NO20012036L - Fremgangsmåter for å anvende ko-regulerte gensett for å forsterke deteksjon og klassifikasjon av genekspresjonsmönstre - Google Patents
Fremgangsmåter for å anvende ko-regulerte gensett for å forsterke deteksjon og klassifikasjon av genekspresjonsmönstreInfo
- Publication number
- NO20012036L NO20012036L NO20012036A NO20012036A NO20012036L NO 20012036 L NO20012036 L NO 20012036L NO 20012036 A NO20012036 A NO 20012036A NO 20012036 A NO20012036 A NO 20012036A NO 20012036 L NO20012036 L NO 20012036L
- Authority
- NO
- Norway
- Prior art keywords
- methods
- biological
- genes
- expression
- biological response
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
- G16B25/10—Gene or protein expression profiling; Expression-ratio estimation or normalisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/30—Unsupervised data analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Databases & Information Systems (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Public Health (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Bioethics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
Abstract
Den foreliggende oppfinnelse tilveiebringer metoder for forsterket deteksjon av biologiske responsmønstre. l en utførelsesform av oppfinnelsen grupperes gener til basisgensett i samsvar med ko-reguleringen av deres ekspresjon. Ekspresjon av individuelle gener innenfor et gensett indikeres med en enkelt genekspresjonsverdi for gensettet ved hjelp av en projeksjonsprosess. Ekspresjonsverdiene av gensett, snarere enn ekspresjonen av enkeltgener, anvender så som basis for sammenligning og deteksjon av biologisk respons med meget forsterket sensitivitet. I en ytterligere utførelsesform av oppfinnelsen grupperes biologiske responser i samsvar med similariteten av deres biologiske profil. Metodene ifølge oppfinnelsen har mange nyttige anvendelser, spesielt innenfor områdene med legemiddelutvikling og legemiddeloppdagelse. F.eks. kan metodene ifølge oppfinnelsen anvendes for å sammenligne biologiske responser med meget forsterket sensitivitet. De biologiske responser som kan sammenlignes ved hjelp av disse metoder inkluderer responser til enkle perturbasjoner, som f.eks. en biologisk respons til en mutasjon eller temperaturendring, såvel som graderte perturbasjoner som f.eks. titrasjon med et spesielt legemiddel. Metodene er også nyttige for å identifisere cellulære bestanddeler, særlig gener, assosiert med en spesiell type av biologisk respons. Videre kan metodene også anvendes for å identifisere perturbasjoner, som f.eks. nye legemidler eller mutasjoner, som påvirker ett eller flere spesielle gensett. Metodene kan ytterligere anvendes for å fjerne forsøksartefakter i biologiske responsdata.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/179,569 US6203987B1 (en) | 1998-10-27 | 1998-10-27 | Methods for using co-regulated genesets to enhance detection and classification of gene expression patterns |
US09/220,275 US6950752B1 (en) | 1998-10-27 | 1998-12-23 | Methods for removing artifact from biological profiles |
PCT/US1999/025025 WO2000024936A1 (en) | 1998-10-27 | 1999-10-27 | Methods for using co-regulated genesets to enhance detection and classification of gene expression patterns |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20012036D0 NO20012036D0 (no) | 2001-04-25 |
NO20012036L true NO20012036L (no) | 2001-06-25 |
Family
ID=26875445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20012036A NO20012036L (no) | 1998-10-27 | 2001-04-25 | Fremgangsmåter for å anvende ko-regulerte gensett for å forsterke deteksjon og klassifikasjon av genekspresjonsmönstre |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1124992A4 (no) |
JP (1) | JP2002528095A (no) |
KR (1) | KR20010081098A (no) |
AU (1) | AU773456B2 (no) |
BR (1) | BR9914913A (no) |
CA (1) | CA2348837A1 (no) |
HU (1) | HUP0104050A2 (no) |
IL (1) | IL142840A0 (no) |
IS (1) | IS5929A (no) |
NO (1) | NO20012036L (no) |
PL (1) | PL347495A1 (no) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9183349B2 (en) | 2005-12-16 | 2015-11-10 | Nextbio | Sequence-centric scientific information management |
WO2007075488A2 (en) | 2005-12-16 | 2007-07-05 | Nextbio | System and method for scientific information knowledge management |
WO2009111581A1 (en) | 2008-03-04 | 2009-09-11 | Nextbio | Categorization and filtering of scientific data |
JP2012514994A (ja) * | 2009-01-19 | 2012-07-05 | システミック・スコットランド・リミテッド | 非コードrna発現アッセイを用いた方法 |
JP5133368B2 (ja) * | 2010-05-30 | 2013-01-30 | 株式会社 ワールドフュージョン | 発現データ予測システム |
WO2015198620A1 (ja) * | 2014-06-23 | 2015-12-30 | オリンパス株式会社 | 組織地図作成方法 |
CN111507649B (zh) * | 2020-06-30 | 2020-11-27 | 上海竞动科技有限公司 | 一种基于区块链的金融大数据风控平台 |
CN117933579B (zh) * | 2024-03-25 | 2024-06-25 | 中国农业科学院草原研究所 | 一种高效人工草地综合管理方法 |
-
1999
- 1999-10-27 CA CA002348837A patent/CA2348837A1/en not_active Abandoned
- 1999-10-27 PL PL99347495A patent/PL347495A1/xx unknown
- 1999-10-27 JP JP2000578488A patent/JP2002528095A/ja active Pending
- 1999-10-27 AU AU14517/00A patent/AU773456B2/en not_active Ceased
- 1999-10-27 HU HU0104050A patent/HUP0104050A2/hu unknown
- 1999-10-27 EP EP99971047A patent/EP1124992A4/en not_active Withdrawn
- 1999-10-27 IL IL14284099A patent/IL142840A0/xx unknown
- 1999-10-27 BR BR9914913-3A patent/BR9914913A/pt not_active Application Discontinuation
- 1999-10-27 KR KR1020017005252A patent/KR20010081098A/ko not_active Application Discontinuation
-
2001
- 2001-04-25 NO NO20012036A patent/NO20012036L/no not_active Application Discontinuation
- 2001-04-27 IS IS5929A patent/IS5929A/is unknown
Also Published As
Publication number | Publication date |
---|---|
HUP0104050A2 (hu) | 2002-03-28 |
AU1451700A (en) | 2000-05-15 |
PL347495A1 (en) | 2002-04-08 |
CA2348837A1 (en) | 2000-05-04 |
AU773456B2 (en) | 2004-05-27 |
BR9914913A (pt) | 2001-10-16 |
KR20010081098A (ko) | 2001-08-27 |
EP1124992A1 (en) | 2001-08-22 |
EP1124992A4 (en) | 2006-09-06 |
IL142840A0 (en) | 2002-03-10 |
NO20012036D0 (no) | 2001-04-25 |
IS5929A (is) | 2001-04-27 |
JP2002528095A (ja) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ge et al. | Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae | |
Han et al. | Evidence for dynamically organized modularity in the yeast protein–protein interaction network | |
Washietl et al. | Fast and reliable prediction of noncoding RNAs | |
Zou et al. | Supersecondary structure prediction using Chou's pseudo amino acid composition | |
Rustici et al. | Periodic gene expression program of the fission yeast cell cycle | |
Pagel et al. | A domain interaction map based on phylogenetic profiling | |
Cresswell et al. | TADCompare: an R package for differential and temporal analysis of topologically associated domains | |
Zhong et al. | HomeoDB: a database of homeobox gene diversity | |
Lin et al. | Computational methods for analyzing and modeling genome structure and organization | |
Zhang et al. | Searching genomes for noncoding RNA using FastR | |
Madaoui et al. | Coevolution at protein complex interfaces can be detected by the complementarity trace with important impact for predictive docking | |
Belenko et al. | Intrusion detection for Internet of Things applying metagenome fast analysis | |
Barshai et al. | Identifying regulatory elements via deep learning | |
NO20012036L (no) | Fremgangsmåter for å anvende ko-regulerte gensett for å forsterke deteksjon og klassifikasjon av genekspresjonsmönstre | |
Tripathi et al. | Minimal frustration underlies the usefulness of incomplete regulatory network models in biology | |
Adsera et al. | Integrative analysis of 10,000 epigenomic maps across 800 samples for regulatory genomics and disease dissection | |
Arango-Argoty et al. | MetaMLP: a fast word embedding based classifier to profile target gene databases in metagenomic samples | |
Wang et al. | Prediction of hot spots in protein interfaces using extreme learning machines with the information of spatial neighbour residues | |
Huang et al. | Defining and predicting structurally conserved regions in protein superfamilies | |
Bradford et al. | GO‐At: In silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data | |
de Almeida et al. | DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of enhancers | |
Stadler et al. | asteRIa enables robust interaction modeling between chromatin modifications and epigenetic readers | |
Fröhlich | Including network knowledge into Cox regression models for biomarker signature discovery | |
Zhao et al. | Establishing the phylogeny of Prochlorococcus with a new alignment‐free method | |
Krishnadev et al. | A graph spectral analysis of the structural similarity network of protein chains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FC2A | Withdrawal, rejection or dismissal of laid open patent application |