NO176475B - Process for catalytic dehydrogenation of paraffins - Google Patents

Process for catalytic dehydrogenation of paraffins Download PDF

Info

Publication number
NO176475B
NO176475B NO890484A NO890484A NO176475B NO 176475 B NO176475 B NO 176475B NO 890484 A NO890484 A NO 890484A NO 890484 A NO890484 A NO 890484A NO 176475 B NO176475 B NO 176475B
Authority
NO
Norway
Prior art keywords
catalyst
metal
temperature
treatment
platinum
Prior art date
Application number
NO890484A
Other languages
Norwegian (no)
Other versions
NO890484D0 (en
NO890484L (en
NO176475C (en
Inventor
Georges De Clippeleir
Elizabeth Baumann Ofstad
Steinar Kvisle
Original Assignee
Labofina Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Labofina Sa filed Critical Labofina Sa
Publication of NO890484D0 publication Critical patent/NO890484D0/en
Publication of NO890484L publication Critical patent/NO890484L/en
Publication of NO176475B publication Critical patent/NO176475B/en
Publication of NO176475C publication Critical patent/NO176475C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals
    • C07C5/417Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

Oppfinnelsen angår en framgangsmåte for katalytisk dehydrogenering av parafiniske hydrokarboner og propan, som angitt i den innledende del av henholdsvis patentkrav 1 og 8. The invention relates to a method for catalytic dehydrogenation of paraffinic hydrocarbons and propane, as stated in the introductory part of patent claims 1 and 8 respectively.

Bakgrunn. Background.

Katalytisk dehydrogenering av hydrokarboner har vært utført i mange år og utgjør en viktig katalytisk prosess sett i lys av den økende etterspørsel for dehydrogenerte produkter som kan foredles i forskjellige former, slik som bensin med høyt oktan tall, plastmaterialer og syntetiske gummier. Catalytic dehydrogenation of hydrocarbons has been carried out for many years and constitutes an important catalytic process in light of the increasing demand for dehydrogenated products that can be refined into various forms, such as high octane petrol, plastics and synthetic rubbers.

Videre, i lys av økende produksjon av LPG (flytende naturgass), synes det særlig interessant å konvertere en del av disse parafiniske hydrokarboner til dehydrogenerte produkter, slik som propylen, som er særlig interessant for framstilling av plastmaterialer. Furthermore, in light of increasing production of LPG (liquefied natural gas), it seems particularly interesting to convert a part of these paraffinic hydrocarbons into dehydrogenated products, such as propylene, which is particularly interesting for the production of plastic materials.

Katalytisk dehydrogenering av hydrokarboner utføres i nærvær av katalytiske sammensetninger inneholdendene platina avsatt på et bæremateriale. De katalytiske sammensetninger kan også inneholde andre katalytisk aktive metaller slik som tinn eller indium og andre aktivatorer basert på alkali- eller jordalkalimetaller. Catalytic dehydrogenation of hydrocarbons is carried out in the presence of catalytic compositions containing platinum deposited on a support material. The catalytic compositions may also contain other catalytically active metals such as tin or indium and other activators based on alkali or alkaline earth metals.

Slike prosesser og katalytiske sammensetninger er beskrevet f.eks. i US patentskrifter 2.479.209, 2.602.772, 2.930.763, 3.531.543, 3.745.112, 3.892.657, 3.909.451, og videre i US-patentene 4.329.258, 4.363.721 og 4.430.517. Such processes and catalytic compositions are described e.g. in US patents 2,479,209, 2,602,772, 2,930,763, 3,531,543, 3,745,112, 3,892,657, 3,909,451, and further in US patents 4,329,258, 4,363,721 and 4,430,517.

Videre er det også i de fleste av disse patentene beskrevet bruk av et halogen for å forbedre utbytte av dehydrogeneringsreaksjonen. Furthermore, most of these patents also describe the use of a halogen to improve the yield of the dehydrogenation reaction.

Til tross for alle disse allerede foreslåtte framgangsmåter, når de anvendes for å dehydrogenere propan, vil imidlertid utbyttet ved reaksjonen ved 600°C ikke overstige omtrent 30-35%, dvs. 70-81% i forhold til den teoretiske konverteringen, tatt i betraktning de termodynamiske begrensninger. However, despite all these already proposed procedures, when used to dehydrogenate propane, the yield of the reaction at 600°C will not exceed approximately 30-35%, i.e. 70-81% in relation to the theoretical conversion, taking into account the thermodynamic limitations.

Det er derfor et behov til å frembringe en framgangsmåte for dehydrogenering av parafiniske hydrokarboner som muliggjør betydelige forbedringer i utbytte. There is therefore a need to produce a process for the dehydrogenation of paraffinic hydrocarbons which enables significant improvements in yield.

US patentskrift 4.880.764 beskriver en katalysator omfattende platina, alkali- eller jordalkalimetall, men inneholder også elementer fra gruppe IVA i det periodiske system. Både katalysatoren og dens framstillingsmåte er forskjellig fra den som anvendes i foreliggende framgangsmåte. US patent 4,880,764 describes a catalyst comprising platinum, alkali or alkaline earth metal, but also containing elements from group IVA in the periodic table. Both the catalyst and its production method are different from that used in the present method.

US patentskrift 3.649.565 beskriver også en katalysator inneholdende en platinagruppe-komponent, en bly-komponent og alkali- eller jordalkalimetaUer, hvis framstilling er forskjellig fra foreliggende. US patent 3,649,565 also describes a catalyst containing a platinum group component, a lead component and alkali or alkaline earth metals, the preparation of which is different from the present one.

I tilknytning til den foreliggende oppfinnelsen er imidlertid framstillingsmåten og prepareringeiB av katalysatoren kritisk. In connection with the present invention, however, the method of manufacture and preparation of the catalyst is critical.

Formål. Purpose.

Formålet med foreliggende oppfinnelsen er å frambringe en forbedret framgangsmåte for dehydrogenering av parafiniske hydrokarboner med fra 3 til 6 karbonatomer i nærvær av en katalysator inneholdende i det minste ett metall valgt fra platinagruppen, et metall valgt fra turngruppen og et aktiverende metall. The purpose of the present invention is to produce an improved process for the dehydrogenation of paraffinic hydrocarbons with from 3 to 6 carbon atoms in the presence of a catalyst containing at least one metal selected from the platinum group, a metal selected from the turn group and an activating metal.

Et annet formål med oppfinnelsen er å frambringe en forbedret framgangsmåte for dehydrogenering av propan til propylen i nærvær av en katalysator inneholdende et eller flere metaller valgt fra platinagruppen, et metall valgt fra turngruppen og en aktivator av typen alkali- eller jordalkalimetall, hvor avsetningen av det ene eller de flere metallene fra platinagruppen på katalysatoren utføres i to trinn. Another object of the invention is to produce an improved process for the dehydrogenation of propane to propylene in the presence of a catalyst containing one or more metals selected from the platinum group, a metal selected from the turn group and an activator of the alkali or alkaline earth metal type, where the deposition of the one or more metals from the platinum group on the catalyst is carried out in two steps.

Oppfinnelsen. The invention.

Disse formål oppnås med en framgangsmåte for hydrogenering av parafininske hydrokarboner og propan, som angitt i den karakteriserende del av henholdsvis patentkrav 1 og 8. Ytterligere fordelaktige trekk framgår av de tilhørende uselvstendige kravene. These objects are achieved with a procedure for the hydrogenation of paraffinic hydrocarbons and propane, as stated in the characterizing part of patent claims 1 and 8, respectively. Further advantageous features appear from the associated independent claims.

Framgangsmåten under den foreliggende oppfinnelsen for katalytisk dehydrogenering av parafiniske hydrokarboner med fra 3 til 6 karbonatomer i nærvær av en katalysator bestående av et aluminiumoksid-bæremateriale inneholdende minst ett metall fra platinagruppen sammen med en ko-katalysator og en aktivator utøves ved å føre råstoffet som skal dehydrogeneres over en katalysator inneholdende fra 0,1 til 2 vektprosent av minst ett metall fra platinagruppen, fra 0,1 til 2 vektprosent av minst ett metall fra turngruppen som ko-katalysator og fra 0,5 til 5 vektprosent av i det minste ett alkali- eller jordalkalimetall som aktivator, hvor nevnte katalysator oppnås ved å underkaste aluminiumoksid-bærematerialet, inneholdende ko-katalysatoren kalsinering ved en temperatur mellom 450 og 550°C, The method of the present invention for the catalytic dehydrogenation of paraffinic hydrocarbons having from 3 to 6 carbon atoms in the presence of a catalyst consisting of an aluminum oxide support material containing at least one metal from the platinum group together with a co-catalyst and an activator is carried out by passing the raw material to is dehydrogenated over a catalyst containing from 0.1 to 2 weight percent of at least one metal from the platinum group, from 0.1 to 2 weight percent of at least one metal from the turn group as co-catalyst and from 0.5 to 5 weight percent of at least one alkali - or alkaline earth metal as activator, where said catalyst is obtained by subjecting the aluminum oxide support material, containing the co-catalyst, to calcination at a temperature between 450 and 550°C,

- for en første behandling med en forbindelse av metall fra platinagruppen, hvor nevnte første behandling etterfølges av kalsinering i luft og reduksjon i nærvær av hydrogen ved en temperatur mellom 450 og 550°C; - deretter en mellomliggende behandling for å avsette aktivatoren, hvor nevnte mellomliggende behandling etterfølges av kalsinering ved en temperatur mellom 380 og 550°C; og - en andre behandling med en forbindelse av metall fra platinagruppen, hvor nevnte andre behandling etterfølges av kalsinering ved en temperatur ikke overstigende 525°C, - for a first treatment with a compound of metal from the platinum group, said first treatment being followed by calcination in air and reduction in the presence of hydrogen at a temperature between 450 and 550°C; - then an intermediate treatment to deposit the activator, where said intermediate treatment is followed by calcination at a temperature between 380 and 550°C; and - a second treatment with a compound of metal from the platinum group, where said second treatment is followed by calcination at a temperature not exceeding 525°C,

hvor dehydrogeneringen utføres i nærvær av nevnte katalysator ved en temperatur mellom 400 og 800°C, ved et trykk fra 0,001 til 10 atmosfærer og en vektromhastighet (WHSV) mellom 0,1 og 21. where the dehydrogenation is carried out in the presence of said catalyst at a temperature between 400 and 800°C, at a pressure from 0.001 to 10 atmospheres and a weight space velocity (WHSV) between 0.1 and 21.

Framgangsmåten under den foreliggende oppfinnelsen kan anvendes for dehydrogenering av parafiniske hydrokarboner med fra 3 til 6 karbonatomer, og særlig for dehydrogenering av propan og butaner. The method of the present invention can be used for the dehydrogenation of paraffinic hydrocarbons with from 3 to 6 carbon atoms, and in particular for the dehydrogenation of propane and butanes.

Søkeren har uventet funnet at ved anvendelse av framgangsmåten under oppfinnelsen ble det mulig å øke utbytte av dehydrogeneringsreaksjonen betydelig sammenlignet med den termodynamiske likevekt, hvor nevnte utbytte var nære ved å overskride 90% når propan ble dehydrogenert ved en temperatur på omtrent 600°C. The applicant has unexpectedly found that by using the method of the invention it was possible to increase the yield of the dehydrogenation reaction significantly compared to the thermodynamic equilibrium, where said yield was close to exceeding 90% when propane was dehydrogenated at a temperature of approximately 600°C.

Katalysatoren brukt under den foreliggende oppfinnelsen omfatter et aluminiumoksid-bæremateriale hvor det er introdusert i det minste ett metall fra platinagruppen (heri definert og referert til som metallet fra platinagruppen), et metall fra turngruppen (som heri definert og referert til som metallet fra turngruppen) og en aktivator av alkali- eller jordalkalimetalltype (som heri definert og referert til som aktivatoren). Metallet fra platinagruppen, som heri definert, kan være valgt fra gruppen bestående av platina, palladium, rhenium, iridium, rhodium, osmium, ruthenium eller blandinger derav, hvor platina foretrekkes. Metallet fra turngruppen, som heri definert, kan være valgt fra gruppen bestående av tinn, germanium, bly eller blandinger derav, hvor tinn foretrekkes, som kan være tilstede som en forbindelse slik som oksidet. Aktivatoren kan være et alkalimetall valgt fra gruppen bestående av cesium, rubidium, kalium, natrium, litium eller blandinger derav, eller et jordalkalimetall valgt fra gruppen bestående av barium, strontium, kalsium, magnesium eller blandinger derav, eller også blandinger av alkali- og jordalkalimetaller, hvor kalium foretrekkes; andre aktivatorer som er kjent å være effektive kan også komme i betraktning. The catalyst used under the present invention comprises an aluminum oxide support material where at least one metal from the platinum group (herein defined and referred to as the metal from the platinum group), one metal from the turn group (herein defined and referred to as the metal from the turn group) has been introduced. and an alkali or alkaline earth metal type activator (as herein defined and referred to as the activator). The platinum group metal, as defined herein, may be selected from the group consisting of platinum, palladium, rhenium, iridium, rhodium, osmium, ruthenium or mixtures thereof, platinum being preferred. The metal of the turn group, as defined herein, may be selected from the group consisting of tin, germanium, lead or mixtures thereof, tin being preferred, which may be present as a compound such as the oxide. The activator can be an alkali metal selected from the group consisting of cesium, rubidium, potassium, sodium, lithium or mixtures thereof, or an alkaline earth metal selected from the group consisting of barium, strontium, calcium, magnesium or mixtures thereof, or also mixtures of alkali and alkaline earth metals , where potassium is preferred; other activators known to be effective may also be considered.

Aluminiumoksidet som brukes som bæremateriale har vanligvis et spesifikt areal mellom 150 og 350m<2>/g og et porevolum mellom 0,2 og 1,2 ml/g. The aluminum oxide used as a support material usually has a specific area between 150 and 350m<2>/g and a pore volume between 0.2 and 1.2 ml/g.

Det anbefales å bruke et aluminiumoksid med en renhet høyere enn 98,5%, og hvor sih^iuminnholdet ikke overskrider 1% og jerninnholdet ikke overskrider 0,1 %. It is recommended to use an aluminum oxide with a purity higher than 98.5%, and where the sodium content does not exceed 1% and the iron content does not exceed 0.1%.

Søkeren har uventet funnet at måten og den bestemte sekvensen for avsetning av de katalytiske metallforbindelsene på bærematerialet, sammen med betingelsene for mellomliggende kalsinering har en viktig innflytelse på katalysatorens aktivitet innen rammen for en dehydrogeneringsreaksjon. The applicant has unexpectedly found that the manner and the specific sequence of deposition of the catalytic metal compounds on the support material, together with the conditions of intermediate calcination have an important influence on the activity of the catalyst within the framework of a dehydrogenation reaction.

Søkeren har funnet at ved å anvende følgende sekvens for behandling av aluminiumoksid-bærematerialet, oppnås en egnet katalysator for bruk i framgangsmåten under den foreliggende oppfinnelsen. The applicant has found that by using the following sequence for treating the aluminum oxide support material, a suitable catalyst is obtained for use in the method of the present invention.

Alummiumoksid-bærematerialet impregneres først med en forbindelse av metallet fra turngruppen, for å oppnå en konsentrasjon av nevnte metall i den ferdige katalysator mellom 0,1 og 2 vektprosent, og fortrinnsvis mellom 0,15 og 1,0 vektprosent. Som metall fra tinngruppen er tinn foretrukket. Ifølge en utførelsesform av oppfinnelsen dannes en velling av aluminiumoksid og en vandig oppløsning av tinnklorid. Vellingen tørkes ved en temperatur på 80 til 100°C. Aluminiumoksid-kaken som inneholder tinnkloridet pulveriseres så og formes til slutt til pellets som kalsineres ved en temperatur mellom 450 og 550° C i 12 til 20 timer. The aluminum oxide support material is first impregnated with a compound of the metal from the turn group, in order to achieve a concentration of said metal in the finished catalyst between 0.1 and 2 weight percent, and preferably between 0.15 and 1.0 weight percent. Tin is preferred as a metal from the tin group. According to one embodiment of the invention, a slurry of aluminum oxide and an aqueous solution of stannous chloride is formed. The curd is dried at a temperature of 80 to 100°C. The aluminum oxide cake containing the stannous chloride is then pulverized and finally formed into pellets which are calcined at a temperature between 450 and 550°C for 12 to 20 hours.

Det således dannede bærematerialet behandles så for å tilføre i dette en forbindelse av metallet fra platinagruppen. Ifølge den foreliggende oppfinnelsen behandles bærematerialet for å avsette på dette, i et første trinn, en liten del av den totale mengde av metallet fra platinagruppen som skal være til stede til slutt. Mengden av metallet fra platinagruppen som vanligvis avsettes på dette trinnet er mellom 10 % og 40% av den totale mengden av metallet fra platinagruppen. Avsetningen av nevnte metall kan utføres ved hjelp av enhver egnet teknikk slik som impregnering. Når platina skal avsettes impregneres vanligvis bærematerialet med en vandig oppløsning av klorplatinasyre. Etter denne impregneringen utsettes det nylig impregnerte bærematerialet for en kalsinering ved en temperatur mellom 450 og 550°C i 15 til 20 timer. The support material thus formed is then treated to add to it a compound of the metal from the platinum group. According to the present invention, the support material is treated in order to deposit on it, in a first step, a small part of the total quantity of the metal from the platinum group that will be present in the end. The amount of platinum group metal typically deposited at this step is between 10% and 40% of the total amount of platinum group metal. The deposition of said metal can be carried out using any suitable technique such as impregnation. When platinum is to be deposited, the support material is usually impregnated with an aqueous solution of chloroplatinic acid. After this impregnation, the newly impregnated carrier material is subjected to a calcination at a temperature between 450 and 550°C for 15 to 20 hours.

Deretter underkastes det kalsinerte bærematerialet en reduksjon i hydrogen-atmosfære ved en temperatur mellom 450 og 550°C i 1 til 4 timer. The calcined carrier material is then subjected to reduction in a hydrogen atmosphere at a temperature between 450 and 550°C for 1 to 4 hours.

Søkeren har funnet at dette reduksjonstrinnet er svært viktig og har en fordelaktig effekt på utbytte ved dehydrogenering av parafiniske hydrokarboner i nærvær av denne katalysatoren. The applicant has found that this reduction step is very important and has a beneficial effect on yield in the dehydrogenation of paraffinic hydrocarbons in the presence of this catalyst.

Før utføring av en andre behandling med metallet fra platinagruppen, underkastes bærematerialet en mellomliggende behandling med en aktivator. Before carrying out a second treatment with the metal from the platinum group, the support material is subjected to an intermediate treatment with an activator.

Alkali- eller jordalkalimetallet er fortrinnsvis godt fordelt på bærematerialet. Vanligvis er mengden av alkali- eller jordalkalimetallforbindelse tilstede på bærematerialet mellom 0,5 og 5 vektprosent og særlig mellom 0,8 og 2,5 vektprosent uttrykt som metall. Oftest avsettes kalium på bærematerialet i en mengde tilsvarende 0,8 til 2 vektprosent uttrykt som metall. Det antas at aktivatoren vanligvis vil være i form av et oksid på bærematerialet heller enn i sin metalliske form. The alkali or alkaline earth metal is preferably well distributed on the support material. Generally, the amount of alkali or alkaline earth metal compound present on the support material is between 0.5 and 5 percent by weight and in particular between 0.8 and 2.5 percent by weight expressed as metal. Most often, potassium is deposited on the support material in an amount corresponding to 0.8 to 2 percent by weight expressed as metal. It is believed that the activator will usually be in the form of an oxide on the support material rather than in its metallic form.

Aktivatoren kan være avsatt på bærematerialet i samsvar med enhver egnet framgangsmåte slik som impregnering. Det er imidlertid foretrukket å avsette aktivatoren, fortrinnsvis kalium, ved impregnering av bærematerialet med en vandig oppløsning av dets nitrat. The activator can be deposited on the support material in accordance with any suitable method such as impregnation. However, it is preferred to deposit the activator, preferably potassium, by impregnating the support material with an aqueous solution of its nitrate.

Det således impregnerte bærematerialet underkastes kalsinering ved en temperatur mellom 380 og 550°C for å dekomponere nitratet og feste oksidet av alkali- eller jordalkalimetallet på bærematerialet. Vanligvis utføres kalsineringen i luft i 3 til 7 timer. The carrier material thus impregnated is subjected to calcination at a temperature between 380 and 550°C to decompose the nitrate and fix the oxide of the alkali or alkaline earth metal on the carrier material. Usually the calcination is carried out in air for 3 to 7 hours.

Ifølge den foreliggende oppfinnelsen, avsettes til slutt metallet fra platinagruppen på det således dannede bærematerialet i en mengde tilstrekkelig til å gi et totalt innhold av nevnte metall på bærematerialet mellom 0,1 og 2 vektprosent, og fortrinnsvis mellom 0,2 og 1 vektprosent. Avsetningen av dette metallet kan utføres ved hjelp av enhver egnet teknikk slik som impregnering. På dette stadiet for behandling av bærematerialet må imidlertid fjerning av forbindelsene som allerede er avsatt på dette unngås. For dette formål har søkeren funnet at for denne andre impregneringen med metallet fra platinagruppen er det fordelaktig å bruke en vandig oppløsning av et kompleks av platina med den generelle formel (Pt L£X2, (Pt LOX4 eller (Pt L4)X2, hvor L angir en ligand valgt fra NH3, R-NH2 eller NH2-R-NH2, hvor R er et hydrokarbonradikal med fra 2 til 6 karbonatomer, fortrinnsvis fra 2 til 4 karbonatomer, og hvor X angir N03 eller et halogen. En vandig oppløsning av det aminerte komplekset med formelen (Pt(NH3)4)Cl2 er særlig foretrukket. Etter denne impregneringen tørkes det nylig impregnerte bærematerialet for så å underkastes kalsinering i luft ved en temperatur mellom 450° og 525°C i 10 til 20 timer. According to the present invention, the metal from the platinum group is finally deposited on the carrier material thus formed in an amount sufficient to give a total content of said metal on the carrier material between 0.1 and 2 percent by weight, and preferably between 0.2 and 1 percent by weight. The deposition of this metal can be carried out using any suitable technique such as impregnation. However, at this stage of processing the carrier material, removal of the compounds already deposited on it must be avoided. For this purpose, the applicant has found that for this second impregnation with the metal from the platinum group it is advantageous to use an aqueous solution of a complex of platinum with the general formula (Pt L£X2, (Pt LOX4 or (Pt L4)X2, where L denotes a ligand selected from NH3, R-NH2 or NH2-R-NH2, where R is a hydrocarbon radical having from 2 to 6 carbon atoms, preferably from 2 to 4 carbon atoms, and where X denotes NO3 or a halogen An aqueous solution of the the aminated complex with the formula (Pt(NH3)4)Cl2 is particularly preferred. After this impregnation, the newly impregnated support material is dried and then subjected to calcination in air at a temperature between 450° and 525°C for 10 to 20 hours.

I følge den foreliggende oppfinnelsen kan den således fremstilte katalysatoren brukes i dehydrogeneringsprosessen uten behov for bruk av andre aktivatorer for å øke stabiliteten eller selektiviteten, men det er forstått at de vanlige aktivatorer kan tilsettes uten å avvike fra rammen for den foreliggende oppfinnelsen. According to the present invention, the thus produced catalyst can be used in the dehydrogenation process without the need for the use of other activators to increase stability or selectivity, but it is understood that the usual activators can be added without deviating from the scope of the present invention.

Ifølge framgangsmåten under oppfinnelsen, bringes et råstoff av et parafinisk hydrokarbon med fra 3 til 6 karbonatomer, fortrinnsvis et råstoff av propan, i kontakt med katalysatoren som ovenfor beskrevet, under driftsbetingelsene for dehydrogenering. Denne prosessen kan utføres i en reaktor med fast katalysatorsjikt eller en reaktor med mobilt katalysatorsjikt eller til og med i en reaktor med fluidisert katalysatorsjikt; framgangsmåten utføres som oftest under kontinuerlige betingelser, selv om den også kan utføres satsvis. Hydrokarbonråstoffene kan behandles i flytende form, eller i en blandet fase væske-damp, eller også i dampfase. According to the method of the invention, a raw material of a paraffinic hydrocarbon with from 3 to 6 carbon atoms, preferably a raw material of propane, is brought into contact with the catalyst as described above, under the operating conditions for dehydrogenation. This process can be carried out in a fixed catalyst bed reactor or a mobile catalyst bed reactor or even in a fluidized catalyst bed reactor; the procedure is most often carried out under continuous conditions, although it can also be carried out in batches. The hydrocarbon raw materials can be processed in liquid form, or in a mixed liquid-vapor phase, or also in vapor phase.

Dehydrogeneringsprosessen utføres vanligvis i dampfase, ved en temperatur mellom 400 og 800°C ved et trykk mellom 0,01 og 10 atmosfærer og ved en vektromhastighet (WHSV) mellom 0,1 og 21 h'<1>. The dehydrogenation process is usually carried out in the vapor phase, at a temperature between 400 and 800°C at a pressure between 0.01 and 10 atmospheres and at a weight space velocity (WHSV) between 0.1 and 21 h'<1>.

Når propan brukes som råstoff er generelt temperaturen 530 til 650°C, trykket er mellom 0,5 og 3 atmosfærer og vektromhastigheten er mellom 1 og 10. When propane is used as raw material, the temperature is generally 530 to 650°C, the pressure is between 0.5 and 3 atmospheres and the weight space velocity is between 1 and 10.

Råstoffet kan fortynnes med vanlige gassformige fortynningsmidler, i molforhold vanligvis mellom 1 og 10 mol fortynningsmiddel pr mol råstoff. Som fortynningsmiddel brukes oftest N2, C02 og H20. The raw material can be diluted with usual gaseous diluents, in a molar ratio usually between 1 and 10 mol of diluent per mol of raw material. N2, CO2 and H20 are most often used as diluents.

Søkeren har også funnet at det er mer interessant å tilføre hydrogen sammen med råstoffet i molforhold generelt mellom 0,05 og 0,5 mol hydrogen pr mol råstoff, enten råstoffet også fortynnes med gassformige fortynningsmidler eller ikke. The applicant has also found that it is more interesting to add hydrogen together with the raw material in a molar ratio generally between 0.05 and 0.5 mol of hydrogen per mol of raw material, whether the raw material is also diluted with gaseous diluents or not.

Det strømmende mediet fra dehydrogeneringssonen inneholder en del uomsatt råstoff, hydrogen og dehydrogeneringsprodukter. Dette strømmende mediet avkjøles først og sendes til en separator for å separere hydrogen og gjenvinne en flytende fase rik på dehydrogenerte hydrokaroner. Denne sistnevnte fase underkastes så en serie separasjoner for å gjenvinne det ønskede produktet, dvs. propylen når propan dehydrogeneres, og resirkulere den uomsatte fasen til reaktoren. The flowing medium from the dehydrogenation zone contains some unreacted raw material, hydrogen and dehydrogenation products. This flowing medium is first cooled and sent to a separator to separate hydrogen and recover a liquid phase rich in dehydrogenated hydrocarones. This latter phase is then subjected to a series of separations to recover the desired product, i.e. propylene when propane is dehydrogenated, and recycle the unreacted phase to the reactor.

Eksempel 1. Example 1.

Framstilling av katalysatoren. Preparation of the catalyst.

Aluminiumoksid med 99,8% renhet med en spesifikk overflate på 189 m<2>/g og et porevolum på 0,94 ml/g ble brukt. Alumina of 99.8% purity with a specific surface area of 189 m<2>/g and a pore volume of 0.94 ml/g was used.

Dette aluminiumoksidet ble først impregnert med en vandig oppløsning av SnCl2. Impregneringen ble utført for å oppnå et sluttinnhold av tinn på 0,49 vektprosent. Etter denne impregneringen ble bærematerialet kalsinert ved 500°C i 18 timer. Det tinninneholdende bærematerialet ble så impregnert med en oppløsning av I^PtCl* for å avsette omtrent 0,15% platina på bærematerialet. Bærematerialet ble så underkastet en ytterligere kalsinering ved 500°C i 18 timer. Bærematerialet ble holdt i ovnen ved 500°C og overstrømmet med hydrogen i 1 time for å utføre en reduksjon. This aluminum oxide was first impregnated with an aqueous solution of SnCl2. The impregnation was carried out to achieve a final tin content of 0.49% by weight. After this impregnation, the support material was calcined at 500°C for 18 hours. The tin-containing support was then impregnated with a solution of I^PtCl* to deposit about 0.15% platinum on the support. The support material was then subjected to a further calcination at 500°C for 18 hours. The support material was kept in the oven at 500°C and flooded with hydrogen for 1 hour to effect a reduction.

Det således impregnerte bærematerialet ble så behandlet med en oppløsning av kaliumnitrat for å avsette på dette 1,00 vektprosent kalium, uttrykt som metall. The carrier material thus impregnated was then treated with a solution of potassium nitrate to deposit on it 1.00 weight percent potassium, expressed as metal.

Etter denne impregneringen ble bærematerialet underkastet kalsinering for å feste oksidet av alkalimetall på bærematerialet; hvor nevnte kalsinering ble utført i luft ved 400°C i 5 timer. After this impregnation, the support material was subjected to calcination to fix the oxide of alkali metal on the support material; where said calcination was carried out in air at 400°C for 5 hours.

Til slutt ble den andre impregneringen av bærematerialet med en platinaforbindelse utført for å oppnå et sluttinnhold av platina på 0,40 vektprosent. For å utføre denne impregneringen ble bærematerialet brakt i kontakt med en vandig oppløsning av et platinaaminert kompleks med formelen (Pt(NH3)4)Cl2. Etter impregneringen ble bærematerialet kalsinert i luft ved 500°C. Finally, the second impregnation of the support material with a platinum compound was carried out to achieve a final platinum content of 0.40% by weight. To carry out this impregnation, the carrier material was brought into contact with an aqueous solution of a platinum-aminated complex with the formula (Pt(NH3)4)Cl2. After the impregnation, the carrier material was calcined in air at 500°C.

Et propanråstoff ble dehydrogenert ved å føre det gjennom en reaktor i nærvær av katalysatoren fremstilt som beskrevet foran, og under følgende driftsbetingelser: A propane feedstock was dehydrogenated by passing it through a reactor in the presence of the catalyst prepared as described above, and under the following operating conditions:

Temperatur: 600°C Temperature: 600°C

Trykk: 1,1 atmosfære. Pressure: 1.1 atmosphere.

WHSV : 3 WHSV: 3

Hydrogen ble tilført sammen med råstoffet i et molforhold på 0,1 mol/mol råstoff. Hydrogen was added together with the raw material in a molar ratio of 0.1 mol/mol raw material.

Propylen ble gj enn vunnet fra det strømmende medium med et utbytte på 91,1 % av den termodynamiske likevekt under disse betingelsene. Propylene was still recovered from the flowing medium with a yield of 91.1% of the thermodynamic equilibrium under these conditions.

For sammenligning ble forskjellige katalysatorer fremstilt (tabell 1). For comparison, different catalysts were prepared (Table 1).

Katalysator A Catalyst A

bare en impregnering med platina ble utført. only an impregnation with platinum was carried out.

Katalysator B Catalyst B

bare en impregnering med alle de katalytiske metaller og aktivatoren ble utført. Katalysator C only one impregnation with all the catalytic metals and the activator was carried out. Catalyst C

en kalsinering og en reduksjon ble utført etter impregnering med platina, men den andre impregneringen med platina ble ikke utført. a calcination and a reduction were performed after impregnation with platinum, but the second impregnation with platinum was not performed.

Katalysator D Catalyst D

platina ble avsatt ved to impregneringer, men uten å utføre kalsinering eller reduksjon etter den første impregneringen. platinum was deposited by two impregnations, but without performing calcination or reduction after the first impregnation.

Katalysator E Catalyst E

platina ble avsatt på et Al203/Sn bæremateriale i en enkelt impregnering, uten tilsetning av aktivator. platinum was deposited on an Al203/Sn support material in a single impregnation, without the addition of activator.

Disse katalysatorene ble testet som beskrevet ovenfor for dehydrogenering av propanråstoff under driftsbetingelser identisk til de beskrevet ovenfor. Resultatene er gjenngitt i tabell n. These catalysts were tested as described above for the dehydrogenation of propane feedstock under operating conditions identical to those described above. The results are reproduced in table n.

Eksempel 2 Example 2

Forskjellige katalysatorer ble fremstilt i samsvar med framgangsmåten under oppfinnelsen (se tabell HI foran) med et aluminiumoksid identisk til det i eksempel I. Various catalysts were prepared in accordance with the method of the invention (see table HI above) with an aluminum oxide identical to that in example I.

Disse katalysatorene ble brukt til dehydrogenering av et propanråstoff i samsvar med følgende driftsbetingelser. These catalysts were used for the dehydrogenation of a propane feedstock according to the following operating conditions.

Temperatur: 600°C Temperature: 600°C

Trykk: 1,1 atmosfære (0,11 MPa) Pressure: 1.1 atmospheres (0.11 MPa)

WHSV: 3 WHSV: 3

H2/HC: 0,1 mol/mol (HC = hydrokarboner) H2/HC: 0.1 mol/mol (HC = hydrocarbons)

Resultatene oppnådd med disse katalysatorene er gjengitt i følgende tabell. The results obtained with these catalysts are reproduced in the following table.

Eksempel 6 Example 6

Katalysatorene fremstilt i eksempel 4 ble brukt for dehydrogenering av n-butanråstoff under følgende driftsbetingelser. The catalysts prepared in example 4 were used for the dehydrogenation of n-butane raw material under the following operating conditions.

Temperatur: 630°C Temperature: 630°C

Trykk: 2 atmosfærer (0,2 MPa) Pressure: 2 atmospheres (0.2 MPa)

WHSV: 5 WHSV: 5

H2/HC: 0,4 H2/HC: 0.4

Det ble oppnådd et utbytte på 72% av teoretisk og en selektivitet på 94.5%. A yield of 72% of theoretical and a selectivity of 94.5% was achieved.

Når en katalysator fremstilt slik som i sammenlignende eksempel IA ble brukt, ble det oppnådd et utbytte på bare 48% med en selektivitet på bare 93,6%. When a catalyst prepared as in Comparative Example IA was used, a yield of only 48% was obtained with a selectivity of only 93.6%.

Claims (8)

1. Framgangsmåte for katalytisk dehydrogenering av parafiniske hydrokarboner med fra 3 til 6 karbonatomer, i nærvær av en katalysator omfattende et aluminiumoksid-bæremateriale inneholdende i det minste ett metall fra platinagruppen sammen med en ko-katalysator og en aktivator karakterisert ved at råstoffet som skal dehydrogeneres føres over en katalysator inneholdende fra 0,1 til 2 vektprosent av i det minste ett metall fra platinagruppen, fra 0,1 til 2 vektprosent av i det minste ett metall fra turngruppen som ko-katalysator og fra 0,5 til 5 vektprosent av i det minste ett alkali- eller jordalkalimetall som aktivator, hvor nevnte katalysator oppnås ved å underkaste aluminiumoksid-bærematerialet, inneholdende ko-katalysatoren og kalsinert ved en temperatur mellom 450 og 550°C, - for en første behandling med en forbindelse av metall fra platinagruppen, hvor nevnte første behandling etterfølges av kalsinering i luft og reduksjon i nærvær av hydrogen ved en temperatur mellom 450 og 550°C; - en mellomliggende behandling for å avsette aktivatoren, hvor nevnte mellomliggende behandling etterfølges av kalsinering ved en temperatur mellom 380 og 550°C; og - en andre behandling med en forbindelse av metall fra platinagruppen, hvor nevnte andre behandling etterfølges av kalsinering ved en temperatur ikke overstigende 525 °C, hvor dehydrogeneringen utføres i nærvær av nevnte katalysator ved en temperatur mellom 400 og 800°C, ved et trykk mellom 0,01 og 10 atmosfærer og med en vektromhastighet mellom 0,1 og 21 h"<1>.1. Process for the catalytic dehydrogenation of paraffinic hydrocarbons with from 3 to 6 carbon atoms, in the presence of a catalyst comprising an aluminum oxide support material containing at least one metal from the platinum group together with a co-catalyst and an activator characterized in that the raw material to be dehydrogenated is passed over a catalyst containing from 0.1 to 2 weight percent of at least one metal from the platinum group, from 0.1 to 2 weight percent of at least one metal from the turn group as co-catalyst and from 0.5 to 5 weight percent of i at least one alkali or alkaline earth metal as activator, where said catalyst is obtained by subjecting the aluminum oxide support material, containing the co-catalyst and calcined at a temperature between 450 and 550°C, - to a first treatment with a compound of metal from the platinum group, where said first treatment is followed by calcination in air and reduction in the presence of hydrogen at a temperature between 450 and 550°C ; - an intermediate treatment to deposit the activator, said intermediate treatment being followed by calcination at a temperature between 380 and 550°C; and - a second treatment with a compound of metal from the platinum group, where said second treatment is followed by calcination at a temperature not exceeding 525 °C, where the dehydrogenation is carried out in the presence of said catalyst at a temperature between 400 and 800°C, at a pressure between 0.01 and 10 atmospheres and with a space velocity between 0.1 and 21 h"<1>. 2. Framgangsmåte ifølge krav 1, karakterisert ved at råstoffet som skal dehydrogeneres føres inn i en katalysator inneholdende fra 0,15 til 1 vektprosent av et metall fra turngruppen, fra 0,2 til 1 vektprosent av et metall fra platinagruppen, og fra 0,8 til 2,5 vektprosent av et alkali- eller jordalkalimetall.2. Method according to claim 1, characterized in that the raw material to be dehydrogenated is introduced into a catalyst containing from 0.15 to 1 weight percent of a metal from the turn group, from 0.2 to 1 weight percent of a metal from the platinum group, and from 0.8 to 2.5 weight percent of an alkali or alkaline earth metal. 3. Framgangsmåte ifølge krav 1, karakterisert ved at det som metall fra platinagruppen anvendes platina.3. Procedure according to claim 1, characterized in that platinum is used as a metal from the platinum group. 4. Framgangsmåte ifølge krav 1, karakterisert ved at den andre impregneringen med et metall fra platinagruppen utføres med en forbindelse med generell formel (Pt 1^) X2, (Pt 1^ X4 eller (Pt L4)X2, hvor L angir en ligand valgt fra gruppen omfattende NH3, R-NH2 eller NH2-R-NH2, hvor R er et hydrokarbonradikal med 2 til 4 karbonatomer og hvor X er N03 eller et halogen.4. Method according to claim 1, characterized in that the second impregnation with a metal from the platinum group is carried out with a compound of general formula (Pt 1^) X2, (Pt 1^ X4 or (Pt L4)X2, where L denotes a ligand selected from the group comprising NH3, R- NH 2 or NH 2 -R-NH 2 , where R is a hydrocarbon radical of 2 to 4 carbon atoms and where X is NO 3 or a halogen. 5. Framgangsmåte ifølge krav 4, karakterisert ved at (Pt(NH3)4)Cl2 brukes som platinaforbindelse for det andre impregneringstrinnet.5. Method according to claim 4, characterized in that (Pt(NH3)4)Cl2 is used as platinum compound for the second impregnation step. 6. Framgangsmåte ifølge krav 1, karakterisert ved at det som aktivator anvendes kalium.6. Method according to claim 1, characterized in that potassium is used as an activator. 7. Framgangsmåte ifølge krav 1, karakterisert ved at 0,05 til 0,5 mol hydrogen tilføres sammen med hvert mol parafinsk hydrokarbon.7. Method according to claim 1, characterized in that 0.05 to 0.5 mol of hydrogen is added together with each mol of paraffinic hydrocarbon. 8. Framgangsmåte for katalytisk dehydrogenering av propan, i nærvær av hydrogen i et molforhold fra 0,05 til 0,5 mol hydrogen pr.mol propan over en katalysator omfattende et aluminiumoksid-bæremateriale inneholdende i det minste ett metall fra platinagruppen sammen med en ko-katalysator og en aktivator, karakterisert ved at råstoffet som skal dehydrogeneres føres over en katalysator inneholdende 0,2 til 1 vektprosent platina, 0,15 til 1 vektprosent tinn som ko-katalysator og 0,8 til 2 vektprosent kalium som aktivator, hvor nevnte katalysator oppnås ved å underkaste aluminiumoksid-bærematerialet inneholdende ko-katalysatoren og kalsinert ved en temperatur mellom 450 og 550°C, - en første behandling med en platinaforbindelse, hvor nevnte første behandling etterfølges av kalsinering i luft og reduksjon i nærvær av hydrogen ved en temperatur mellom 450 og 550°C; - en mellomliggende behandling for å avsette kalium, hvor nevnte mellomliggende behandling etterfølges av kalsinering ved en temperatur mellom 380 og 550°C, og - en andre behandling med en platinaforbindelse, hvor nevnte andre behandling etterfølges av kalsinering ved en temperatur på maksimalt 525°C, hvor dehydrogeneringen utføres i nærvær av nevnte katalysator ved en temperatur mellom 530°C og 650°C, et trykk mellom 0,5 og 3 atmosfærer og en vektromhastighet mellom 1 og 10 h"<1>.8. Process for the catalytic dehydrogenation of propane, in the presence of hydrogen in a molar ratio of from 0.05 to 0.5 mol of hydrogen per mol of propane over a catalyst comprising an aluminum oxide support material containing at least one metal from the platinum group together with a co catalyst and an activator, characterized in that the raw material to be dehydrogenated is passed over a catalyst containing 0.2 to 1 weight percent platinum, 0.15 to 1 weight percent tin as co-catalyst and 0.8 to 2 weight percent potassium as activator, where catalyst is obtained by subjecting the aluminum oxide support material containing the co-catalyst and calcined at a temperature between 450 and 550°C, - a first treatment with a platinum compound, said first treatment being followed by calcination in air and reduction in the presence of hydrogen at a temperature between 450 and 550°C; - an intermediate treatment to deposit potassium, where said intermediate treatment is followed by calcination at a temperature between 380 and 550°C, and - a second treatment with a platinum compound, where said second treatment is followed by calcination at a temperature of a maximum of 525°C , where the dehydrogenation is carried out in the presence of said catalyst at a temperature between 530°C and 650°C, a pressure between 0.5 and 3 atmospheres and a space velocity between 1 and 10 h"<1>.
NO890484A 1988-02-11 1989-02-07 Process for catalytic dehydrogenation of paraffins NO176475C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE8800157A BE1002043A3 (en) 1988-02-11 1988-02-11 Paraffinic hydrocarbon catalytic dehydrogenation method

Publications (4)

Publication Number Publication Date
NO890484D0 NO890484D0 (en) 1989-02-07
NO890484L NO890484L (en) 1989-08-14
NO176475B true NO176475B (en) 1995-01-02
NO176475C NO176475C (en) 1995-04-12

Family

ID=3883259

Family Applications (1)

Application Number Title Priority Date Filing Date
NO890484A NO176475C (en) 1988-02-11 1989-02-07 Process for catalytic dehydrogenation of paraffins

Country Status (2)

Country Link
BE (1) BE1002043A3 (en)
NO (1) NO176475C (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649565A (en) * 1969-10-20 1972-03-14 Universal Oil Prod Co Dehydrogenation method and catalytic composite for use therein
US3880776A (en) * 1971-06-10 1975-04-29 Phillips Petroleum Co Highly calcined support for catalytic dehydrogenation
US3909451A (en) * 1973-03-05 1975-09-30 Universal Oil Prod Co Dehydrogenation catalyst
US4133839A (en) * 1975-09-18 1979-01-09 Uop Inc. Dehydrogenation with a nonacidic multimetallic catalyst
FR2457318A1 (en) * 1979-05-22 1980-12-19 Raffinage Cie Francaise HYDROCARBON HYDROTREATMENT CATALYSTS AND APPLICATIONS OF SAID CATALYSTS
US4409417A (en) * 1982-07-26 1983-10-11 Texaco Inc. Process of dehydrogenation of hydrocarbons

Also Published As

Publication number Publication date
NO890484D0 (en) 1989-02-07
NO890484L (en) 1989-08-14
NO176475C (en) 1995-04-12
BE1002043A3 (en) 1990-06-05

Similar Documents

Publication Publication Date Title
US4962265A (en) Process and catalyst for the catalytic dehydrogenation of hydrocarbons
CA1211098A (en) Conversion of methane to olefins and hydrogen
CA1262720A (en) Composition of matter and method of oxidative conversion of organic compounds therewith
CA1289125C (en) Upgrading low molecular weight alkanes
KR101477413B1 (en) Preparation method of Platinum/Tin/Metal/Alumina catalyst for direct dehydrogenation of n-Butane and method for producing C4 olefins using said catalyst
US20140309470A1 (en) PREPARATION METHOD OF PLATINUM/TIN/ALUMINA CATALYST FOR DIRECT DEHYDROGENATION OF n-BUTANE AND METHOD FOR PRODUCING C4 OLEFINS USING SAID CATALYST
EP0206043B1 (en) Methane conversion
EP0205117A1 (en) Methane conversion
EP3892369A1 (en) Alkali metal and/or alkaline earth metal-doped transition metal-hydrogen active metal composite oxide catalyst and process for preparing butadiene using the same
US2328275A (en) Catalytic process for purifying ethylene
US4381415A (en) Process for dealkylating aromatic hydrocarbons in the presence of steam
JPH04247042A (en) Production of alpha-olefin by ethenolysis
NO171116B (en) PROCEDURE FOR CRACKING OF FOOD HYDROCARBONS INCLUDING PROPANE AND / OR BUTANES FOR SELECTIVE AA BRING A MAXIMUM PRODUCTION OF ONE OF ONE AND PROPEN
US3836594A (en) Hydrocarbon conversion process and silica and/or alumina-containing catalyst therefor
JPH05504096A (en) Catalysts based on chlorinated alumina and their use in the isomerization of C↓4-C↓6 normal paraffins
US6034020A (en) Zeolite-based catalyst material, the preparation thereof and the use thereof
NO176475B (en) Process for catalytic dehydrogenation of paraffins
JPH0669969B2 (en) Hydrocarbon production method
KR101419995B1 (en) Method of Producing Magnesia-zirconia Mixed Carrier for Catalyst for Oxidative Dehydrogenation of n-Butane, Method of Producing Magnesium-zirconia Carrier-Supported Magnesium Orthovanadate Catalyst, and Method of Producing n-Butene and 1,3-Butadiene Using Said Catalyst
US3662018A (en) Process of improving the selectivity of dehydrogenation catalysts
US4918257A (en) Catalytic conversion of methane to higher hydrocarbons
EP0556489A1 (en) Process for the dehydrogenation of hydrocarbons
NO173856B (en) PROCEDURE FOR THE PREPARATION OF A CATALYST CONTAINER CONTAINING A METAL FROM THE PT GROUP AND USE THEREOF
NO301364B1 (en) Preparation of hydrocarbon synthesis catalyst
KR102544676B1 (en) Catalyst for Producing Light Olefin and Producing Method of Light Olefin Using the Same

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN AUGUST 2002