NO20011620L - Method and apparatus for monitoring chemical reactions - Google Patents

Method and apparatus for monitoring chemical reactions Download PDF

Info

Publication number
NO20011620L
NO20011620L NO20011620A NO20011620A NO20011620L NO 20011620 L NO20011620 L NO 20011620L NO 20011620 A NO20011620 A NO 20011620A NO 20011620 A NO20011620 A NO 20011620A NO 20011620 L NO20011620 L NO 20011620L
Authority
NO
Norway
Prior art keywords
coil
accordance
zno
magnetic field
monitoring
Prior art date
Application number
NO20011620A
Other languages
Norwegian (no)
Other versions
NO20011620D0 (en
Inventor
Erling Hammer
Original Assignee
Hammer As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hammer As filed Critical Hammer As
Priority to NO20011620A priority Critical patent/NO20011620L/en
Publication of NO20011620D0 publication Critical patent/NO20011620D0/en
Priority to PCT/NO2002/000130 priority patent/WO2002079770A1/en
Publication of NO20011620L publication Critical patent/NO20011620L/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/261Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties

Description

Den foreliggende oppfinnelse vedrører en fremgangsmåte og en anordning til å overvåke kjemiske omdannelser eller reaksjoner i fluider eller partikkelformig materiale, slik det er definert i innledningen til de etterfølgende uav-hengige krav rettet mot en fremgangsmåte og en anordning, respektive. The present invention relates to a method and a device for monitoring chemical transformations or reactions in fluids or particulate matter, as defined in the introduction to the subsequent independent claims directed to a method and a device, respectively.

Nærmere bestemt vedrører den foreliggende oppfinnelse overvåkning eller måling av kjemiske omdannelser som opp-trer når sinkoksid (ZnO) eksponeres for svovelholdige forbindelser eller forbindelser, så som svoveldioksid. More specifically, the present invention relates to monitoring or measuring chemical transformations that occur when zinc oxide (ZnO) is exposed to sulfur-containing compounds or compounds, such as sulfur dioxide.

I enkelte prosesser anvendes det et katalysatorsjikt av partikkelformig sinkoksid ZnO til å fjerne sulfid fra gasser. In some processes, a catalyst layer of particulate zinc oxide ZnO is used to remove sulphide from gases.

I denne forbindelse kan omdannelsen fra oksidtilstan-den til sink-svoveltilstanden betegnes som graden av sink-oksidmetning. In this connection, the transformation from the oxide state to the zinc-sulfur state can be described as the degree of zinc-oxide saturation.

Når man studerer filterkatalysatorsjikt av partikkelformig sinkoksid vurderer man det slik at når sinkoksidet ved filterets utløpsende er blitt omdannet til en sink-sulfidforbindelse, må katalysatorfilteret skiftes ut. Med andre ord: Jo mer denne ZnO-omdannelsen skjer, desto nærmere filtersjiktets utløpsende befinner grenseflaten mellom ZnO-nivået og sink-svovel-forbindelsesnivået seg. Dersom katalysatorsjiktet ikke skiftes ut vil svovelforbindelsen passere gjennom katalysatorsjiktet og dermed forurense atmosfæren. When studying the filter catalyst layer of particulate zinc oxide, it is considered that when the zinc oxide at the outlet end of the filter has been converted into a zinc sulphide compound, the catalyst filter must be replaced. In other words: The more this ZnO conversion takes place, the closer the interface between the ZnO level and the zinc-sulphur compound level is to the outlet end of the filter layer. If the catalyst layer is not replaced, the sulfur compound will pass through the catalyst layer and thus pollute the atmosphere.

De ovennevnte forklaringer på hvordan svovelet reagerer med ZnO, skal ikke betraktes som begrensende på opp-finnelsens omfang. The above-mentioned explanations of how the sulfur reacts with ZnO should not be regarded as limiting the scope of the invention.

Det er et formål med den foreliggende oppfinnelse å frembringe en fremgangsmåte og en anordning for mer nøy-aktig å kunne kontrollere omfanget av den ovennevnte omdannelse/reaksjon i slike katalysatorsjikt. It is an aim of the present invention to produce a method and a device to be able to more precisely control the extent of the above-mentioned conversion/reaction in such catalyst layers.

Med andre ord er det et hovedformål å mer nøyaktig kunne bestemme tidspunktet for når filtermaterialet av ZnO-katalysatorsjiktet må erstattes, for å kunne minimalisere svovelforurensningen av omgivelsene. In other words, it is a main purpose to be able to more accurately determine the time when the filter material of the ZnO catalyst layer must be replaced, in order to be able to minimize the sulfur pollution of the surroundings.

Fremgangsmåten ifølge foreliggende oppfinnelse erkarakterisert vedat permetiviteten og/eller permeabiliteten måles ved hjelp av en ortogonal magnetfeltspole. The method according to the present invention is characterized in that the permittivity and/or permeability is measured using an orthogonal magnetic field coil.

De ytterligere trekk fremgår av fremgangsmåtekravene 2-8. The further features appear from procedure requirements 2-8.

Anordningen ifølge foreliggende oppfinnelse erkarakterisert vedde trekk som fremgår av anordningskravene. The device according to the present invention is characterized by features that appear from the device requirements.

Oppfinnelsen skal forklares mer detaljert med henvisning til figurene, hvori: The invention shall be explained in more detail with reference to the figures, in which:

Fig. 1 viser en modell av spolekonstruksjonen.Fig. 1 shows a model of the coil construction.

Fig. 2 viser en sirkulær spolekonstruksjon ifølge den velkjente konstruksjon. Fig. 3 viser et frontriss av en ortogonal magnetfelt-spole ifølge oppfinnelsen. Fig. 4 viser et tverrsnitt av den ortogonale magnetfeltspole ifølge oppfinnelsen, og installert på et test-dypprør. Fig. 5 viser et tverrsnitt av en vertikal spole installert på et dypprør. Fig. 6 viser et prinsipp for en nivåpunktsdetektor-spole sammenlignet med en referansespole. Fig. 2 shows a circular coil construction according to the well-known construction. Fig. 3 shows a front view of an orthogonal magnetic field coil according to the invention. Fig. 4 shows a cross-section of the orthogonal magnetic field coil according to the invention, and installed on a test dip tube. Fig. 5 shows a cross-section of a vertical coil installed on a dip tube. Fig. 6 shows a principle of a level point detector coil compared to a reference coil.

Det finnes mange prinsipper for å bestemme nivåene til væsker eller faste stoffer i tanker og de kan baseres på kapasitans, mikrobølger, nukleær stråling etc. There are many principles for determining the levels of liquids or solids in tanks and they can be based on capacitance, microwaves, nuclear radiation etc.

Høyfrekvente magnetspoler utviklet til å måle grenseflaten mellom vann, olje og gass i gravitasjonsseparatorer, er tidligere kjent. Den høyfrekvente magnespole er sensitiv overfor dielektriske, induktive og konduktive egenskaper til det omgivende materialet. Dette gjør dette prinsippet velegnet for mange anvendelser, hvor materialene har for-skjellig konduktivitet, permeabilitet og/eller permittivitet. Et eksempel på anvendelse er bestemmelse av vann-olje-gass-grenseflåtene i separatorer. Ved å anvende høye frekvenser oppnås det høyere rommessig oppløsning som følge av det lave antallet vindinger som er nødvendig. High-frequency magnetic coils developed to measure the interface between water, oil and gas in gravity separators are previously known. The high-frequency magnetic coil is sensitive to the dielectric, inductive and conductive properties of the surrounding material. This makes this principle suitable for many applications, where the materials have different conductivity, permeability and/or permittivity. An example of application is the determination of the water-oil-gas boundary layers in separators. By using high frequencies, higher spatial resolution is achieved as a result of the low number of turns required.

Generelt omfatter modellen av en spole en induktor og en kapasitans i parallell, slik det vises på den vedlagte In general, the model of a coil includes an inductor and a capacitance in parallel, as shown in the attached

Fig. 1. Bidragene til den totale spolekapasitans innbefat-ter kapasitansene mellom vindingene, kapasitansen mellom spolen og det omgivende materiale, og strøkapasitanser i kabler etc. Fig. 1. The contributions to the total coil capacitance include the capacitances between the windings, the capacitance between the coil and the surrounding material, and stray capacitances in cables etc.

Når den høyfrekvente magnetspole dyppes ned i et materiale, f.eks. et fluid, vil dets elektriske egenskaper endres. Dersom materialet er elektrisk ledende vil induktansen i spolen avta som følge av virvelstrømmen som indu-seres i fluidet. Og dersom permittiviteten endres, endres også spolekapasitansen. Én eller flere spoler kan installeres i et ikke-ledende dypprør, avhengig av anvendelsen. For en profiler med en gitt oppløsning (resolution) installeres det tettstablede spoler. When the high-frequency magnetic coil is dipped into a material, e.g. a fluid, its electrical properties will change. If the material is electrically conductive, the inductance in the coil will decrease as a result of the eddy current induced in the fluid. And if the permittivity changes, the coil capacitance also changes. One or more coils can be installed in a non-conductive dip tube, depending on the application. For a profiler with a given resolution, densely stacked coils are installed.

Kapasitansene mellom bindingene i spolen er fiksert og relatert til spolediameteren, tråddiameter og antall vindinger i spolen. Strøkapasitansene minimaliseres ved å in-stallere elektronikken tett opptil spolen, dvs. på innsiden av dypprøret. Kapasitansen mellom spolen og det omgivende materialet avhenger av fluidets elektriske permittivitet. Dette betyr at spolen er følsom for permittivitets- så vel som permeabilitetsegenskapene til det omgivende materialet. The capacitances between the bonds in the coil are fixed and related to the coil diameter, wire diameter and number of turns in the coil. The stray capacitances are minimized by installing the electronics close to the coil, i.e. on the inside of the immersion tube. The capacitance between the coil and the surrounding material depends on the electrical permittivity of the fluid. This means that the coil is sensitive to the permittivity as well as the permeability properties of the surrounding material.

Spolen tilkobles en LC-oscillator hvor resonansfrekvensen i spolen er: The coil is connected to an LC oscillator where the resonance frequency in the coil is:

hvor L og CLer induktansen og den ekvivalente paral-lelle kapasitans i spolen, respektive. where L and CL are the inductance and the equivalent parallel capacitance in the coil, respectively.

Ulike omgivende materialer medfører forskjellige reso-nansf rekvenser . Således kan grenseflatenivåene predikteres. Den ekvivalente spolekapasitans vil avhenge av den elektriske permittivitet i det omgivende materialet og vil følgelig influere på resonansfrekvensen. Different surrounding materials lead to different resonance frequencies. Thus, the interface levels can be predicted. The equivalent coil capacitance will depend on the electrical permittivity of the surrounding material and will consequently influence the resonant frequency.

Når en spole installeres på omkretsen til et dypprør, slik det fremgår av Fig. 2, rettes det magnetiske feltet vertikalt. Magnetfeltet vil være svakest på utsiden av dypprøret, hvor det interessante materialet befinner seg. Dette betyr at endringer som følge av permeabilitet og konduktivitet i omgivelsene har minimal innvirkning på detek-toren. Videre, som følge av den nødvendige mekaniske be-skyttelse i spolen, reduseres innvirkningen av endringene i permittiviteten til det omgivende materialet. When a coil is installed on the circumference of a dip tube, as shown in Fig. 2, the magnetic field is directed vertically. The magnetic field will be weakest on the outside of the dip tube, where the material of interest is located. This means that changes due to permeability and conductivity in the surroundings have minimal impact on the detector. Furthermore, as a result of the necessary mechanical protection in the coil, the impact of the changes in the permittivity of the surrounding material is reduced.

Derfor er denne sirkulære spole ikke velegnet i en nivåprolifer. Therefore, this circular coil is not suitable in a level prolifer.

For å øke sensibiliteten overfor endringer som følge av permeabilitet, konduktivitet og permittivitet i omgivende materialer ved å anvende spoler med isolasjon, kon-strueres spolen slik at magnetfeltet rettes ortogonalt i forhold til dypprør-aksen og inn i det omgivende materialet. Resonansfrekvensen til denne ortogonalfeltspole kan også avledes fra Ligning 1. In order to increase the sensitivity to changes as a result of permeability, conductivity and permittivity in surrounding materials by using coils with insulation, the coil is constructed so that the magnetic field is directed orthogonally in relation to the downpipe axis and into the surrounding material. The resonant frequency of this orthogonal field coil can also be derived from Equation 1.

På Fig. 3 er det vist et frontriss av spolen, og magnetfeltet er rettet inn i papirplanet. Som vist på figuren vikles spolen med firkantformede sløyfer i samme plan. Andre konfigurasjoner i det samme plan er også mulig. Den viste spolekonstruksjon vil gi et høyt magnetfelt ret-tet inn i materialet som skal måles. Videre, ifølge Max-well' s ligninger, er det elektriske felt alltid perpendikulært på magnetfeltlinjene. Dette betyr at det er kapasitanser mellom spolene som følger de elektriske feltlinjene slik det vises på Fig. 4. Som følge av ekstensjonen av magnetfeltet inn i materialet, blir det elektriske feltets inn-trengning betydelig. Derfor er denne spole sensitiv for endringer i dielektriske og konduktive egenskaper i materialer selv dersom spolen er isolert utvendig. Eventuelt kan spolen anordnes i en bueform. Fig. 3 shows a front view of the coil, and the magnetic field is directed into the plane of the paper. As shown in the figure, the coil is wound with square-shaped loops in the same plane. Other configurations in the same plane are also possible. The shown coil construction will produce a high magnetic field directed into the material to be measured. Furthermore, according to Max-well's equations, the electric field is always perpendicular to the magnetic field lines. This means that there are capacitances between the coils that follow the electric field lines as shown in Fig. 4. As a result of the extension of the magnetic field into the material, the penetration of the electric field becomes significant. Therefore, this coil is sensitive to changes in dielectric and conductive properties in materials, even if the coil is externally insulated. Optionally, the coil can be arranged in an arc shape.

Et problem med å anvende konvensjonelle kapasitive sensorer er deres høye sensitivitet overfor avsetninger på elektrodene, slik at det vil skje endringer i sensitivi-teten. Som følge av det elektriske feltets dype inntreng-ning gir denne sensor lav sensitivitet i forhold til avsetninger, så som belegg (scaling), voks (waxing) etc. A problem with using conventional capacitive sensors is their high sensitivity to deposits on the electrodes, so that there will be changes in the sensitivity. As a result of the electric field's deep penetration, this sensor provides low sensitivity in relation to deposits, such as scaling, waxing etc.

Konvensjonelle kapasitive sensorer som anvendes i oljeindustrien er ikke egnet siden de ikke vil fungere i vannkontinuerlige blandinger. Den høyfrekvente magnetspole vil imidlertid fungere både i oljekontinuerlige og vannkontinuerlige blandinger. Conventional capacitive sensors used in the oil industry are not suitable as they will not work in water-continuous mixtures. However, the high-frequency magnetic coil will work in both oil-continuous and water-continuous mixtures.

Anvendelse av oppfinnelsen i forhold til målinger av katalysatorsjikt av ZnO. Metningsgrad, dvs, omdannelse av ZnO til ZnS Application of the invention in relation to measurements of catalyst layers of ZnO. Degree of saturation, i.e. conversion of ZnO to ZnS

Permittivitetene til rent ZnO (pellets) og ZnS i deres rene tilstand er ca. 2 og ca. 8, respektive. Pelletsene er hovedsakelig kuleformede og således blir den målte permittivitet en midlere permittivitet av luft og pellets. Disse resulterende permittiviteter er 3,1 og 4,3 respektive. Spolen ifølge oppfinnelsen kan anvendes til å bestemme når det omgivende materialet endres fra ZnO til sink-sulfid-forbindelses-tilstanden, dvs. at man kan bestemme når pellettene er mettet eller konsumert, f.eks. ved utløps-enden av katalysatorsjiktet, slik at pelletsene i kata-lysators j iktet må skiftes ut. The permittivities of pure ZnO (pellets) and ZnS in their pure state are approx. 2 and approx. 8, respectively. The pellets are mainly spherical and thus the measured permittivity is an average permittivity of air and pellets. These resulting permittivities are 3.1 and 4.3 respectively. The coil according to the invention can be used to determine when the surrounding material changes from ZnO to the zinc sulphide compound state, i.e. that one can determine when the pellets are saturated or consumed, e.g. at the outlet end of the catalyst bed, so that the pellets in the catalyst bed must be replaced.

Det har vært gjennomført målinger for å bestemme de nevnte midlere permittiviteter til 3,1 for ZnO og 4,3 for ZnS, respektive. Forskjellen kan resultere i et maksimalt frekvensskift på ca. 10%. Som følge av spoleisolasj onen, kapasitansen til inngangsnivået til elektronikken etc, vil frekvensskiftet bli betydelig redusert. Målinger viser at dette frekvensskift kan være mer enn ca. 2,5. Measurements have been carried out to determine the aforementioned average permittivities of 3.1 for ZnO and 4.3 for ZnS, respectively. The difference can result in a maximum frequency shift of approx. 10%. As a result of the coil insulation, the capacitance of the input level of the electronics etc, the frequency shift will be significantly reduced. Measurements show that this frequency shift can be more than approx. 2.5.

Det antas at under driften vil grenseflatesjiktet mellom ZnO og ZnS bevege seg oppover etterhvert som reak-sjonen mellom ZnO og svovelgassen skrider frem. Ved å anvende en rekke spoler ifølge oppfinnelsen, er det mulig å etablere posisjonen til dette grenseflatenivå. It is assumed that during operation the interface layer between ZnO and ZnS will move upwards as the reaction between ZnO and the sulfur gas progresses. By using a number of coils according to the invention, it is possible to establish the position of this interface level.

Således kan den foreliggende metode anvendes til å kontrollere kjemiske endringer i alle substanser mellom to eller flere kjemiske tilstander. Med andre ord kan den foreliggende metode og anordning anvendes i relasjon til alle materialer som endrer permittivitet og/eller konduktivitet når de reagerer. Thus, the present method can be used to control chemical changes in all substances between two or more chemical states. In other words, the present method and device can be used in relation to all materials that change permittivity and/or conductivity when they react.

Under henvisning til fig. 3-6 ble det uttestet ortogonale magnetfeltspoler installert på et dypprør. Fordelen med disse spolene er at magnetfeltet rettes ortogonalt i forhold til dypprøret ut og inn i det omgivende medium. Således frembringes det et sterkere magnetfelt i det omgivende medium sammenlignet med tilsvarende for sirkulære spoler. I sirkulære spoler (slik det vises på Fig. 2) er magnetfeltet sterkest i midten av dypprøret. I tillegg til antallet viklinger, vil lengden av spolen, dvs. vinkel a (se Fig. 5) influere på spolens sensitivitet slik det vises i Tabell 1. With reference to fig. 3-6, orthogonal magnetic field coils installed on a dip tube were tested. The advantage of these coils is that the magnetic field is directed orthogonally in relation to the dip tube out and into the surrounding medium. Thus, a stronger magnetic field is produced in the surrounding medium compared to the equivalent for circular coils. In circular coils (as shown in Fig. 2), the magnetic field is strongest in the center of the dip tube. In addition to the number of windings, the length of the coil, i.e. angle a (see Fig. 5), will influence the sensitivity of the coil as shown in Table 1.

Anvendt i katalysatorsjikt, vil det ikke være behov for noen vanntett isolasjon, og eksperimentene ble gjennom-ført innbefattende tynnere isolasjonstyper. Resultatene fra disse initielle målingene er presentert i Tabell 1. Som vist er frekvensskiftene relativt lave, 2,3% er relatert til oscillasjonsfrekvensene. Følgelig, når én spole anvendes som en nivåmåler (se Fig. 6} kan en referansespole lokalisert i ZnO anvendes til å gi mer nøyaktige målinger. Nivåmåler-detektorspolen tilpasses til referansespolen når katalysatorsjiktet refylles med ZnO, slik det vises på Used in a catalyst layer, there will be no need for any waterproof insulation, and the experiments were carried out including thinner types of insulation. The results from these initial measurements are presented in Table 1. As shown, the frequency shifts are relatively low, 2.3% is related to the oscillation frequencies. Consequently, when one coil is used as a level gauge {see Fig. 6} a reference coil located in ZnO can be used to provide more accurate measurements. The level gauge detector coil is matched to the reference coil when the catalyst bed is refilled with ZnO, as shown in

Fig. 6.Fig. 6.

Ved å multiplisere de to sinussignalene fra oscillatorene, kan forskjellen mellom frekvensene frembringes ved filtrering av utgangssignalet. Når denne utgangen er lav By multiplying the two sine signals from the oscillators, the difference between the frequencies can be produced by filtering the output signal. When this output is low

(null) og konstant, er materialene som omslutter spolene identiske. Når utgangssignalet begynner å øke endrer omgivelsesmaterialet seg og med et konstant høyere utgangssignal er omgivelsesmaterialene forskjellige. Således er det med nivåmålerspolen og en referansespole frembragt et overvåkningssystem som kan gi mer informasjon om tidspunktet for å erstatte pellettene. (zero) and constant, the materials surrounding the coils are identical. When the output signal starts to increase, the surrounding material changes and with a constant higher output signal, the surrounding materials are different. Thus, with the level gauge coil and a reference coil, a monitoring system has been created which can provide more information about the time to replace the pellets.

I disse initielle målingene som her er presentert, har den høyeste sensitivitet mellom målingene av ZnO og ZnS (mettet ZnO) vist seg å være ca. 232 KHz. Et prinsippielt oppsett for et overvåkningsystem for et katalysatorsjikt er vist i Fig. 6. In these initial measurements that are presented here, the highest sensitivity between the measurements of ZnO and ZnS (saturated ZnO) has been shown to be approx. 232 KHz. A principle setup for a monitoring system for a catalyst bed is shown in Fig. 6.

Claims (12)

1. Fremgangsmåte til overvåkning av kjemiske omdannelser eller reaksjoner i fluider eller partikkelformige materialer, karakterisert ved at permittiviteten og/eller permeabiliteten måles ved hjelp av en ortogonal magnetfelt-spole.1. Method for monitoring chemical conversions or reactions in fluids or particulate materials, characterized in that the permittivity and/or permeability is measured using an orthogonal magnetic field coil. 2. Fremgangsmåte i samsvar med krav 1, karakterisert ved at det anvendes en ortogonalmagnetfelt-spole hvor antall viklinger er arrangert i samme plan, f. eks. at spolen er anordnet på en plate.2. Method in accordance with claim 1, characterized in that an orthogonal magnetic field coil is used where the number of windings is arranged in the same plane, e.g. that the coil is arranged on a plate. 3. Fremgangsmåte i samsvar med kravene 1-2, karakterisert ved at det anvendes en spole som er anordnet i en bueform.3. Method in accordance with claims 1-2, characterized in that a coil is used which is arranged in an arc shape. 4. Fremgangsmåte i samsvar med et av kravene 1-3, karakterisert ved at det anvendes en spole som er arrangert i en bueform som strekker seg til å dekke en sektor av en sirkel.4. Method in accordance with one of claims 1-3, characterized in that a coil is used which is arranged in an arc shape which extends to cover a sector of a circle. 5. Fremgangsmåte i samsvar med et av kravene 1-3, karakterisert ved at en overvåker kjemiske omdannelser eller reaksjoner i fluider eller partikkelformig materiale, og spesielt materialer som endrer permittivitet og/eller konduktivitet som følge av kjemiske reaksjoner.5. Method in accordance with one of claims 1-3, characterized in that one monitors chemical transformations or reactions in fluids or particulate material, and in particular materials that change permittivity and/or conductivity as a result of chemical reactions. 6. Fremgangsmåte i samsvar med et av kravene 1-3, karakterisert ved å overvåke den kjemiske svovelmetning av ZnO i et katalysatorsjikt.6. Method according to one of claims 1-3, characterized by monitoring the chemical sulfur saturation of ZnO in a catalyst layer. 7. Fremgangsmåte i samsvar med et av kravene 1-3, karakterisert ved å overvåke grenseflaten mellom det rene ZnO-nivå og S02~ mettet ZnO-nivå i et katalysatorfiltersj ikt.7. Method in accordance with one of claims 1-3, characterized by monitoring the interface between the pure ZnO level and the SO2~ saturated ZnO level in a catalyst filter bed. 8. Fremgangsmåte i samsvar med krav 7, karakterisert ved at det anvendes en spole som en nivåmåler (Fig. 6), og en referansespole lokalisert i ZnO anvendes til å estimere tidspunktet for refylling av katalysatorsjiktet med ZnO.8. Method in accordance with claim 7, characterized in that a coil is used as a level gauge (Fig. 6), and a reference coil located in ZnO is used to estimate the time for refilling the catalyst layer with ZnO. 9. Fremgangsmåte i samsvar med krav 7, karakterisert ved at to sinusoidale signaler fra oscillatorene multipliseres, og forskjellen mellom frekvensene frembringes ved å filtrere utgangssignalet slik at: når utgangen er lav (null) og konstant er materialene som omslutter spolene like, og når utgangssignalet begynner å øke, endrer omgivelsesmaterialet seg, og med et konstant høyt utgangssignal er de omgivende materialene forskjellige.9. Method in accordance with claim 7, characterized in that two sinusoidal signals from the oscillators are multiplied, and the difference between the frequencies is produced by filtering the output signal so that: when the output is low (zero) and constant, the materials surrounding the coils are the same, and when the output starts to increase, the surrounding material changes, and with a constant high output, the surrounding materials are different. 10. Anordning for overvåkning av kjemiske omdannelser eller reaksjoner i fluider eller partikkelformig materiale, karakterisert ved en ortogonal magnetfeltspole hvor antallet viklinger er anordnet i samme plan.10. Device for monitoring chemical transformations or reactions in fluids or particulate material, characterized by an orthogonal magnetic field coil where the number of windings is arranged in the same plane. 11. Anordning i samsvar med krav 10, karakterisert ved at det anvendes en spole som er anordnet i en bueform.11. Device in accordance with claim 10, characterized in that a coil is used which is arranged in an arc shape. 12. Anordning i samsvar med kravene 9-10, karakterisert ved at det anvendes en spole som er anordnet i en bueform som strekker seg til å dekke en sektor av en sirkel.12. Device in accordance with claims 9-10, characterized in that a coil is used which is arranged in an arc shape which extends to cover a sector of a circle.
NO20011620A 2001-03-29 2001-03-29 Method and apparatus for monitoring chemical reactions NO20011620L (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20011620A NO20011620L (en) 2001-03-29 2001-03-29 Method and apparatus for monitoring chemical reactions
PCT/NO2002/000130 WO2002079770A1 (en) 2001-03-29 2002-04-02 Method and device for monitoring chemical reactions or levels of a separation tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20011620A NO20011620L (en) 2001-03-29 2001-03-29 Method and apparatus for monitoring chemical reactions

Publications (2)

Publication Number Publication Date
NO20011620D0 NO20011620D0 (en) 2001-03-29
NO20011620L true NO20011620L (en) 2002-09-30

Family

ID=19912322

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20011620A NO20011620L (en) 2001-03-29 2001-03-29 Method and apparatus for monitoring chemical reactions

Country Status (2)

Country Link
NO (1) NO20011620L (en)
WO (1) WO2002079770A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO325535B1 (en) 2002-09-10 2008-06-09 Epsis As Method and apparatus for determining the water content of multiphase mixtures
FR2858402B1 (en) * 2003-07-28 2005-12-23 Brandt Ind METHOD FOR MEASURING A LIQUID LEVEL IN A TANK AND CORRESPONDING DEVICE
DE102005010351B4 (en) * 2005-02-17 2012-08-16 Sie Sensorik Industrie-Elektronik Gmbh Sensors for interrogation of fill levels as well as conductivity analysis of conductive liquids and methods for this purpose
IT1401387B1 (en) * 2010-08-09 2013-07-18 Danieli Automation Spa DEVICE FOR DETECTION OF LIQUID METAL LEVEL IN A CASTING EQUIPMENT AND ITS PROCEDURE
GB2575104B (en) * 2018-06-29 2022-11-30 Flodatix Ltd Method and apparatus for monitoring a multiphase flow in a pipe using magnetic induction tomography apparatus comprising planar coils
CN109374083B (en) * 2018-10-31 2020-06-16 广州发展集团股份有限公司 Liquid level acquisition method and device for vertical oil tank and early warning system for receiving and transmitting oil level

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007636A (en) * 1973-08-30 1977-02-15 Mine Safety Appliances Company Liquid metal level indicator
SE403655B (en) * 1976-05-20 1978-08-28 Atomenergi Ab DEVICE FOR ELECTROMAGNETIC SATURATION OF LEVELS AND / OR DISTANCE IN CONNECTION WITH IN A CONTAINER CONTENT, LIQUID CONDUCTIVE MATERIAL
DE3423868A1 (en) * 1984-06-28 1986-01-02 Herbert Dipl.-Ing. 4030 Ratingen Tegelhütter Measurement coil device
US4688580A (en) * 1985-07-11 1987-08-25 The Johns Hopkins University Non-invasive electromagnetic technique for monitoring bone healing and bone fracture localization
IT1222337B (en) * 1987-10-21 1990-09-05 Ceda Costruzioni Elettromeccan DEVICE FOR MEASURING THE LEVEL OF LIQUID METAL IN A CRYSTALLIZER FOR CONTINUOUS CASTING TIN
US4891591A (en) * 1988-02-16 1990-01-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nonintrusive method and apparatus for monitoring the cure of polymeric materials
ES2083434T3 (en) * 1989-09-19 1996-04-16 Nippon Steel Corp METHOD AND APPARATUS TO DETECT THE LEVEL OF CAST METAL.

Also Published As

Publication number Publication date
NO20011620D0 (en) 2001-03-29
WO2002079770A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
US10684268B2 (en) Sensor systems for measuring an interface level in a multi-phase fluid composition
US9658178B2 (en) Sensor systems for measuring an interface level in a multi-phase fluid composition
US9176083B2 (en) Systems and methods for measuring an interface level in a multi-phase fluid composition
CA2232544C (en) Inductive sensor for monitoring fluid level and displacememt
JP6934891B2 (en) Non-contact type electrical conductivity and non-conductor dielectric constant characteristic change measuring device using RF signals
CA2909068C (en) System and method to measure volume fraction in multiphase fluids
RU2012116010A (en) SYSTEMS AND METHODS OF IMPEDANCE MEASUREMENT FOR DETERMINING COMPONENTS OF SOLID AND FLUID OBJECTS
JP2013512414A5 (en)
ES2878049T3 (en) Sensor system for measuring an interface level in a multiphase fluid composition
NO326208B1 (en) Method and apparatus for painting interphase levels, and their use
JP2006506621A (en) Non-contact type surface conductivity measurement probe
CN108369128B (en) Device for reliably determining and/or monitoring a process variable
US20130220013A1 (en) Sensors
CN103988073A (en) Measurement device and method for detecting the hydrocarbon content in gases
NO20011620L (en) Method and apparatus for monitoring chemical reactions
CA3009645A1 (en) Sensor systems and methods for measuring clay activity
EP3218700B1 (en) Multi-phase fluid fraction measurement
US11859491B2 (en) Low power water cut sensing
Hammer et al. High-frequency magnetic field probe for determination of interface levels in separation tanks
ABD GHANI INTEGRATED ULTRASONIC-CAPACITANCE LIQUID LEVEL SENSOR
EP4116679A1 (en) Detection device for monitoring the quantity of a liquid in a container
RU2415409C1 (en) Method of determining substance physical properties
RU2000131346A (en) METHOD FOR MEASURING RELATIVE DIELECTRIC PERMEABILITY OF LIQUID MEDIA ON MICROWAVE
RU2073232C1 (en) Eddy current defectoscope and method for it tuning
CN114930163A (en) Device and method for capacitively determining the proportion of a substance in a material

Legal Events

Date Code Title Description
FC2A Withdrawal, rejection or dismissal of laid open patent application