NO179856B - Method for removing or reducing hydrogen sulfide content in hydrocarbons or water - Google Patents

Method for removing or reducing hydrogen sulfide content in hydrocarbons or water Download PDF

Info

Publication number
NO179856B
NO179856B NO922845A NO922845A NO179856B NO 179856 B NO179856 B NO 179856B NO 922845 A NO922845 A NO 922845A NO 922845 A NO922845 A NO 922845A NO 179856 B NO179856 B NO 179856B
Authority
NO
Norway
Prior art keywords
carbon atoms
approx
amidine
group
groups
Prior art date
Application number
NO922845A
Other languages
Norwegian (no)
Other versions
NO922845D0 (en
NO179856C (en
NO922845L (en
Inventor
Jerry J Weers
Catherine E Thomasson
Original Assignee
Petrolite Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrolite Corp filed Critical Petrolite Corp
Publication of NO922845D0 publication Critical patent/NO922845D0/en
Publication of NO922845L publication Critical patent/NO922845L/en
Publication of NO179856B publication Critical patent/NO179856B/en
Publication of NO179856C publication Critical patent/NO179856C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/02Use of additives to fuels or fires for particular purposes for reducing smoke development
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/228Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles
    • C10L1/2283Organic compounds containing nitrogen containing at least one carbon-to-nitrogen double bond, e.g. guanidines, hydrazones, semicarbazones, imines; containing at least one carbon-to-nitrogen triple bond, e.g. nitriles containing one or more carbon to nitrogen double bonds, e.g. guanidine, hydrazone, semi-carbazone, azomethine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Physical Water Treatments (AREA)

Description

Foreliggende oppfinnelse angår fjerning eller minskning av hydrogensulfid i hydrokarboner eller vann. Spesielt angår foreliggende oppfinnelse slik fjerning eller minskning på kjemisk måte. The present invention relates to the removal or reduction of hydrogen sulphide in hydrocarbons or water. In particular, the present invention relates to such removal or reduction by chemical means.

Ved boring, produksjon, transport, lagring og bearbeiding av råolje, inkludert avløpsvann i forbindelse med råoljepro-duksjon, og ved lagring av rest-brenselsolje, støter en ofte på hydrogensulfid, som er en svært toksisk substans. Også ved hodet i oljebrønnen utskilles hydrogensulfidholdige damper av lette hydrokarboner som må være under kontroll. Ukontrollert utslipp av hydrogensulfid kan ha alvorlige helsemessige konse-kvenser. Brenning av slike damper verken løser det toksiske gassproblem eller er økonomisk, ettersom de lette hydrokarboner har en betydelig verdi. Hydrogensulfid er dessuten ofte til stede i undergrunnsvannet som fjernes sammen med råoljen, i selve råoljen og i gasser som forekommer i forbindelse med slikt vann og olje. Når vann og olje skilles fra hverandre ved anvendelse av separasjonstanker, deemulgeringsapparater og lignende, avgis utolererbare mengder av hydrogensulfid i form av en gass sammen med vann og hydrokarbondamper. Naturgasser er ofte sure, dvs. at de inneholder en del hydrogensulfider. When drilling, producing, transporting, storing and processing crude oil, including waste water in connection with crude oil production, and when storing residual fuel oil, you often come across hydrogen sulphide, which is a highly toxic substance. Also at the head of the oil well, vapors containing hydrogen sulphide are released from light hydrocarbons which must be kept under control. Uncontrolled release of hydrogen sulphide can have serious health consequences. Combustion of such vapors neither solves the toxic gas problem nor is it economical, as the light hydrocarbons have considerable value. Hydrogen sulphide is also often present in the underground water that is removed together with the crude oil, in the crude oil itself and in gases that occur in connection with such water and oil. When water and oil are separated from each other using separation tanks, de-emulsifiers and the like, intolerable quantities of hydrogen sulphide are given off in the form of a gas together with water and hydrocarbon vapours. Natural gases are often acidic, i.e. they contain some hydrogen sulphides.

I henhold til foreliggende oppfinnelse kan flytende hydrokarboner som inneholder hydrogensulfid, samt hydrokarbon-gasser, så som naturgass eller avgasser fra produksjon, transport, lagring og raffinering av råolje, kontrolleres på en bekvem lettvint og økonomisk måte. According to the present invention, liquid hydrocarbons containing hydrogen sulphide, as well as hydrocarbon gases, such as natural gas or exhaust gases from the production, transport, storage and refining of crude oil, can be controlled in a convenient, easy and economical way.

Kort sagt er foreliggende oppfinnelse derfor rettet mot en fremgangsmåte for nedbryting av hydrogensulfid i et vandig medium og/eller et hydrokarbonmedium. Ifølge denne fremgangsmåte bringes mediet i kontakt med en effektiv mengde av et amidin valgt fra gruppen som består av monoamidiner med fra 1 til ca. 18 karbonatomer og polyamidiner omfattende fra 2 til 3 amidingrupper med fra 1 til ca. 18 karbonatomer pr. amidingruppe. In short, the present invention is therefore aimed at a method for breaking down hydrogen sulphide in an aqueous medium and/or a hydrocarbon medium. According to this method, the medium is contacted with an effective amount of an amidine selected from the group consisting of monoamidines with from 1 to about 18 carbon atoms and polyamides comprising from 2 to 3 amidine groups with from 1 to approx. 18 carbon atoms per amidine group.

Blant de mange fordeler med oppfinnelsen kan det derfor nevnes tilveiebringelse av en forbedret fremgangsmåte for fjerning av hydrogensulfid fra et hydrokarbonmedium og/eller et vandig medium, samt tilveiebringelse av en slik metode som kan anvendes for vidt forskjellige medier av denne type. Among the many advantages of the invention can therefore be mentioned the provision of an improved method for removing hydrogen sulphide from a hydrocarbon medium and/or an aqueous medium, as well as the provision of such a method which can be used for widely different media of this type.

I NO A 870 351 beskrives en fremgangsmåte for fjerning av hydrogensulfid fra råolje ved hjelp av en forbindelse med formelen NO A 870 351 describes a method for removing hydrogen sulphide from crude oil using a compound with the formula

hvor X og Y er karbon- eller nitrogenatomer. Innenfor denne formel kan man riktignok få en amidinfunksjonalitet, men det er her de elektronegative grupper som er avgjørende, og amidinfunksjonens dobbeltbinding er ikke av betydning. where X and Y are carbon or nitrogen atoms. Within this formula one can indeed get an amidine functionality, but it is here that the electronegative groups are decisive, and the double bond of the amidine function is not important.

I henhold til foreliggende oppfinnelse er det blitt oppdaget at dersom et vandig medium og/eller et hydrokairbon-medium bringes i kontakt med visse amidiner, tilveiebri.nges det en i høy grad effektiv teknikk for nedbryting av hydrogensulfidet i mediet. Både polyamidiner og monoamidiner er blitt funnet å være virksomme. According to the present invention, it has been discovered that if an aqueous medium and/or a hydrocarbon medium is brought into contact with certain amidines, a highly effective technique for breaking down the hydrogen sulphide in the medium is provided. Both polyamides and monoamidines have been found to be effective.

Monoamidiner som er funnet å være spesielt effektive i foreliggende fremgangsmåte for fjerning av hydrogensulfid tilsvarer formelen Monoamidines which have been found to be particularly effective in the present process for removing hydrogen sulfide correspond to the formula

hvor R, R<1>, R<2> og R<3> på uavhengig vis velges fra H, alkylgrupper med opptil ca. 18 karbonatomer og arylgrupper med opptil ca. 18 karbonatomer, og hvor R<4> er en alkylengruppe med opptil ca. 18 karbonatomer, med det forbehold at det totale antall karbonatomer i R, R<1>, R<2>, R<3> og R<4> er fra 1. til ca. 18. Alkyl-, aryl- og alkylengruppene kan være substituerte eller usubstituerte, forgrenede eller rettkjedede. where R, R<1>, R<2> and R<3> are independently selected from H, alkyl groups with up to approx. 18 carbon atoms and aryl groups with up to approx. 18 carbon atoms, and where R<4> is an alkylene group with up to approx. 18 carbon atoms, with the proviso that the total number of carbon atoms in R, R<1>, R<2>, R<3> and R<4> is from 1 to approx. 18. The alkyl, aryl and alkylene groups can be substituted or unsubstituted, branched or straight chain.

Generelt er det ønskelig å opprettholde en partiell positiv ladning på det sentrale karbonatom; dvs. karbonet mellom de to nitrogener. Foretrukne radikalgrupper opprettholder eller øker således den positive ladning på dette sentrale karbonatom. Når det gjelder dette, er det blitt funnet at det er foretrukke<t> at RI er hydrogen eller, mer foretrukket, en arylgruppe, spesielt en arylgruppe substituert med en elektrontiltrekkende gruppe, så som en nitro-, cyano- eller halogenidgruppe. In general, it is desirable to maintain a partial positive charge on the central carbon atom; i.e. the carbon between the two nitrogens. Preferred radical groups thus maintain or increase the positive charge on this central carbon atom. In this regard, it has been found that it is preferred that R1 is hydrogen or, more preferably, an aryl group, especially an aryl group substituted with an electron-withdrawing group, such as a nitro, cyano or halide group.

I tillegg er det ønskelig å opprettholde basisiteten som nitrogenet bibringer blandingene. Cykloalkyl eller spesielt hydrogen eller en lavere alkylgruppe er således mer ønskelig enn fenyl for R, R<2> og R<3>. Hvilke som helst av R, R<1>, R<2> og R<3 >kan være substituerte eller usubstituerte alkyl- eller arylgrupper. Heteroatomer, så som oksygen, svovel og nitrogen, er egnede substituenter. Likeledes kan R<4> være en substituert eller usubstituert alkylen- eller arylengruppe. Dersom flytende medier skal behandles, bør R, R<1>, R<2>, R<3> og R<4> velges slik at amidinet er løselig i det medium som skal behandles i i en slik grad at en hydrogensulfid-ødeleggende mengde av amidinet kan blandes grundig inn i mediet. In addition, it is desirable to maintain the basicity that the nitrogen imparts to the mixtures. Cycloalkyl or especially hydrogen or a lower alkyl group is thus more desirable than phenyl for R, R<2> and R<3>. Any of R, R<1>, R<2> and R<3> may be substituted or unsubstituted alkyl or aryl groups. Heteroatoms, such as oxygen, sulfur and nitrogen, are suitable substituents. Likewise, R<4> can be a substituted or unsubstituted alkylene or arylene group. If liquid media are to be treated, R, R<1>, R<2>, R<3> and R<4> should be chosen so that the amidine is soluble in the medium to be treated to such an extent that a hydrogen sulfide-destroying amount of the amidine can be thoroughly mixed into the medium.

Generelt er derfor den hydrogensulfid-ødeleggende effek-tivitet for amidinblandinger med høyere pKa-verdier blitt funnet typisk å være høyere enn for amidinblandinger med lavere pKa-verdier. I virkeligheten kan i høy grad sure blan-dinger vise tilbøyelighet til å reagere under dannelse av inaktive salter ved tilsetning til et medium som skal behandles. Amidiner med pKa = 7 eller høyere, spesielt ca. 10 eller høyere, så som et cyklisk amidin, hvor ringen har 6 deler (f. eks. tetrahydropyrimidin), er derfor foretrukket. I henhold til dette er cykliske grupper blitt funnet å være spesielt ønskelige for R, R<2> og R<3> og alkanolaminer er også blitt funnet å gi utmerkede resultater. For amidiner som vil gi sure omgivelser, kan det tilsettes en buffer til blandingen for å høyne pH-verdien. In general, therefore, the hydrogen sulfide-destroying effectiveness of amidine mixtures with higher pKa values has typically been found to be higher than for amidine mixtures with lower pKa values. In reality, highly acidic mixtures may show a tendency to react to form inactive salts when added to a medium to be treated. Amidines with pKa = 7 or higher, especially approx. 10 or higher, such as a cyclic amidine, where the ring has 6 parts (e.g. tetrahydropyrimidine), is therefore preferred. Accordingly, cyclic groups have been found to be particularly desirable for R, R<2> and R<3> and alkanolamines have also been found to give excellent results. For amidines that will provide an acidic environment, a buffer can be added to the mixture to raise the pH value.

Polyamidiner, så som de som tilsvarer formlene Polyamidines, such as those corresponding to the formulas

A^R5-^2 eller A^R5-^2 or

er også egnet for anvendelse i foreliggende fremgangsmåte. I slike formler velges amidingruppene A<1>, A<2> og A<3> på uavhengig vis blant is also suitable for use in the present method. In such formulas, the amidine groups A<1>, A<2> and A<3> are chosen independently among

hvor R, R1, R<2> og R<3> for hver av A1, A<2> og A<3> på uavhengig vis velges fra H, alkylgrupper med opptil 18 karbonatomer og arylgrupper med opptil 18 karbonatomer, og R<4> for hver av A<1>, A<2 >og A<3> velges på uavhengig vis blant alkylengrupper med opptil 18 karbonatomer, under forutsetning av at det totale antall karbonatomer i R<1>, R<2>, R<3> og R<4> pr. A er fra 1 til ca. 18; R<5 >er en alkylengruppe med opptil ca. 8 karbonatomer eller en arylengruppe med opptil ca. 8 karbonatomer, og R<6> er en alkylengruppe med opptil ca. 8 karbonatomer eller en arylengruppe med opptil ca. 8 karbonatomer. Som med monoamidinene kan hvilke som helst av alkyl-, aryl-, alkylen- og arylengruppene være substituerte eller usubstituerte, forgrenede eller rettkj edede. where R, R1, R<2> and R<3> for each of A1, A<2> and A<3> are independently selected from H, alkyl groups of up to 18 carbon atoms and aryl groups of up to 18 carbon atoms, and R< 4> for each of A<1>, A<2> and A<3> is independently selected from among alkylene groups of up to 18 carbon atoms, provided that the total number of carbon atoms in R<1>, R<2>, R <3> and R<4> per A is from 1 to approx. 18; R<5 >is an alkylene group with up to approx. 8 carbon atoms or an arylene group with up to approx. 8 carbon atoms, and R<6> is an alkylene group with up to approx. 8 carbon atoms or an arylene group with up to approx. 8 carbon atoms. As with the monoamidines, any of the alkyl, aryl, alkylene and arylene groups may be substituted or unsubstituted, branched or straight chain.

De samme hensyn som ble tatt ved utvelgelsen av R-'-, R<2>, R<3> og R<4> kan anvendes for polyamidiner, slik som diskutert når det gjaldt monoamidiner. Det er således ønskelig å velge grupper som opprettholder eller øker den positive ladning på det sentrale karbon for å gi en basisk blanding. Fortrinnsvis er det fra ca. 2 til ca. 6 karbonatomer mellom amidingruppene. R^ og R<*>> kan inneholde heteroatomer og kan være rettkj edede eller forgrenede. Cykliske grupper og alkanolaminer er spesielt ønskede substituenter for R<1>, R<3> og R<4>. The same considerations that were taken in the selection of R-'-, R<2>, R<3> and R<4> can be applied to polyamides, as discussed in the case of monoamidines. It is thus desirable to select groups which maintain or increase the positive charge on the central carbon to give a basic mixture. Preferably it is from approx. 2 to approx. 6 carbon atoms between the amidine groups. R^ and R<*>> may contain heteroatoms and may be straight-chained or branched. Cyclic groups and alkanolamines are particularly desirable substituents for R<1>, R<3> and R<4>.

Amidinene som kan anvendes i fremgangsmåten ifølge denne oppfinnelse, kan syntetiseres ved hjelp av flere kjente tek-nikker. For eksempel beskriver US-patent nr. 4 321 202 fremgangsmåter for fremstilling av slike amidiner. Likeledes er fremgangsmåter for fremstilling av amidiner beskrevet i Taylor and Ehrhart, "A Convenient Synthesis of N,N'-disubstituted Form Amidines and Acid Amidines", Journal of Organic Chemis-try, bd. 28, s. 1108-1112, april 1963, og Synthesis, jan. 1983, s. 36-37. The amidines that can be used in the method according to this invention can be synthesized using several known techniques. For example, US Patent No. 4,321,202 describes methods for preparing such amidines. Likewise, methods for the preparation of amidines are described in Taylor and Ehrhart, "A Convenient Synthesis of N,N'-disubstituted Form Amidines and Acid Amidines", Journal of Organic Chemistry, vol. 28, pp. 1108-1112, April 1963 , and Synthesis, Jan. 1983, pp. 36-37.

Ved anvendelse tilsettes fra ca. 10 ppm til ca. 500 ppm av amidinet ifølge denne oppfinnelse til et vandig medium og/eller et karbonmedium. Amidinet er effektivt i mange forskjellige medier. Amidinet er således ikke bare anvendbart i vandig medium, men også i mange forskjellige hydrokarbonme-dier, f.eks. hydrokarbon-destillatprodukter, så som diesel-brennstoff, bensin, kerosin, lett cyklus-olje, lett cyklusgassolje, vakuum-gassolje og til og med råolje og restpro-dukter. Dersom mediet er et restprodukt, kan amidinet tilsettes ved at det tilsettes en liten mengde blandingskomponenter som inneholder amidinet. I tilfeller hvor mediet er en damp, kan amidinet tilsettes ved atomisering av amidinet i en rør-ledning . When using, add from approx. 10 ppm to approx. 500 ppm of the amidine according to this invention to an aqueous medium and/or a carbon medium. The amidine is effective in many different media. The amidine is thus not only usable in an aqueous medium, but also in many different hydrocarbon media, e.g. hydrocarbon distillate products, such as diesel fuel, gasoline, kerosene, light cycle oil, light cycle gas oil, vacuum gas oil and even crude oil and residual products. If the medium is a residual product, the amidine can be added by adding a small amount of mixture components containing the amidine. In cases where the medium is a vapour, the amidine can be added by atomizing the amidine in a pipeline.

De følgende eksempler illustrerer oppfinnelsen. The following examples illustrate the invention.

Eksempel I Example I

N-metylformamid (15 g) ble anbrakt i en 200 ml rundkolbe som inneholdt toluen (10 ml). Dimetylkarbamyl-klorid (27 g) ble tilsatt i porsjoner, og prøven ble kokt under tilbakeløp i ca. 1 time. Til å begynne med fant det sted en kraftig frigi-velse av karbondioksyd. Tilbakeløpet ble avbrutt når frigivel-sen av karbondioksyd opphørte. Prøven ble så avkjølt til ora-givelsesbetingelser og toluen strippet av i en rotasjonsfordamper. Det som var igjen var et lysegult, fast stoff. Dette faste stoff (amidin-HCl) ble oppløst i kloroform (ca. 70 ml) og tilsatt til en løsning av 50% vandig natriumhydroksyd (25 N-methylformamide (15 g) was placed in a 200 ml round bottom flask containing toluene (10 ml). Dimethylcarbamyl chloride (27 g) was added in portions, and the sample was refluxed for approx. 1 hour. To begin with, a strong release of carbon dioxide took place. The reflux was interrupted when the release of carbon dioxide ceased. The sample was then cooled to ambient conditions and the toluene stripped off in a rotary evaporator. What remained was a pale yellow solid. This solid (amidine-HCl) was dissolved in chloroform (ca. 70 mL) and added to a solution of 50% aqueous sodium hydroxide (25

g) og destillert vann (20 ml). Prøven ble godt omrørt og fikk skille seg. Kloroformskiktet ble tatt ut og filtrert. Nok en g) and distilled water (20 ml). The sample was well stirred and allowed to separate. The chloroform layer was taken out and filtered. Another one

aliquot av kloroform (20 ml) ble tilsatt, omrørt og skilt fra. De to ekstrakter ble forenet og blandingen ble destillert ved 760 torr. Fraksjoner ble tatt ut som følger: F1 ved 61°C; F2 ved 64 - 70°C; F3 ved 70 - 78°C; F4 ved 80 - 90°C, F5 ved 90 - 97°C og F6 ved 97 - 102°C. Fraksjon 4 inneholdt det ønskede produkt, selv om kokepunktet for rent produkt ifølge littera-turen er 106°C ved 730 torr. aliquot of chloroform (20 ml) was added, stirred and separated. The two extracts were combined and the mixture was distilled at 760 torr. Fractions were taken as follows: F1 at 61°C; F2 at 64 - 70°C; F3 at 70 - 78°C; F4 at 80 - 90°C, F5 at 90 - 97°C and F6 at 97 - 102°C. Fraction 4 contained the desired product, although the boiling point for pure product according to the literature is 106°C at 730 torr.

Eksempel II Example II

Eddiksyre (15 g) og trietylortoformiat (37 g) ble blandet og oppvarmet til ca. 100°C. Etylamin (32,1 g av 70 vekt% vandig løsning) ble tilsatt dråpevis og den resulterende blanding ble oppvarmet under tilbakeløp i 2 timer. Apparatet va-.r utstyrt med en Dean Stark-felle, og flyktig materiale (0,53 ml) ble fjernet ved destillasjon. Destillasjonen ble avbrutt idet temperaturen i beholderen nådde 145°C. Blandingen ble så av-kjølt og diklormetan (50 g) ble tilsatt. Den resulteremde blanding ble så tilsatt til en blanding av natriumkarbonat (50 g) og destillert vann (350 ml), omrørt i 5 minutter og så overført til en skilletrakt. Det organiske skikt ble trukket av og løsemidlet ble fordampet på en rotasjonsfordamper ved 50°C med sugeanordning. NMR-analyse viste at produktet var urent og at det inneholdt spor av eddiksyre og muligens ami-dinsurt salt. Utbyttet ble beregnet til 4,8%. Acetic acid (15 g) and triethyl orthoformate (37 g) were mixed and heated to approx. 100°C. Ethylamine (32.1 g of 70% by weight aqueous solution) was added dropwise and the resulting mixture was heated under reflux for 2 hours. The apparatus was fitted with a Dean Stark trap and volatile material (0.53 ml) was removed by distillation. The distillation was interrupted when the temperature in the container reached 145°C. The mixture was then cooled and dichloromethane (50 g) was added. The resulting mixture was then added to a mixture of sodium carbonate (50 g) and distilled water (350 ml), stirred for 5 minutes and then transferred to a separatory funnel. The organic layer was pulled off and the solvent was evaporated on a rotary evaporator at 50°C with a suction device. NMR analysis showed that the product was impure and that it contained traces of acetic acid and possibly amide acid salt. The dividend was calculated at 4.8%.

Eksempel III Example III

Eddiksyre (6 g) og trietylortoacetat (16,2 g) ble; blandet og etylamin (12,9 g av 70% vandig løsning) ble tilsatt dråpevis. En rundkolbe ble utstyrt med en kondensator for å forhin-dre tap av etylamin. Blandingen ble så kokt under tilbakeløp i 2 timer ved 80°C. Det flyktige materiale fikk destillere av og inn i en Dean Stark-felle. Prøven ble kokt under tilbakeløp ved en temperatur i kolben på 14 0°C. 21 ml av materialet ble tatt ut og blandingen ble avkjølt over natten. Materialet ble så fortynnet med metylenklorid (50 ml). Den resulterende løs-ning ble så helt i vann (250 ml) som inneholdt natriumkarbonat (50 g). Vannets pH-verdi etter ekstraksjon ble målt til 11. Blandingen ble så overført til en skilletrakt og fikk skille seg. Den underliggende organiske fase ble tatt ut og kalium-hydroksyd-pelleter (ca. 5 g) ble tilsatt for å absorbere gjen-værende vann og for å fullstendiggjøre nøytralisasjon av amidin-acetatet. Etter filtrering ble resten av væsken destillert ved 65 torr. Ca. 1 ml væsken var tilbake. Analyse av denne væske viste forurensning. Acetic acid (6 g) and triethyl orthoacetate (16.2 g) were; mixed and ethylamine (12.9 g of 70% aqueous solution) was added dropwise. A round bottom flask was fitted with a condenser to prevent loss of ethylamine. The mixture was then refluxed for 2 hours at 80°C. The volatile material was allowed to distill off and into a Dean Stark trap. The sample was boiled under reflux at a temperature in the flask of 140°C. 21 ml of the material was withdrawn and the mixture was cooled overnight. The material was then diluted with methylene chloride (50 mL). The resulting solution was then poured into water (250 ml) containing sodium carbonate (50 g). The pH value of the water after extraction was measured to be 11. The mixture was then transferred to a separatory funnel and allowed to separate. The underlying organic phase was withdrawn and potassium hydroxide pellets (about 5 g) were added to absorb residual water and to complete neutralization of the amidine acetate. After filtration, the rest of the liquid was distilled at 65 torr. About. 1 ml of the liquid was back. Analysis of this liquid showed contamination.

Eksempel IV Example IV

En blanding av etylortoformiat (34 g) og eddiksyre (13,8 g) ble oppvarmet til tilbakeløp (ca. 100°C). Amin [CH3(CH2)3NH2, 33,6 g] ble hurtig tilsatt. Blandingen ble kokt ved tilbakeløp i 2 timer. Apparatet ble så utstyrt med en Dean Stark-felle og flyktig materiale (ca. 40 ml) ble fjernet inntil temperaturen i kolben hurtig steg til 160°C. Prøven ble så avkjølt og ristet i en skilletrakt med eter og vann (300 ml) som inneholdt natriumkarbonat (50 g). Det dannet seg tre lag som ble skilt fra hverandre. Hvert lag fikk stå i et beger over natten slik at eteren kunne fordampe. Ca. 25 ml av hvert lag ble igjen, og de ble alle forenet og destillert ved 0,9 torr. To fraksjoner ble tatt ut, én ved 85°C og 0,9 torr (3,05 g) og den andre ved 90°C og 0,9 torr (4,13 g). Disse fraksjoner viste en blanding av amidin og amid, muligens acetal og formamid. A mixture of ethyl orthoformate (34 g) and acetic acid (13.8 g) was heated to reflux (about 100°C). Amine [CH 3 (CH 2 ) 3 NH 2 , 33.6 g] was quickly added. The mixture was refluxed for 2 hours. The apparatus was then fitted with a Dean Stark trap and volatile material (about 40 ml) was removed until the temperature in the flask rapidly rose to 160°C. The sample was then cooled and shaken in a separatory funnel with ether and water (300 ml) containing sodium carbonate (50 g). Three teams formed and separated from each other. Each layer was left in a beaker overnight to allow the ether to evaporate. About. 25 mL of each layer remained and they were all combined and distilled at 0.9 torr. Two fractions were taken, one at 85°C and 0.9 torr (3.05 g) and the other at 90°C and 0.9 torr (4.13 g). These fractions showed a mixture of amidine and amide, possibly acetal and formamide.

Eksempel V Example V

Amidinet ifølge eksempel IV ble også fremstilt som føl-ger: En blanding av eddiksyre (13,8 g) og etylortoformiat (34 g) ble oppvarmet til tilbakeløp (ca. 100°C). Amin [33,6 g CH3(CH2)3NH2] ble hurtig tilsatt ved hjelp av en tilsetnings-trakt. Blandingen ble så kokt under tilbakeløp i 2 timer og stod så over helgen, hvoretter.den ble utstyrt med en Dean Stark-felle og flyktig materiale ble samlet opp (ca. 40 ml teoretisk). Etanol (35 ml) ble fjernet. Temperaturen i kolben steg til 160°C. Den ravgule, viskøse væske ble blandet med eter (200 ml) og 10% kaustisk forbindelse/vann (10 ml) ble tilsatt til eterblandingen for å omvandle amidinacetatet til fritt amidin og vannet ble trukket av. pH-verdien i vannet var 11. Eterblandingen ble fordampet på en rotasjonsfordamper og det forble ca. 4 0 ml viskøs ravgul væske. Denne del ble destillert, idet én fraksjon ble tatt ut ved 80°C og 0,7 torr. Det ble fremstilt en vannhvit, lett viskøs væske. NMR-spektro-skopi bekreftet produktets amidinstruktur. The amidine according to example IV was also prepared as follows: A mixture of acetic acid (13.8 g) and ethyl orthoformate (34 g) was heated to reflux (approx. 100°C). Amine [33.6 g CH3(CH2)3NH2] was quickly added using an addition funnel. The mixture was then refluxed for 2 hours and then stood over the weekend, after which it was fitted with a Dean Stark trap and volatiles were collected (about 40 ml theoretical). Ethanol (35 mL) was removed. The temperature in the flask rose to 160°C. The amber viscous liquid was mixed with ether (200 mL) and 10% caustic/water (10 mL) was added to the ether mixture to convert the amidine acetate to free amidine and the water was drawn off. The pH value in the water was 11. The ether mixture was evaporated on a rotary evaporator and there remained approx. 4 0 ml viscous amber liquid. This part was distilled, one fraction being taken out at 80°C and 0.7 torr. A water-white, slightly viscous liquid was produced. NMR spectroscopy confirmed the amidine structure of the product.

Eksempel VI Example VI

Etylortoformiat (17 g) ble oppvarmet til ca. 100°C og benzylamin (24,6 g) ble hurtig tilsatt. Blandingen ble oppvarmet til tilbakeløp. Når temperaturen i kolben nådde ca. 140°C, begynte noe som syntes å være etanol å destillere av. Ca. 11 ml væske destillerte inn i en Dean Stark-felle. Destillasjonen ble avbrutt idet temperaturen i kolben nådde ca. 150°C. Det dannet seg krystaller som ble renset ved omkrystallisering i heksan. Det ble beregnet et utbytte på ca. 52%. Ethyl orthoformate (17 g) was heated to approx. 100°C and benzylamine (24.6 g) was quickly added. The mixture was heated to reflux. When the temperature in the flask reached approx. 140°C, what appeared to be ethanol began to distill off. About. 11 mL of liquid distilled into a Dean Stark trap. The distillation was interrupted when the temperature in the flask reached approx. 150°C. Crystals formed which were purified by recrystallization in hexane. A dividend of approx. 52%.

Eksempel VII Example VII

Trietylortoformiat (17 g) ble anbrakt i en 250 ml rundkolbe og oppvarmet til ca. 100°C. Etanolamin (14 g) ble tilsatt på én gang og blandingen ble kokt under tilbakeløp i 8 timer, inntil tilbakeløpet utgjorde 20 ml etanol. NMR-analyse av produktet på dette punkt viste en urenhet og blandingen ble så destillert under vakuum og én fraksjon tatt ut ved 70 - 75°C og 20 torr. Et utbytte på ca. 50% ble beregnet. Triethyl orthoformate (17 g) was placed in a 250 ml round bottom flask and heated to approx. 100°C. Ethanolamine (14 g) was added at once and the mixture was refluxed for 8 hours, until the reflux amounted to 20 ml of ethanol. NMR analysis of the product at this point showed an impurity and the mixture was then distilled under vacuum and one fraction withdrawn at 70-75°C and 20 torr. A dividend of approx. 50% was calculated.

Eksempel VIII Example VIII

Trietylortoformiat (17 g) ble anbrakt i en rundkolbe og oppvarmet til ca. 100°C. Dietylentriamin (47,5 g) ble tilsatt i én dosering og blandingen ble kokt under tilbakeløp i flere timer ved ca. 140°C før det ble oppdaget noe væske som ble skilt fra ved hjelp av Dean Stark-fellen. Reostatenergien ble øket for å øke oppsamlingshastigheten for væsken og 15 ml etanol ble utvunnet i fellen. Produktet ble destillert under vakuum og det ble tatt ut to fraksjoner, én ved 80 - 90°C ved 20 torr (sannsynligvis ureagerte utgangsmaterialer) og den andre ved 90 - 100°C ved 20 torr. H1NMR av fraksjonen som kokte ved 90 - 100°C viste bare en liten mengde av dannet produkt. Den sistnevnte fraksjon inneholdt sannsynligvis stort sett ureagert utgangsmateriale. Triethyl orthoformate (17 g) was placed in a round bottom flask and heated to approx. 100°C. Diethylenetriamine (47.5 g) was added in one portion and the mixture was refluxed for several hours at approx. 140°C before any liquid was detected which was separated using the Dean Stark trap. The rheostat energy was increased to increase the collection rate of the liquid and 15 ml of ethanol was recovered in the trap. The product was distilled under vacuum and two fractions were taken, one at 80-90°C at 20 torr (probably unreacted starting materials) and the other at 90-100°C at 20 torr. H 1 NMR of the fraction boiling at 90-100°C showed only a small amount of product formed. The latter fraction probably contained largely unreacted starting material.

Eksempel IX Example IX

Eddiksyre (30,6 g) ble anbrakt i en 250 ml rundkolbe. Etylendiamin (30 g) ble tilsattt dråpevis over en tidsperiode på 25 minutter mens blandingen ble avkjølt eksternt i et is-bad. På dette tidspunkt dannet det seg et lyst gyllenbrunt fast stoff. Blandingen ble så oppvarmet til 23 0°C og 18 ml vann destillerte av. Prøven ble så overført til en mindre rundkolbe og destillert i vakuum inntil temperaturen i kolben nådde 18 0°C, ved hvilket punkt en hvit krystallinsk substans hadde sublimert og tilstoppet kondensatoren. Destillasjon ble derfor avbrutt. En liten mengde av det avkjølte materiale ble så anbrakt i sublimeringsapparatet under vakuum og i et varmt vannbad. En liten mengde rent materiale sublimerte. Acetic acid (30.6 g) was placed in a 250 ml round bottom flask. Ethylenediamine (30 g) was added dropwise over a period of 25 minutes while the mixture was cooled externally in an ice bath. At this point a light golden brown solid formed. The mixture was then heated to 230°C and 18 ml of water distilled off. The sample was then transferred to a smaller round bottom flask and distilled in vacuo until the temperature in the flask reached 180°C, at which point a white crystalline substance had sublimed and plugged the condenser. Distillation was therefore discontinued. A small amount of the cooled material was then placed in the sublimation apparatus under vacuum and in a hot water bath. A small amount of pure material sublimed.

Eksempel X Example X

Eddiksyre (30,6 g) ble anbrakt i en 250 ml rundkolbe. Propandiamin ble tilsatt (dråpevis for å ha den eksoterme reaksjon under kontroll) i løpet av en tidsperiode på 2 0 minutter. Reaksjonsblandingen ble avkjølt eksternt, men dette gjorde at den størknet. Den ble'derfor omrørt ved romtempera-tur i ca. 1 time og prøven stod over natten. Den ble så oppvarmet til 130°C i 8 timer inntil vannet kondenserte av. Ca. 16,5 ml vann ble destillert av og temperaturen i kolben øket til 140°C. Prøven ble så destillert under vakuum og med kondensator med varmt vann for å oppnå et hvitt, fast stoff. Fraksjoner ble tatt ut ved 80°C og 0,5 torr og ved 90 - 100°C og 0,5 torr. Den første fraksjon inneholdt sannsynligvis en uren blanding av sidereaksjoner pluss en liten mengde amidin. Acetic acid (30.6 g) was placed in a 250 ml round bottom flask. Propanediamine was added (dropwise to control the exothermic reaction) over a period of 20 minutes. The reaction mixture was cooled externally, but this caused it to solidify. It was therefore stirred at room temperature for approx. 1 hour and the sample was left overnight. It was then heated to 130°C for 8 hours until the water condensed off. About. 16.5 ml of water was distilled off and the temperature in the flask increased to 140°C. The sample was then distilled under vacuum and with hot water condenser to obtain a white solid. Fractions were taken out at 80°C and 0.5 torr and at 90 - 100°C and 0.5 torr. The first fraction probably contained an impure mixture of side reactions plus a small amount of amidine.

Eksempel XI Example XI

Forskjellige mengder av amidinene fremstilt i eksempler I Various amounts of the amidines prepared in Examples I

- X ble tilsatt til lett cyklusgass/olje (LCGO) og til kerosin (KERO) inneholdende forskjellige mengder hydrogensulfid. Hydrogensulfidet i prøven etter tilsetningen ble målt, og den resulterende minskning i hydrogensulfid-konsentrasjonen ble beregnet i henhold til dette. Mer spesifikt ble for hver test en prøve (50 ml) av det brennstoff som skulle testes anbrakt i en 59 ml flaske. Flasken ble lukket med en kapsel og oppvarmet til 37,8°C i 30 minutter i en ovn. En ønsket mengde av additivet som skulle testes ble så anbrakt i flasken og flasken ble rystet i 3 0 sekunder. En kjent mengde hydrogensulfid ble - X was added to light cycle gas/oil (LCGO) and to kerosene (KERO) containing different amounts of hydrogen sulphide. The hydrogen sulfide in the sample after the addition was measured, and the resulting decrease in hydrogen sulfide concentration was calculated accordingly. More specifically, for each test a sample (50 ml) of the fuel to be tested was placed in a 59 ml bottle. The bottle was capped and heated to 37.8°C for 30 minutes in an oven. A desired amount of the additive to be tested was then placed in the bottle and the bottle was shaken for 30 seconds. A known amount of hydrogen sulphide was

så hurtig tilsatt til brennstoffet under anvendelse av en sur kerosinløsning (typisk 30 - 50 /il av en mettet løsnincf av hydrogensulfid i kerosin) og flasken ble igjen tillukket og satt tilbake i ovnen. Etter én time ble prøven tatt ut av ovnen, ristet i 30 sekunder og helt inn i skylle-testcrlass. Deretter ble prøven skyllet med nitrogen (100 cm<3>/min.) i minst 3 0 minutter eller inntil misfarving av detektorrøret then quickly added to the fuel using an acidic kerosene solution (typically 30 - 50 µl of a saturated solution of hydrogen sulfide in kerosene) and the bottle was recapped and returned to the furnace. After one hour, the sample was taken out of the oven, shaken for 30 seconds and poured into the rinse test chamber. Then the sample was flushed with nitrogen (100 cm<3>/min.) for at least 30 minutes or until discoloration of the detector tube

ikke kunne sees i 5 minutter. Hydrogensulfid-konsentrasjonen i flytende fase ble målt. Disse resultater ble sammenlignet med forskjellige andre additiver, testet ved hjelp av samme metode og identifisert i følgende skjema: could not be seen for 5 minutes. The hydrogen sulphide concentration in the liquid phase was measured. These results were compared with various other additives, tested using the same method and identified in the following chart:

Resultatene er vist i de følgende tabeller: The results are shown in the following tables:

Eksempel XII Example XII

Ytterligere tester ble gjennomført i henhold til fremgangsmåten i eksempel XI, men med restolje fra Arco Petroleum og med additivene betegnet som SB4 og SBll i eksempel XI, additivet fra eksempel VI og de følgende to additiver: Further tests were carried out according to the procedure in Example XI, but with residual oil from Arco Petroleum and with the additives designated as SB4 and SB11 in Example XI, the additive from Example VI and the following two additives:

Den opprinnelige H2S-konsentrasjon var 1000 ppm. De følgende resultater ble oppnådd. The initial H2S concentration was 1000 ppm. The following results were obtained.

Claims (10)

1. Fremgangsmåte for fjerning eller minskning av hydrogensulfid i et vandig medium og/eller et hydrokarbonmedium, karakterisert ved at den omfatter at mediet bringes i kontakt med en effektiv mengde av et amidin valgt fra gruppen som består av monoamidiner med fra 1 til ca. 18 karbonatomer og poiyamidiner omfattende fra 2 til 3 amidingrupper med fra 1 til ca. 18 karbonatomer pr. amidingruppe.1. Method for removing or reducing hydrogen sulfide in an aqueous medium and/or a hydrocarbon medium, characterized in that it comprises bringing the medium into contact with an effective amount of an amidine selected from the group consisting of monoamidines with from 1 to approx. 18 carbon atoms and polyamidines comprising from 2 to 3 amidine groups with from 1 to approx. 18 carbon atoms per amidine group. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at amidinet er en av mono-amidin-forbindelsene som tilsvarer formlene hvor R, R<1>, R<2> og R<3> på uavhengig vis velges fra H, alkylgrupper med opptil ca. 18 karbonatomer og arylgrupper med opptil ca. 18 karbonatomer, og hvor R<4> er en alkylengruppe med opptil ca. 18 karbonatomer, forutsatt at det totale antall karbonatomer i R, R<1>, R<2>, R<3> og R<4> som er til stede i forbindelsen er fra 1 til ca. 18.2. Method according to claim 1, characterized in that the amidine is one of the mono-amidine compounds corresponding to the formulas where R, R<1>, R<2> and R<3> are independently selected from H, alkyl groups with up to approx. 18 carbon atoms and aryl groups with up to approx. 18 carbon atoms, and where R<4> is an alkylene group with up to approx. 18 carbon atoms, provided that the total number of carbon atoms in R, R<1>, R<2>, R<3> and R<4> present in the compound is from 1 to about 18. 3. Fremgangsmåte ifølge krav 1, karakterisert ved at amidinet er et poly-amidin tilsvarende formelen A1_R5_A2 eller hvor A<1>, A<2> og A<3> på uavhengig vis velges fra hvor R, Rl^R<2>Qg R<3> av hver av A1, A<2> og A<3> på uavhengig vis velges fra H, alkylgrupper med opptil 18 karbonatomer og arylgrupper med opptil 18 karbonatomer, og R<4> i hver av A<1>, A<2> og A<3> velges på uavhengig vis blant alkylengrupper med opptil 18 karbonatomer, under forutsetning av at det totale antall karbonatomer i R<1>, R2, R3 og R<4> pr. A er fra 1 til ca. 18; R<5> er en alkylengruppe med opptil 6 karbonatomer eller en arylengruppe med opptil 6 karbonatomer, og R<6> er en alkylengruppe med opptil 10 karbonatomer eller en arylengruppe med opptil ca. 10 karbonatomer.3. Method according to claim 1, characterized in that the amidine is a polyamidine corresponding to the formula A1_R5_A2 or where A<1>, A<2> and A<3> are independently selected from where R, Rl^R<2>Qg R<3> of each of A1, A<2> and A<3> independently selected from H, alkyl groups of up to 18 carbon atoms and aryl groups of up to 18 carbon atoms, and R<4> in each of A<1>, A<2> and A<3> is independently selected from alkylene groups of up to 18 carbon atoms, on the condition that the total number of carbon atoms in R<1>, R2, R3 and R<4> per A is from 1 to approx. 18; R<5> is an alkylene group of up to 6 carbon atoms or an arylene group of up to 6 carbon atoms, and R<6> is an alkylene group of up to 10 carbon atoms or an arylene group of up to approx. 10 carbon atoms. 4. Fremgangsmåte ifølge krav 1, karakterisert ved at amidinet har en pKa-verdi på minst ca. 5.4. Method according to claim 1, characterized in that the amidine has a pKa value of at least approx. 5. 5. Fremgangsmåte ifølge krav 4, karakterisert ved at amidinet har en pKa-verdi på minst ca. 10.5. Method according to claim 4, characterized in that the amidine has a pKa value of at least approx. 10. 6. Fremgangsmåte ifølge krav 2, karakterisert ved at R<1> på uavhengig vis velges fra gruppen som består av hydrogen- og arylgrupper.'6. Method according to claim 2, characterized in that R<1> is independently selected from the group consisting of hydrogen and aryl groups.' 7. Fremgangsmåte ifølge krav 6, karakterisert ved at R<1> er en arylgruppe.7. Method according to claim 6, characterized in that R<1> is an aryl group. 8. Fremgangsmåte ifølge krav 7, karakterisert ved at R<1> er en arylgruppe som er substituert med en elektrontiltrekkende gruppe.8. Method according to claim 7, characterized in that R<1> is an aryl group which is substituted with an electron-withdrawing group. 9. Fremgangsmåte ifølge krav 2, karakterisert ved at R, R<1>, R<2> og R<3> på uavhengig vis velges blant lavere alkylgrupper, hydrogen, og cykloalkylgrupper.9. Method according to claim 2, characterized in that R, R<1>, R<2> and R<3> are independently selected from lower alkyl groups, hydrogen and cycloalkyl groups. 10. Fremgangsmåte ifølge krav 8, karakterisert ved at R, R<2> og R<3> på uavhengig vis velges fra gruppen som består av cykliske grupper og alkenylaminer.10. Method according to claim 8, characterized in that R, R<2> and R<3> are independently selected from the group consisting of cyclic groups and alkenyl amines.
NO922845A 1991-07-18 1992-07-17 Method for removing or reducing hydrogen sulfide content in hydrocarbons or water NO179856C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/732,376 US5223127A (en) 1991-07-18 1991-07-18 Hydrogen sulfide scavengers in fuels, hydrocarbons and water using amidines and polyamidines

Publications (4)

Publication Number Publication Date
NO922845D0 NO922845D0 (en) 1992-07-17
NO922845L NO922845L (en) 1993-01-19
NO179856B true NO179856B (en) 1996-09-23
NO179856C NO179856C (en) 1997-01-02

Family

ID=24943290

Family Applications (1)

Application Number Title Priority Date Filing Date
NO922845A NO179856C (en) 1991-07-18 1992-07-17 Method for removing or reducing hydrogen sulfide content in hydrocarbons or water

Country Status (8)

Country Link
US (1) US5223127A (en)
EP (1) EP0524723A1 (en)
JP (1) JPH05230470A (en)
CA (1) CA2071340A1 (en)
MX (1) MX9204217A (en)
NO (1) NO179856C (en)
OA (1) OA10063A (en)
WO (1) WO1993002155A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567212A (en) * 1995-04-27 1996-10-22 Petrolite Corporation Use of olefinic imines to scavenge sulfur species
US5752990A (en) * 1996-03-29 1998-05-19 Exxon Research And Engineering Company Composition and method for reducing combustion chamber deposits, intake valve deposits or both in spark ignition internal combustion engines
US6242618B1 (en) 2000-03-21 2001-06-05 The Lubrizol Corporation H2S scavengers for polysulfide products and methods for scavenging H2S from polysulfide products
WO2002086021A1 (en) * 2001-04-25 2002-10-31 Clearwater International, LLC. Treatment of hydrocarbons containing sulfides
US7211665B2 (en) * 2001-11-09 2007-05-01 Clearwater International, L.L.C. Sulfide scavenger
US8562820B2 (en) * 2001-11-09 2013-10-22 Clearwater International, L.L.C. Sulfide scavenger
US7985881B2 (en) 2007-09-12 2011-07-26 Guard Products Llc Aromatic imine compounds for use as sulfide scavengers
US9708547B2 (en) 2007-10-15 2017-07-18 Baker Hughes Incorporated Water-based formulation of H2S/mercaptan scavenger for fluids in oilfield and refinery applications
US8366914B2 (en) * 2007-10-15 2013-02-05 Baker Hughes Incorporated Multifunctional scavenger for hydrocarbon fluids
MY148744A (en) * 2009-05-05 2013-05-31 Dorf Ketal Chemicals India Private Ltd Method of scavenging hydrogen sulphide from hydrocarbon stream
US9938470B2 (en) 2012-05-10 2018-04-10 Baker Hughes, A Ge Company, Llc Multi-component scavenging systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2687962A (en) * 1953-01-19 1954-08-31 Universal Oil Prod Co Stabilization of organic compounds
US3645896A (en) * 1969-01-10 1972-02-29 Marathon Oil Co Film forming hydrazine-containing corrosion inhibitor
GB2010237B (en) * 1977-10-31 1982-06-16 Exxon Research Engineering Co Brine compatible corrosion inhibitors
US4212843A (en) * 1978-09-15 1980-07-15 Petrolite Corporation Δ-2 Tetrahydropyrimidines as corrosion inhibitors
US4321202A (en) * 1979-12-26 1982-03-23 General Electric Company 1-Methyl-2(alkylimino)pyrrolidines and 1-methyl 2(cycloalkylimino) pyrrolidines
US4388213A (en) * 1982-02-26 1983-06-14 Basf Aktiengesellschaft Cyclic amidine based corrosion inhibitors which inhibit corrosion caused by CO2 and H2 S
US4713184A (en) * 1985-09-26 1987-12-15 Zaid Najib H Dispersed oil soluble corrosion inhibitor and water soluble phosphonate scale inhibitor composition
GB8602250D0 (en) * 1986-01-30 1986-03-05 British Petroleum Co Removing hydrogen sulphide from crude oil
AU630937B2 (en) * 1989-06-30 1992-11-12 Petrolite Corporation Suppression of the evolution of hydrogen sulfide gases from petroleum residua

Also Published As

Publication number Publication date
NO922845D0 (en) 1992-07-17
WO1993002155A1 (en) 1993-02-04
JPH05230470A (en) 1993-09-07
MX9204217A (en) 1994-05-31
US5223127A (en) 1993-06-29
CA2071340A1 (en) 1993-01-19
NO179856C (en) 1997-01-02
EP0524723A1 (en) 1993-01-27
NO922845L (en) 1993-01-19
OA10063A (en) 1996-10-14

Similar Documents

Publication Publication Date Title
CA2007965C (en) Suppression of the evolution of hydrogen sulfide gases from petroleum residua
US7264786B2 (en) Method of scavenging hydrogen sulfide and/or mercaptans from fluid and gas streams
NO179856B (en) Method for removing or reducing hydrogen sulfide content in hydrocarbons or water
EP2707471B1 (en) Ortho-phenylphenol compounds as markers for hydrocarbons and other fuels and oils
KR20110018383A (en) Ionic liquids and methods for using the same
CN107418641B (en) High-temperature-resistant desulfurizer for oil and gas fields and preparation method thereof
EP2445995A1 (en) Scavenger compositions and their use
PT2850161T (en) Tritylated alkyl aryl ethers
CN110655955A (en) Neutralization corrosion inhibitor and preparation method thereof
WO2015123329A1 (en) Process for scavenging hydrogen sulfide present in a fluid stream
NO155882B (en) N-SUBSTITUTED SUXINIMIDES, AND ENGINE FUEL MIXTURE.
TW201428095A (en) THPE ethers
EP0405719A1 (en) Suppression of the evolution of hydrogen sulfide gases from petroleum residua
CN106520099A (en) Wax containing thickened oil wax crystal dispersing agent and preparation method thereof
US11945999B2 (en) Hydrogen sulphide and mercaptans scavenging compositions
Clark The Decomposition of Trichloroacetic acid alone and in Glycerol
CN101434564B (en) Preparation method of nitrone
RU2766227C1 (en) Method for protecting steel against corrosion in the mineralized water phase of water-oil emulsions
US4496368A (en) Isopropylidene malonate-N-alkyl alkylenediamine condensation products
US20190367819A1 (en) Methods for reducing hydrogen sulfide in crude oil
US2307455A (en) Gum inhibitor
US4814447A (en) Preparation of hydroxyalkylpiperazinones by reacting an alkylene oxide with decahydropyrazino[2,3-b]pyrazine or its substituted derivatives
WO2019234403A1 (en) Method and composition for h2s scavenging comprising an imine
US11952538B2 (en) Hydrogen sulphide and mercaptans scavenging compositions
EP4148110A1 (en) Hydrogen sulphide and mercaptans scavengers