 2
- 239000010759 marine diesel oil Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0203—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
- F02M21/0215—Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/02—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
- F02D19/021—Control of components of the fuel supply system
- F02D19/022—Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/0639—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
- F02D19/0642—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
- F02D19/0647—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0227—Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0245—High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0287—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/12—Use of propulsion power plant or units on vessels the vessels being motor-driven
- B63H21/14—Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J99/00—Subject matter not provided for in other groups of this subclass
- B63J2099/001—Burning of transported goods, e.g. fuel, boil-off or refuse
- B63J2099/003—Burning of transported goods, e.g. fuel, boil-off or refuse of cargo oil or fuel, or of boil-off gases, e.g. for propulsive purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/046—Localisation of the removal point in the liquid
- F17C2223/047—Localisation of the removal point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0107—Single phase
- F17C2225/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/035—High pressure, i.e. between 10 and 80 bars
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0114—Propulsion of the fluid with vacuum injectors, e.g. venturi
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/04—Reducing risks and environmental impact
- F17C2260/046—Enhancing energy recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
- F17C2265/034—Treating the boil-off by recovery with cooling with condensing the gas phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/037—Treating the boil-off by recovery with pressurising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/05—Regasification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/066—Fluid distribution for feeding engines for propulsion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
- Y02T70/5218—Less carbon-intensive fuels, e.g. natural gas, biofuels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Et gasstilførselssystem til kombinasjons- eller gassmotorer, omfattende minst en LNG-lastetank (1), en første pumpe (2), en kompressor (30), en kryogeniskvarmeveksler(16) og en høytrykkspumpe (10) som leverer gass til motorene. I henhold til den foreliggende oppfinnelsen omfatter systemet videre en ejektor (4) og en sugetank (6); ejektoren (4) er anordnet for å motta LNG-drivfluid fra den første pumpen, trekke kondensat fra den kryogeniske varmeveksleren (16) og slippe ut en blanding avdrivfluidet og kondensatet til sugetanken (6); og sugetanken (6) er anordnet for å levere blandingen av LNG-drivfluidet og kondensatet til høytrykkspumpen (10).A gas supply system for combination or gas engines, comprising at least one LNG cargo tank (1), a first pump (2), a compressor (30), a cryogenic heat exchanger (16) and a high pressure pump (10) supplying gas to the engines. According to the present invention, the system further comprises an ejector (4) and a suction tank (6); the ejector (4) is arranged to receive LNG propellant fluid from the first pump, draw condensate from the cryogenic heat exchanger (16) and discharge a mixture of the propellant fluid and condensate to the suction tank (6); and the suction tank (6) is arranged to deliver the mixture of the LNG propellant fluid and the condensate to the high pressure pump (10).
Description
System og fremgangsmåte for å øke trykket i avkokingsgass i et LNG-d r i vstoff sy ste m System and method for increasing the pressure in decoction gas in an LNG d r i vstoff sy ste m
Den foreliggende oppfinnelsen vedrører et system og en fremgangsmåte for å øke trykket i avkokingsgass ("boil-off gas"; BOG) i et LNG (kondensert naturgass)-drivstoffsystem, nærmere bestemt å øke trykket i avkokingsgassen med en ejektor. The present invention relates to a system and a method for increasing the pressure in boil-off gas ("boil-off gas"; BOG) in an LNG (condensed natural gas) fuel system, more specifically to increase the pressure in the boil-off gas with an ejector.
Det har vært foreslått flere fremgangsmåter for hvordan man kan drive et LNG-skip med gass istedenfor skipsdiesel eller liknende. Foreslåtte fremgangsmåter skiller mellom hovedsakelig to typer hovedmotor: Several methods have been proposed for how to operate an LNG ship with gas instead of marine diesel or similar. Proposed methods distinguish between mainly two types of main engine:
- mellomhastighetsmotorer, som krever et relativt lavt drivgasstrykk på ca. - medium-speed engines, which require a relatively low propellant gas pressure of approx.
500 kPa. 500 kPa.
- lavhastighets dieselmotorer, som krever mellom 20 000 og 30 000 kPa drivgasstrykk. - low-speed diesel engines, which require between 20,000 and 30,000 kPa propellant gas pressure.
Én slik fremgangsmåte er beskrevet i EP 1 990 272 Bl, der LNG blir pumpet fra lastetankene, varmevekslet med komprimert avkokingsgass, og deretter ytterligere komprimert til innsprøytingstrykk. Den komprimerte avkokingsgassen blir kondensert mot LNG-en og sendt tilbake til lastetankene. Når hovedmotoren går på skipsdiesel eller på lav hastighet, særlig på lastreiser, er det lite eller ingen LNG tilgjengelig for å fjerne varme som strømmer inn i I a stop p beva ri n g ssyste m et. One such method is described in EP 1 990 272 Bl, where LNG is pumped from the cargo tanks, heat exchanged with compressed decoction gas, and then further compressed to injection pressure. The compressed decoction gas is condensed against the LNG and sent back to the cargo tanks. When the main engine is running on marine diesel or at low speed, especially on cargo voyages, there is little or no LNG available to remove heat flowing into the I a stop p preservation system.
NO20082158 og NO20093562 beskriver systemer og fremgangsmåter for gasstilførsel til gass- eller kombinasjonsmotorer, der gasstilførselssystemet er integrert med et rekondenseringsanlegg for å fjerne varme som strømmer inn i I a stop p beva ri n g ssyste m et. NO20082158 and NO20093562 describe systems and methods for gas supply to gas or combination engines, where the gas supply system is integrated with a recondensation system to remove heat that flows into the I a stop p preservation system.
GB1440318A beskriver et system for et system som bruker en ejektor til å kontrollere damptrykket i LNG-lastetanker ved å pumpe LNG, fordampe den og lede den resulterende gassen som drivfluidet til en ejektor som suger fra damprommet, og dermed eliminerer behovet for kompressoroperasjoner for å vedlikeholde damptrykket. Systemet i GB1440318A er beregnet på kombinasjonskjeler brukt til hovedfremdriftsmaskineri og diskuterer ikke de tekniske problemene man støter på hvis hovedfremdriftsmaskineriet er lavhastighets dieselmotorer. Kombinasjonskjeler krever typisk et drivgasstrykk på under 200 kPa, mens en lavhastighets dieselmotor krever drivgasstrykk på mellom 20 000 og 30 000 kPa. GB1440318A describes a system for a system that uses an ejector to control vapor pressure in LNG cargo tanks by pumping LNG, vaporizing it and directing the resulting gas as the driving fluid to an ejector that sucks from the vapor space, thereby eliminating the need for compressor operations to maintain the vapor pressure. The system in GB1440318A is intended for combination boilers used for main propulsion machinery and does not discuss the technical problems encountered if the main propulsion machinery is low speed diesel engines. Combi boilers typically require a propellant gas pressure of less than 200 kPa, while a low-speed diesel engine requires propellant gas pressure of between 20,000 and 30,000 kPa.
Siden lavhastighets dieselmotorer krever høyt drivgasstrykk, blir det vanligvis anordnet en høytrykkspumpe i systemet for å gi det nødvendige gasstrykket. For å unngå pumpekavitasjoner er det viktig å sikre at høytrykkspumpen har den påkrevde NPSH ("Net Positive Suction Height", netto positiv sugehøyde) under alle driftsmoduser, og særlig ved ballastreise, der det er vanlig å ha en frittstrømmende sirkulasjon av avkokingsgassen for å unngå resirkulering gjennom avkokingsgasskompressoren for ikke å komme inn i kompressorens pumpeområde. Avkokingshastigheter er betydelig lavere ved ballastreise enn lastreise, så det kan være mest praktisk å la kompressoren være av og lede avkokingsgassen direkte til rekondenseringsanlegget ved hjelp av prinsippene for fri strøm (naturlig sirkulasjon). Særlig ved tøffe sjøforhold i kombinasjon med ballastreise viser erfaring at pumpekavitasjoner er en utfordring på kjente installasjoner som følge av utilstrekkelig NPSH. Since low-speed diesel engines require high propellant gas pressure, a high-pressure pump is usually provided in the system to provide the necessary gas pressure. In order to avoid pump cavitation, it is important to ensure that the high-pressure pump has the required NPSH (Net Positive Suction Height) during all operating modes, and especially during ballast travel, where it is common to have a free-flowing circulation of the decoction gas to avoid recirculation through the decoction gas compressor so as not to enter the compressor pumping area. Boil-off rates are significantly lower on ballast voyages than cargo voyages, so it may be most practical to leave the compressor off and direct the boil-off gas directly to the recondenser using free flow (natural circulation) principles. Especially in harsh sea conditions in combination with ballast travel, experience shows that pump cavitation is a challenge on known installations as a result of insufficient NPSH.
Denne oppfinnelsen beskriver et system og en fremgangsmåte for å sikre at høytrykkspumpen har påkrevd NPSH ("Net Positive Suction Height", netto positiv sugehøyde) under alle driftsmoduser, og særlig ved ballastreise, der det er vanlig å ha en frittstrømmende sirkulasjon av avkokingsgassen for å unngå resirkulering gjennom kompressoren. Særlig ved tøffe sjøforhold i kombinasjon med ballastreise viser erfaring at pumpekavitasjoner er en utfordring på tilsvarende installasjoner som følge av utilstrekkelig NPSH. This invention describes a system and a method for ensuring that the high pressure pump has required NPSH (Net Positive Suction Height) under all operating modes, and in particular during ballast travel, where it is common to have a free-flowing circulation of the decoction gas to avoid recirculation through the compressor. Especially in harsh sea conditions in combination with ballast travel, experience shows that pump cavitation is a challenge on similar installations as a result of insufficient NPSH.
Det er derfor et formål med den foreliggende oppfinnelsen å tilveiebringe et system og en fremgangsmåte for å sikre at høytrykkspumpen har påkrevd NPSH ("Net Positive Suction Height", netto positiv sugehøyde) under alle driftsmoduser. It is therefore an object of the present invention to provide a system and a method to ensure that the high-pressure pump has required NPSH ("Net Positive Suction Height") under all operating modes.
For å løse de ovennevnte problemene beskriver den foreliggende oppfinnelsen et gasstilførselssystem for kombinasjons- eller gassmotorer, omfattende minst én LNG-lastetank 1, en første pumpe 2, en kompressor 30, en kryogenisk varmeveksler 16 og en høytrykkspumpe 10 som leverer gass til motorene, der systemet videre omfatter en ejektor 4 og en sugetank 6; ejektoren 4 er anordnet for å motta LNG-drivfluid fra den første pumpen, trekke kondensat fra den kryogeniske varmeveksleren 16 og slippe ut en blanding av drivfluidet og kondensatet til sugetanken 6; og sugetanken 6 er anordnet for å levere blandingen av LNG-drivfluidet og kondensatet til høytrykkspumpen 10. To solve the above-mentioned problems, the present invention describes a gas supply system for combination or gas engines, comprising at least one LNG cargo tank 1, a first pump 2, a compressor 30, a cryogenic heat exchanger 16 and a high-pressure pump 10 which supplies gas to the engines, where the system further comprises an ejector 4 and a suction tank 6; the ejector 4 is arranged to receive LNG drive fluid from the first pump, draw condensate from the cryogenic heat exchanger 16 and discharge a mixture of the drive fluid and condensate to the suction tank 6; and the suction tank 6 is arranged to supply the mixture of the LNG drive fluid and the condensate to the high pressure pump 10.
Den foreliggende oppfinnelsen beskriver også en fremgangsmåte for å levere gass til kombinasjons- eller gassmotorer i et system omfattende minst én LNG-lastetank 1, en første pumpe 2, en kompressor 30, en kryogenisk varmeveksler 16 og en høytrykkspumpe 10 som leverer gass til motorene, der fremgangsmåten omfatter å tilveiebringe en sugetank (6) oppstrøms av høytrykkspumpen (10); tilveiebringe en ejektor (4) mellom den første pumpen (2) og sugetanken (6); pumpe, ved hjelp av den første pumpen (2), LNG-drivfluid til ejektoren (4); trekke, ved hjelp av LNG-drivfluid mottatt av ejektoren (4), kondensat fra den kryogeniske varmeveksleren (16); slippe ut, med ejektoren (4), en blanding av drivfluidet og kondensatet til sugetanken (6); og levere fra sugetanken (6) blandingen av LNG-drivfluidet og kondensatet til høytrykkspumpen (10). The present invention also describes a method for supplying gas to combination or gas engines in a system comprising at least one LNG cargo tank 1, a first pump 2, a compressor 30, a cryogenic heat exchanger 16 and a high-pressure pump 10 which supplies gas to the engines, wherein the method comprises providing a suction tank (6) upstream of the high pressure pump (10); providing an ejector (4) between the first pump (2) and the suction tank (6); pump, by means of the first pump (2), LNG drive fluid to the ejector (4); drawing, by means of LNG drive fluid received by the ejector (4), condensate from the cryogenic heat exchanger (16); discharging, with the ejector (4), a mixture of the driving fluid and the condensate to the suction tank (6); and deliver from the suction tank (6) the mixture of the LNG drive fluid and the condensate to the high-pressure pump (10).
Andre gunstige utførelsesformer av den foreliggende oppfinnelsen skal forstås av de uselvstendige patentkravene og den detaljerte beskrivelsen i det følgende, med henvisning til de endrede figurene; der: Fig. 1 er en skjematisk oversikt over en rekondenseringsenhet av kjent teknikk; Fig. 2 er en skjematisk oversikt over én utførelsesform av et system i henhold til den foreliggende oppfinnelsen; og Fig. 3 er en skjematisk oversikt over en annen utførelsesform av et system i henhold til den foreliggende oppfinnelsen. Figur 1 illustrerer et typisk kjent lastoppbevaringssystem i et LNG-skip med minst én lastetank 1. Lasteledninger er ikke vist. Som følge av naturlig varmelekkasje inn i lastoppbevaringssystemet fordamper en viss mengde av lasten, kjent som avkokingsgass (boil-off gas). Avkokingsgassen strømmer via ledning 14 til en avkokingsgasskompressor 30. Avkokingsgasskompressoren 30 kan være av enkelttrinns- eller flertrinnstypen. Komprimert avkokingsgass forlater avkokingsgasskompressoren via ledning 15 og går inn i kjøler 31. Valg Other advantageous embodiments of the present invention are to be understood from the independent patent claims and the detailed description which follows, with reference to the modified figures; where: Fig. 1 is a schematic overview of a prior art recondensation unit; Fig. 2 is a schematic overview of one embodiment of a system according to the present invention; and Fig. 3 is a schematic overview of another embodiment of a system according to the present invention. Figure 1 illustrates a typical known cargo storage system in an LNG ship with at least one cargo tank 1. Cargo lines are not shown. As a result of natural heat leakage into the cargo storage system, a certain amount of the cargo evaporates, known as boil-off gas. The decoction gas flows via line 14 to a decoction gas compressor 30. The decoction gas compressor 30 can be of the single-stage or multi-stage type. Compressed decoction gas leaves the decoction gas compressor via line 15 and enters cooler 31. Selection
av kjølemedium kan avhenge av kompressorens utløpstemperatur. Ulike skisser er kjent for fagpersonen, og det blir ikke ytterligere beskrevet her. Avkjølt og komprimert avkokingsgass forlater avkokingsgasskompressoren etter kjøler 31 via ledning 32 og går inn i en kryogenisk varmeveksler 16. Den kryogeniske varmeveksleren er typisk en flerstrømsveksler der strømmene er koblet til en sløyfe med sirkulerende kuldemedium. Dette blir ikke ytterligere illustrert her, siden slike systemer er kjent for fagpersonen. of refrigerant may depend on the compressor discharge temperature. Various sketches are known to the person skilled in the art and will not be further described here. Cooled and compressed decoction gas leaves the decoction gas compressor after cooler 31 via line 32 and enters a cryogenic heat exchanger 16. The cryogenic heat exchanger is typically a multi-flow exchanger where the flows are connected to a loop of circulating refrigerant. This is not further illustrated here, since such systems are known to the person skilled in the art.
Én driftsmodus for LNG-skipet er at fremdriftsmaskineriet og hjelpemotorer (ikke vist) går på skipsdieselolje eller tilsvarende. Denne modusen illustrerer teknikkens nåværende stand og er illustrert i figur 1. I denne modusen forlater kondensatet den kryogeniske varmeveksleren 16 via ledning 17 til separator 18. Ventil 25 er helt åpen, og pumpe 8 i kombinasjon med ventil 34 styrer væskenivået i separator 18 ved kjente styringsprinsipper, og væsken blir pumpet tilbake til den minst ene lastetanken 1 via ledning 33. Hvis det kommer ikke-kondenserbare gasser inn i separator 18, blir de sluppet ut via ledning 21 til et sikkert sted. One operating mode for the LNG ship is for the propulsion machinery and auxiliary engines (not shown) to run on marine diesel oil or equivalent. This mode illustrates the current state of the art and is illustrated in Figure 1. In this mode, the condensate leaves the cryogenic heat exchanger 16 via line 17 to separator 18. Valve 25 is completely open, and pump 8 in combination with valve 34 controls the liquid level in separator 18 at known control principles, and the liquid is pumped back to the at least one cargo tank 1 via line 33. If non-condensable gases enter separator 18, they are discharged via line 21 to a safe location.
Kondensat skal forstås som kondensert avkokingsgass, der avkokingsgass er damp som strømmer ut fra lasten som følge av en konstant varmelekkasje inn i lastetankene. Condensate is to be understood as condensed boil-off gas, where boil-off gas is steam that flows out from the cargo as a result of a constant heat leak into the cargo tanks.
Fig. 2 er en skjematisk oversikt over et system i henhold til den foreliggende oppfinnelsen der LNG-lastesystemet i fig. 1 er integrert med et tilførselssystem for LNG-drivgass, der tilførsel ssyste met for LNG-drivgass blir tilveiebrakt med en sugetank 6, en ejektor 4, en høytrykkspumpe 10 og ytterligere ventiler 12, 19, 26, 39, 40. Pumpen 2, heretter omtalt som en drivflu id pumpe, pumper LNG via ledning 3 inn i ejektoren 4, der LNG som drivfluid trekker kondensatet via ventil 19 inn i ejektoren 4, hvoretter ejektoren 4 slipper ut en blanding av drivfluid (LNG) og kondensat ved et trykk over kondenseringstrykket i varmeveksleren 16 og sendes via ledning 5 til sugetank 6. Siden trykket i 5 er over kondenseringstrykket i varmeveksleren 16, kan sugetanken 6 plasseres høyere oppe enn separatoren 18, slik at det tilveiebringes en økt trykkhøyde mellom væskeoverflaten og innløpsflensen på høytrykkspumpen 10, hvorved det sikres at det opprettholdes en tilstrekkelig NPSH til enhver tid for høytrykkspumpen 10. Fig. 2 is a schematic overview of a system according to the present invention where the LNG loading system in fig. 1 is integrated with a supply system for LNG propellant gas, where the supply system for LNG propellant gas is provided with a suction tank 6, an ejector 4, a high-pressure pump 10 and further valves 12, 19, 26, 39, 40. The pump 2, hereafter referred to as a drive fluid pump, pumps LNG via line 3 into the ejector 4, where LNG as drive fluid draws the condensate via valve 19 into the ejector 4, after which the ejector 4 releases a mixture of drive fluid (LNG) and condensate at a pressure above the condensing pressure in the heat exchanger 16 and sent via line 5 to the suction tank 6. Since the pressure in 5 is above the condensation pressure in the heat exchanger 16, the suction tank 6 can be placed higher up than the separator 18, so that an increased pressure height is provided between the liquid surface and the inlet flange of the high-pressure pump 10, whereby the ensure that a sufficient NPSH is maintained at all times for the high-pressure pump 10.
Denne anordningen eliminerer dermed drift av pumpe 8, og problemet med pumpekavitasjoner blir eliminert. This device thus eliminates operation of pump 8, and the problem of pump cavitation is eliminated.
Høytrykkspumpen 10 suger så fra sugetank 6 via ledning 7 og løfter væsken i trykk (væsken er blandingen av LNG og kondensat) og komprimerer den til typisk 30 000 kPa. Væske som strømmer fra høytrykkspumpen 10, går så typisk inn i en serie med varmevekslere for å bli varmet opp og overført til fremd riftsmaski ne riet og/eller hjelpemotorene. Dette prinsippet er godt dokumentert i f.eks. NO20093562 og utelates følgelig fra denne beskrivelsen. The high-pressure pump 10 then sucks from suction tank 6 via line 7 and lifts the liquid under pressure (the liquid is the mixture of LNG and condensate) and compresses it to typically 30,000 kPa. Liquid flowing from the high-pressure pump 10 then typically enters a series of heat exchangers to be heated and transferred to the propulsion machinery and/or the auxiliary engines. This principle is well documented in e.g. NO20093562 and is consequently omitted from this description.
I den eksemplariske driftsmodusen for LNG-skipet beskrevet med henvisning til fig. 1 går fremdriftsmaskineriet og hjelpemotorene på skipsdieselolje eller tilsvarende. Når den samme driftsmodusen anvendes på systemet i figur 2, gjelder det følgende: en treveisventil 26 er åpen mot separatoren 18. Væske strømmer fra separator 18 via ledning 20, gjennom ventil 25, løftes deretter i trykk av pumpe 8, så via ledning 33 tilbake til den minst ene lastetanken 1. In the exemplary operating mode of the LNG ship described with reference to FIG. 1, the propulsion machinery and auxiliary engines run on marine diesel oil or equivalent. When the same operating mode is applied to the system in Figure 2, the following applies: a three-way valve 26 is open to the separator 18. Liquid flows from the separator 18 via line 20, through valve 25, then lifted in pressure by pump 8, then via line 33 back to at least one cargo tank 1.
Igjen med henvisning til fig. 2, i henhold til en annen eksemplarisk utførelsesform av den foreliggende oppfinnelsen, har sugetanken 6, siden hastigheten på tilførselen av kondensat eller LNG kan endre seg som følge av driftsproblemer, typisk en lang nok retensjonstid til å sikre stabil brennverdi av den kombinerte blandingen av LNG og kondensert avkokingsgass. Dette innebærer at høytrykkspumpen 10 kan mate gassmotoren en stund uten at drivfluid pumpen 2 er i drift. Again with reference to fig. 2, according to another exemplary embodiment of the present invention, the suction tank 6, since the rate of supply of condensate or LNG may change due to operational problems, typically has a long enough retention time to ensure stable calorific value of the combined mixture of LNG and condensed decoction gas. This means that the high-pressure pump 10 can feed the gas engine for a while without the drive fluid pump 2 being in operation.
Avkokingshastigheten ved lastreise avhenger av flere faktorer, som varmeisolerende tykkelse, omgivelsestemperaturer, lastsammensetning og sjøgang. For situasjoner der avkokingshastigheten er høyere enn drivstoff behovet, blir overskytende kondensat sendt tilbake til lastetank 1. Denne modusen er beskrevet i NO20093562. For moduser der drivstoffbehovet er høyere enn avkokingshastigheten, tilføres ekstra drivstoff fra lastetanken via drivfluid pumpe 2 gjennom ledning 3 til ejektor 4. Kondensatet strømmer enten via ledning 20 eller 27 til ejektor 4. Mengden drivfluid tilført via ledning 3 balanseres for å sikre at det resulterende fluidet sluppet ut fra ejektoren 4 har tilstrekkelig trykkhøyde til å komme inn i sugetank 6. Høytrykkspumpe 10 suger fra denne tanken via ledning 7, mens eventuell overskytende væske som går inn i 6, strømmer via ledning 33 tilbake til lastetank 1. The boiling rate during cargo travel depends on several factors, such as thermal insulation thickness, ambient temperatures, cargo composition and sea conditions. For situations where the boil-off rate is higher than the fuel requirement, excess condensate is sent back to loading tank 1. This mode is described in NO20093562. For modes where the fuel demand is higher than the boil-off rate, additional fuel is supplied from the cargo tank via drive fluid pump 2 through line 3 to ejector 4. The condensate flows either via line 20 or 27 to ejector 4. The amount of drive fluid supplied via line 3 is balanced to ensure that the resulting the fluid released from the ejector 4 has sufficient pressure to enter suction tank 6. High-pressure pump 10 sucks from this tank via line 7, while any excess liquid that enters 6 flows via line 33 back to loading tank 1.
Ved ballastreise er mengden avkokingsgass betydelig mindre enn ved lastreise, og for ikke å kaste bort energi gjennom resirkulering av en del av avkokingsgassen gjennom avkokingsgasskompressoren 30 er det lagt til rette for fri strøm av avkokingsgass ved å åpne resirkuleringsventilen 37 helt, slik at avkokingsgassen kan strømme fritt fra den minst ene lastetanken 1 til den kryogeniske varmeveksleren 16. During ballast travel, the quantity of decoction gas is significantly smaller than during cargo travel, and in order not to waste energy through recycling part of the decoction gas through the decoction gas compressor 30, provision has been made for the free flow of decoction gas by opening the recirculation valve 37 completely, so that the decoction gas can flow freely from the at least one cargo tank 1 to the cryogenic heat exchanger 16.
Fri strøm er ikke lett å sette i gang, og dens veksthastighet er bestemt av kondenseringshastigheten til enhver tid i den kryogeniske varmeveksleren 16. Allmenn erfaring tilsier at fri strøm kan behøve flere timer på å nå påkrevd strømningshastighet. Free flow is not easy to initiate and its rate of growth is determined by the rate of condensation at any given time in the cryogenic heat exchanger 16. Common experience suggests that free flow may take several hours to reach the required flow rate.
Én mulig fremgangsmåte for å sette i gang den frie strømmen ville være å åpne ventil 22 og la dampen fra tanken strømme gjennom systemet og så til et oksideringsmiddel eller til en luftemast. Dette er ikke noen god løsning, siden både oksideringsmiddel og luftemast innebærer utslipp av drivhusgasser til atmosfæren. One possible method of initiating the free flow would be to open valve 22 and allow the steam from the tank to flow through the system and then to an oxidizer or to an air tower. This is not a good solution, since both the oxidizer and the air mast involve the release of greenhouse gases into the atmosphere.
I henhold til en eksemplarisk utførelsesform av den foreliggende oppfinnelsen settes den frie strømmen i gang ved å pumpe LNG med drivfluidpumpe 2 og sende den via ledning 3 til ejektoren 4 som drivfluidet. Ejektoren 4 genererer en innsuging via ledningene 27, 17 eller via ledning 20 for å motta innløpsfluid fra henholdsvis separator 18 eller kuldeboksen 16. I begge tilfeller er ventil 25 lukket. According to an exemplary embodiment of the present invention, the free flow is started by pumping LNG with drive fluid pump 2 and sending it via line 3 to the ejector 4 as the drive fluid. The ejector 4 generates a suction via lines 27, 17 or via line 20 to receive inlet fluid from the separator 18 or the cold box 16 respectively. In both cases, valve 25 is closed.
Separatoren 18 brukes typisk når det er store mengder ikke-kondenserbare gasser (nitrogen) til stede som må luftes ut fra kondensatet. Strømningslinjen fra den kryogeniske varmeveksleren 16 vil så være på ledning 17 via treveisventilen 26, nå åpen til separator 18. Kondensat blir trukket fra separator 18 via ledning 20 til ejektoren 4. Ventil 19 regulerer strømmen på grunnlag av kjente prinsipper. Før og under igangsetting blir kontrollalgoritmen for nivåregulering av 18 forbikoblet. The separator 18 is typically used when there are large quantities of non-condensable gases (nitrogen) present which must be vented from the condensate. The flow line from the cryogenic heat exchanger 16 will then be on line 17 via the three-way valve 26, now open to separator 18. Condensate is drawn from separator 18 via line 20 to the ejector 4. Valve 19 regulates the flow on the basis of known principles. Before and during start-up, the control algorithm for level regulation of 18 is bypassed.
Forbikobling av separatoren er en typisk løsning når mengden nitrogen i avkokingsgassen er lav, slik at fullstendig kondensering oppnås. Ventil 26 åpner seg nå til ledning 27 og leder kondensat fra den kryogeniske varmeveksleren 16 via ledning 17, 27 og 20 til ejektoren 4. Strømmen kontrolleres av ventil 19. Forbikobling av separatoren er en foretrukket igangsettingsmodus. Bypassing the separator is a typical solution when the amount of nitrogen in the boil-off gas is low, so that complete condensation is achieved. Valve 26 now opens to line 27 and directs condensate from the cryogenic heat exchanger 16 via lines 17, 27 and 20 to the ejector 4. The flow is controlled by valve 19. Bypassing the separator is a preferred start-up mode.
Når systemet under igangsetting ikke har nådd tilstrekkelig lave temperaturer, vil det forekomme en viss grad av koking. Denne dampen blir resirkulert via ledning 11 tilbake til innløpssiden på avkokingsgasskompressoren 30. When the system has not reached sufficiently low temperatures during start-up, a certain degree of boiling will occur. This steam is recycled via line 11 back to the inlet side of the decoction gas compressor 30.
En annen alternativ utførelsesform av den foreliggende oppfinnelsen beskrives med henvisning til figur 3. Ved lastreise er det fra tid til annen ønskelig å bruke LNG pumpet fra lastetanken 1 istedenfor avkokingsgass som drivstoff, f.eks. hvis LNG-en har en brennverdi som er høyere enn akseptable verdier for rørledningsnettet på mottakssiden, som på et landanlegg. Det er vanlig å injisere nitrogen i den fordampede LNG-en på mottakssiden for å redusere brennverdien. For å minimere mengden påkrevd injisert nitrogen på landsiden er det dermed ønskelig å resirkulere så mye som mulig av det fordampede nitrogenet tilbake til den minst ene lastetanken 1. Den installerte rekondenseringsenheten er dessuten ikke nødvendigvis i stand til å kondensere avkokingsgassen helt, så det er ikke uvanlig at en viss mengde nitrogen må slippes ut via ledning 21. Det er også et uønsket metantap forbundet med nitrogenutslippet via ledning 21. Another alternative embodiment of the present invention is described with reference to Figure 3. When traveling with cargo, it is from time to time desirable to use LNG pumped from the cargo tank 1 instead of decoction gas as fuel, e.g. if the LNG has a calorific value that is higher than acceptable values for the pipeline network on the receiving side, such as at an onshore plant. It is common to inject nitrogen into the vaporized LNG on the receiving side to reduce the calorific value. In order to minimize the amount of required injected nitrogen on the shore side, it is thus desirable to recycle as much as possible of the evaporated nitrogen back to at least one cargo tank 1. Furthermore, the installed recondensation unit is not necessarily able to condense the boil-off gas completely, so it is not unusual that a certain amount of nitrogen must be released via line 21. There is also an unwanted methane loss associated with the nitrogen release via line 21.
For å fange, resirkulere og utnytte deler av nitrogen-/metantapene sluppet ut i 21, er det i systemet i figur 2 videre tilveiebrakt en ledning 49 med en reguleringsventil 50, en andre ejektor 46, og en treveisventil 47. Alternativt kan funksjonaliteten til treveisventilen 47 tilveiebringes med andre midler, som to vanlige ventiler. Drivfluid for den andre ejektoren 46 tilføres av drivfluidpumpen 2 via ledning 3 gjennom ventil 47, så via ledning 48 til ejektoren 46. Ikke-kondenserte gasser separert i 18 strømmer via ledning 21, ventil 22 er lukket, og gassene strømmer via ledning 49 til ejektor 46. Ventil 50 sørger for riktig trykk i separator 18. Den resulterende blandingen av drivfluid (LNG) og gass fra ledning 49 slippes ut fra ejektoren via ledning 45 og kommer inn i separator 6. Gasser (eventuelle) separert i separator 6 strømmer via ledning 51 og blander seg med den kondenserte avkokingsgassen i strøm 33 før de vender tilbake til den minst ene lastetanken 1. In order to capture, recycle and utilize parts of the nitrogen/methane losses discharged in 21, in the system in figure 2 a line 49 is also provided with a control valve 50, a second ejector 46, and a three-way valve 47. Alternatively, the functionality of the three-way valve can 47 is provided by other means, such as two common valves. Drive fluid for the second ejector 46 is supplied by the drive fluid pump 2 via line 3 through valve 47, then via line 48 to the ejector 46. Non-condensed gases separated in 18 flow via line 21, valve 22 is closed, and the gases flow via line 49 to the ejector 46. Valve 50 ensures the correct pressure in separator 18. The resulting mixture of propellant fluid (LNG) and gas from line 49 is discharged from the ejector via line 45 and enters separator 6. Gases (if any) separated in separator 6 flow via line 51 and mixes with the condensed decoction gas in stream 33 before returning to the at least one loading tank 1.
Selv om oppfinnelsen har blitt illustrert og beskrevet i detalj i tegningene og i den foregående beskrivelsen, skal disse tegningene og denne beskrivelsen ses på som illustrerende eller eksemplariske og ikke begrensende, og de er ikke ment å begrense oppfinnelsen til de beskrevne utførelsesformene. Bare det at visse trekk nevnes i gjensidig forskjellige uselvstendige patentkrav, betyr ikke at en kombinasjon av disse trekkene ikke med fordel kan brukes. Ethvert henvisningstegn i kravene skal ikke tolkes som en begrensning i omfanget av oppfinnelsen. Although the invention has been illustrated and described in detail in the drawings and in the foregoing description, these drawings and this description are to be regarded as illustrative or exemplary and not limiting, and they are not intended to limit the invention to the described embodiments. The mere fact that certain features are mentioned in mutually different non-independent patent claims does not mean that a combination of these features cannot be advantageously used. Any reference sign in the claims shall not be interpreted as a limitation of the scope of the invention.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20111201A NO335213B1 (en) | 2011-09-02 | 2011-09-02 | System and method for increasing the pressure in boiling gas in an LNG fuel system |
PCT/NO2012/000050 WO2013032340A1 (en) | 2011-09-02 | 2012-08-28 | System and method for boosting bog in a lng fuel system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20111201A NO335213B1 (en) | 2011-09-02 | 2011-09-02 | System and method for increasing the pressure in boiling gas in an LNG fuel system |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20111201A1 true NO20111201A1 (en) | 2013-03-04 |
NO335213B1 NO335213B1 (en) | 2014-10-20 |
Family
ID=47010686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20111201A NO335213B1 (en) | 2011-09-02 | 2011-09-02 | System and method for increasing the pressure in boiling gas in an LNG fuel system |
Country Status (2)
Country | Link |
---|---|
NO (1) | NO335213B1 (en) |
WO (1) | WO2013032340A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3689733A4 (en) * | 2017-09-26 | 2021-05-05 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | System for circulating air through double pipes for supplying gas and air circulation method using same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO338906B1 (en) * | 2014-12-23 | 2016-10-31 | Rolls Royce Marine As | System and method for conditioning LNG in fuel system |
JP6423297B2 (en) * | 2015-03-20 | 2018-11-14 | 千代田化工建設株式会社 | BOG processing equipment |
GB2538096A (en) * | 2015-05-07 | 2016-11-09 | Highview Entpr Ltd | Systems and methods for controlling pressure in a cryogenic energy storage system |
CN111712619A (en) * | 2018-01-12 | 2020-09-25 | 诺沃皮尼奥内技术股份有限公司 | Thermodynamic system comprising a fluid and method for reducing the pressure therein |
JP2018135091A (en) * | 2018-04-05 | 2018-08-30 | 三井E&S造船株式会社 | Fuel gas supply system for liquefied gas carrier |
FI128864B (en) * | 2018-09-26 | 2021-01-29 | Teknologian Tutkimuskeskus Vtt Oy | Cryogenic fluid management |
DE102019217200A1 (en) * | 2019-05-26 | 2020-11-26 | Robert Bosch Gmbh | Method for operating a fuel system, prefeed pump and fuel system |
FR3116507A1 (en) * | 2020-11-24 | 2022-05-27 | Gaztransport Et Technigaz | Gas supply system for at least one gas-consuming appliance equipping a ship |
RU2770964C1 (en) * | 2021-06-25 | 2022-04-25 | федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» | Method for utilization of stripping gas from a liquefied natural gas (lng) tank |
WO2023172074A1 (en) * | 2022-03-08 | 2023-09-14 | 한국조선해양 주식회사 | Gas treatment system and ship including same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3733838A (en) * | 1971-12-01 | 1973-05-22 | Chicago Bridge & Iron Co | System for reliquefying boil-off vapor from liquefied gas |
GB1440318A (en) | 1972-12-08 | 1976-06-23 | Conch Int Methane Ltd | Liquefied gas tankers |
JP2004076825A (en) * | 2002-08-13 | 2004-03-11 | Nippon Gas Kaihatsu Kk | Liquefied gas treatment device |
KR100835090B1 (en) | 2007-05-08 | 2008-06-03 | 대우조선해양 주식회사 | System and method for supplying fuel gas of lng carrier |
NO330187B1 (en) * | 2008-05-08 | 2011-03-07 | Hamworthy Gas Systems As | Gas supply system for gas engines |
NO332739B1 (en) | 2009-12-21 | 2012-12-27 | Hamworthy Oil & Gas Systems As | Alternative fuel or gas engine system and decoder gas condensation |
-
2011
- 2011-09-02 NO NO20111201A patent/NO335213B1/en not_active IP Right Cessation
-
2012
- 2012-08-28 WO PCT/NO2012/000050 patent/WO2013032340A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3689733A4 (en) * | 2017-09-26 | 2021-05-05 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | System for circulating air through double pipes for supplying gas and air circulation method using same |
US12018791B2 (en) | 2017-09-26 | 2024-06-25 | Hanwha Ocean Co., Ltd. | System for circulating air through double pipes for supplying gas and air circulation method using same |
Also Published As
Publication number | Publication date |
---|---|
NO335213B1 (en) | 2014-10-20 |
WO2013032340A1 (en) | 2013-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO20111201A1 (en) | System and method for increasing the pressure in boiling gas in an LNG fuel system | |
US10584830B2 (en) | Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel | |
DK178668B1 (en) | A fuel gas supply system for an internal combustion engine | |
US9206776B2 (en) | Fuel feeding system and method of operating a fuel feeding system | |
CN102084114B (en) | Gas supply systems for gas engines | |
KR101758993B1 (en) | Treatment system of liquefied natural gas | |
JP6689997B2 (en) | Vessel equipped with gas revaporization system | |
KR101634850B1 (en) | Treatment system of liquefied gas | |
KR102189278B1 (en) | Treatment system of gas and ship having the same | |
KR101280185B1 (en) | Fuel gas supply system of the direct heat exchange form using boiler steam | |
US20190032852A1 (en) | Ship including gas re-vaporizing system | |
KR102150153B1 (en) | Gas treatment system and ship having the same | |
KR102286698B1 (en) | Treatment system of gas and ship having the same | |
KR101761981B1 (en) | A Treatment System Of Liquefied Gas | |
KR20180041923A (en) | Treatment system of gas and ship having the same | |
KR101903763B1 (en) | System for supplying fuel gas in ships | |
KR102296310B1 (en) | Treatment system of gas and ship having the same | |
KR102364831B1 (en) | Treatment system of gas and ship having the same | |
KR101549745B1 (en) | A Treatment System of Liquefied Gas | |
KR102335086B1 (en) | liquefied gas treatment system and ship having the same | |
KR20180051946A (en) | Treatment system of gas and ship having the same | |
KR102335074B1 (en) | liquefied gas treatment system and ship having the same | |
KR102333665B1 (en) | liquefied gas treatment system and ship having the same | |
KR20180071574A (en) | Treatment system of gas and ship having the same | |
KR20180103372A (en) | Treatment system of gas and ship having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: WAERTSILAE OIL & GAS SYSTEMS AS, NO |
|
MM1K | Lapsed by not paying the annual fees |