NO175188B - - Google Patents

Info

Publication number
NO175188B
NO175188B NO902871A NO902871A NO175188B NO 175188 B NO175188 B NO 175188B NO 902871 A NO902871 A NO 902871A NO 902871 A NO902871 A NO 902871A NO 175188 B NO175188 B NO 175188B
Authority
NO
Norway
Prior art keywords
toxin
peptide
cytosol
holotoxin
mutant
Prior art date
Application number
NO902871A
Other languages
Norwegian (no)
Other versions
NO902871D0 (en
NO175188C (en
NO902871L (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to NO902871A priority Critical patent/NO175188C/en
Publication of NO902871D0 publication Critical patent/NO902871D0/en
Priority to CA002086342A priority patent/CA2086342A1/en
Priority to HU924125A priority patent/HUT63061A/en
Priority to PCT/NO1991/000093 priority patent/WO1992000099A1/en
Priority to AU80001/91A priority patent/AU653158C/en
Priority to EP91911315A priority patent/EP0542756A1/en
Priority to JP3510777A priority patent/JPH06503552A/en
Publication of NO902871L publication Critical patent/NO902871L/en
Priority to FI925869A priority patent/FI925869A/en
Priority to LTIP835A priority patent/LTIP835A/en
Publication of NO175188B publication Critical patent/NO175188B/no
Publication of NO175188C publication Critical patent/NO175188C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6415Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/646Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the entire peptide or protein drug conjugate elicits an immune response, e.g. conjugate vaccines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/55Fusion polypeptide containing a fusion with a toxin, e.g. diphteria toxin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Fremgangsmåte for innføring av et peptid i cytosol ved å binde peptidet til et bakterie- eller plantetoksin, eller til en mutant derav. Fremgangsmåte for fremstilling av en vaksine ved binding av et . peptid til et bakterie- eller plantetoksin, eller til en mutant derav, for å translokere peptidet inn i cytosolen for etterfølgende presentasjon på celleoverflaten ved hjelp av klasse I MHC-antigener for å utløse en klasse I begrenset immunrespons og for å utvide den relevante populasjon av CD8T-lymfocytter. Vaksiner fremstilt ved hjelp av fremgangsmåten og anvendelsen derav mot virus, intracellulære bakterier og parasitter, og mot maligne tilstander.A method of introducing a peptide into a cytosol by binding the peptide to a bacterial or plant toxin, or to a mutant thereof. A process for the preparation of a vaccine by binding a. peptide to a bacterial or plant toxin, or to a mutant thereof, to translocate the peptide into the cytosol for subsequent presentation on the cell surface using class I MHC antigens to elicit a class I restricted immune response and to expand the relevant population of CD8T lymphocytes. Vaccines prepared by the method and their application against viruses, intracellular bacteria and parasites, and against malignant conditions.

Description

Oppfinnelsens område Field of the invention

Foreliggende oppfinnelse er rettet på en fremgangsmåte for fremstilling av et peptidkonjugat med evne til å trenge inn i cellecytosol, og særlig på et nytt prinsipp ved fremstilling av vaksine mot virus, intracellulære parasitter og bakterier, og mot maligne celler. The present invention is directed to a method for the production of a peptide conjugate with the ability to penetrate into the cell cytosol, and in particular to a new principle in the production of vaccines against viruses, intracellular parasites and bacteria, and against malignant cells.

Oppfinnelsens bakgrunn The background of the invention

Ved beskyttelse mot patogene organismer og ved fjerningen av dem spiller antigenpresentasjon ved viktige vevsforenlighetsantigener (MHC) av klasse I en viktig rolle. Cytotoksiske T-lymfocytter gjenkjenner celler som uttrykker fremmede eller uvanlige antigener på sin overflate og ødeleg-ger cellene, noe som er viktig for å fjerne en infeksjon. Den samme mekanisme virker ved fjerningen av maligne celler. Antigenpresentasjon med klasse I MHC krever at antigenet som skal presenteres finnes i cytosolen eller i det endoplasmatiske reticulum (Germain, R.N. Nature 322, 687-689 (1986)). Poly-peptider som er tilført utenfra utløser derfor normalt ikke en klasse I-respons. Dersom antigenet innføres på kunstig måte i cytosolen, kan imidlertid presentasjon ved MHC klasse I inntre (Moore, M.W., Carbone, F.R. & Bevan, M.J. Cell 54, 777-785 In protection against pathogenic organisms and in their removal, antigen presentation by class I major histocompatibility antigens (MHC) plays an important role. Cytotoxic T-lymphocytes recognize cells that express foreign or unusual antigens on their surface and destroy the cells, which is important for clearing an infection. The same mechanism works in the removal of malignant cells. Antigen presentation by class I MHC requires that the antigen to be presented be present in the cytosol or in the endoplasmic reticulum (Germain, R.N. Nature 322, 687-689 (1986)). Polypeptides added from the outside therefore do not normally trigger a class I response. If the antigen is artificially introduced into the cytosol, however, presentation by MHC class I can occur (Moore, M.W., Carbone, F.R. & Bevan, M.J. Cell 54, 777-785

(1988)). Den vanlige måte for å immunisere mot slike strukturer i dag, er å anvende svekkede levende virus som er i stand til å ta seg inn i celler og replikere slik at de aktuelle peptidene dannes i cellene og kan presenteres på celleoverflaten. På denne måte utvides populasjonen av de relevante cytotoksiske CD8<+->celler, og etter senere eksponering mot den tilsvarende virulente virusstamme har organismen en immunbeskyttelse. Problemene med denne fremgangsmåten skyldes delvis det faktum at de svekkede virus noen ganger kan vende tilbake til virulens, og delvis problemene med å lage svekkede virus i mange tilfeller. Velegnede og ikke-ufårlige metoder for å innføre fremmedpeptider i cytosol, slik som virusanti-gener, kunne derfor være nyttige for vaksineformål for å utvide den relevante populasjon av CD8<+> MHC klasse I-begrensede cytotoksiske T-lymfocytter. (1988)). The usual way to immunize against such structures today is to use weakened live viruses that are able to enter cells and replicate so that the relevant peptides are formed in the cells and can be presented on the cell surface. In this way, the population of the relevant cytotoxic CD8<+-> cells is expanded, and after later exposure to the corresponding virulent virus strain, the organism has an immune protection. The problems with this method are partly due to the fact that the attenuated viruses can sometimes revert to virulence, and partly to the problems of making attenuated viruses in many cases. Suitable and non-innocuous methods of introducing foreign peptides into the cytosol, such as viral antigens, could therefore be useful for vaccine purposes to expand the relevant population of CD8<+> MHC class I-restricted cytotoxic T lymphocytes.

De eneste etablerte eksempler på eksterne proteiner som tar seg inn i cytosol, er visse bakterie- og plante-toksiner, slik som difteritoksin, Pseudomonas aeruglnosa exotoxin A, ricin, abrin, viscumin, modeccin, Shigella-toksin, koleratoksin, kikhostetoksin (Olsnes, S. & Sandvig, K. I: " Immunotoxins" (A.E. Frankel, red.), Kluwer Academic Pub-lishers, Boston 1988, s. 39-73; Olsnes, S. & Sandvig, K. I: " Receptor- mediated endocytosis" (I. Pastan & M.C. Willingham, red.), Plenum Publ. Corp., 1985, s. 195-234). Toksiner av denne gruppe kommer inn i cytosolen hvor de utfører enzymat-iske reaksjoner som er skadelige for cellen eller for organismen. Ved hjelp av genmanipuleringer er det mulig å danne toksinmolekyler som har svært lav toksisitet (Barbieri, J.T. & Collier, R.J. Infect. Immun. 55, 1647-1651 (1987)). Dersom toksinene var i stand til å føre ytterligere peptidmateriale inn i celler, kunne slike ikke-toksiske mutanter være anvend-bare for vaksineformål ved å føre antigene peptider som kan presenteres ved klasse I MHC-antigener, inn i cytosolen (Cerundolo et al. Nature 345, 449 (1990)). Slike antigen-sekvenser kan fås fra en rekke virus, bakterier og parasitter, og det er også mulig å utvinne slike strukturer fra visse maligne celler. The only established examples of external proteins that enter the cytosol are certain bacterial and plant toxins, such as diphtheria toxin, Pseudomonas aeruglnosa exotoxin A, ricin, abrin, viscumin, modeccin, Shigella toxin, cholera toxin, pertussis toxin (Olsnes, S. & Sandvig, K. I: "Immunotoxins" (A.E. Frankel, ed.), Kluwer Academic Publishers, Boston 1988, pp. 39-73; Olsnes, S. & Sandvig, K. I: "Receptor-mediated endocytosis" (I. Pastan & M.C. Willingham, eds.), Plenum Publ. Corp., 1985, pp. 195-234). Toxins of this group enter the cytosol where they carry out enzymatic reactions that are harmful to the cell or the organism. By means of genetic manipulations it is possible to form toxin molecules which have very low toxicity (Barbieri, J.T. & Collier, R.J. Infect. Immun. 55, 1647-1651 (1987)). If the toxins were able to introduce additional peptide material into cells, such non-toxic mutants could be useful for vaccine purposes by introducing antigenic peptides that can be presented by class I MHC antigens into the cytosol (Cerundolo et al. Nature 345, 449 (1990)). Such antigen sequences can be obtained from a number of viruses, bacteria and parasites, and it is also possible to extract such structures from certain malignant cells.

Formålet ved foreliggende oppfinnelse er å tilveie-bringe en fremgangsmåte for fremstilling av et peptidkonjugat med evne til å trenge inn i cellecytosol, slik at det fås en mekanisme for translokering av antigene peptidsekvenser til cytosol på en sikker måte, for blant annet å utvide populasjonen av cytotoksiske T-lymfocytter som er i stand til å reagere med det tilsvarende antigen. Selv om inntredelsesmeka-nismen til de forskjellige toksinene som er nevnt ovenfor i prinsippet er den samme, er den blitt utarbeidet mest utførlig for tilfellet med difteritoksin. Dette er toksinet som er blitt anvendt i de fleste undersøkelser i forbindelse med denne oppfinnelse. The purpose of the present invention is to provide a method for the production of a peptide conjugate with the ability to penetrate into the cell cytosol, so that a mechanism is obtained for the translocation of antigenic peptide sequences into the cytosol in a safe manner, in order, among other things, to expand the population of cytotoxic T-lymphocytes that are able to react with the corresponding antigen. Although the mechanism of action of the various toxins mentioned above is in principle the same, it has been worked out most extensively for the case of diphtheria toxin. This is the toxin that has been used in most investigations in connection with this invention.

Oppsummering av oppfinnelsen Summary of the invention

Vi viser her at en i det vesentlige ikke-toksisk mutant av difteritoksin er i stand til å translokere oligopeptid bundet til dens N-ende til cytosol. Peptidene som vi har undersøkt, er tilstrekkelig forskjellige i sekvens til å gi som konklusjon at et stort antall forskjellige peptider kan føres inn i cellene på samme måte. We show here that an essentially non-toxic mutant of diphtheria toxin is able to translocate oligopeptide bound to its N-terminus into the cytosol. The peptides that we have examined are sufficiently different in sequence to conclude that a large number of different peptides can be introduced into the cells in the same way.

Foreliggende oppfinnelse vedrører således en fremgangsmåte for fremstilling av et peptidkonjugat med evne til å trenge inn i cellecytosol, som er kjennetegnet ved at genet som koder for peptidet bindes ved rekombinant DNA-teknologi til genet som koder for A-delen av et bakterie- eller planteholotoksin, eller for en mutant derav, som er blitt forandret ved mutasjon slik at det har mistet sin toksisitet uten å ha mistet evnen til å trenge inn i cellecytosol og bringe ytterligere peptidmateriale inn i cytosolen, hvoretter peptid-toksin-forbindelsen uttrykkes. The present invention thus relates to a method for the production of a peptide conjugate with the ability to penetrate into the cell cytosol, which is characterized by the fact that the gene that codes for the peptide is bound by recombinant DNA technology to the gene that codes for the A part of a bacterial or plant holotoxin , or for a mutant thereof, which has been altered by mutation so that it has lost its toxicity without having lost the ability to penetrate the cell cytosol and bring additional peptide material into the cytosol, after which the peptide-toxin compound is expressed.

Ifølge en særlig foretrukket utførelsesform av oppfinnelsen fremstilles en vaksine ved en fremgangsmåte som er kjennetegnet ved at genet som koder for et peptid bindes ved rekombinant DNA-teknologi til genet som koder for A-delen av et bakterie- eller planteholotoksin, eller for en mutant derav, som er blitt forandret ved mutasjon slik at det har mistet sin toksisitet uten å ha mistet evnen til å trenge inn i cellecytosol og bringe ytterligere peptidmateriale inn i cytosolen, hvoretter peptid-toksin-forbindelsen med evne til å trenge inn i cellecytosol uttrykkes, slik at peptidet kan translokeres inn i cytosolen for etterfølgende presentasjon på celleoverflaten ved hjelp av klasse I MHC-antigener for å ut-løse en klasse I begrenset immunrespons og utvide den relevante populasjon av CD8<+->T-lymfocytter. Vaksiner fremstilt ved hjelp av den ovenfor nevnte fremgangsmåte kan anvendes mot virus, intracellulære bakterier og parasitter, og mot maligne tilstander. According to a particularly preferred embodiment of the invention, a vaccine is produced by a method characterized by the fact that the gene that codes for a peptide is linked by recombinant DNA technology to the gene that codes for the A part of a bacterial or plant holotoxin, or for a mutant thereof , which has been altered by mutation so that it has lost its toxicity without having lost the ability to penetrate the cell cytosol and bring additional peptide material into the cytosol, after which the peptide-toxin compound with the ability to penetrate the cell cytosol is expressed, as that the peptide can be translocated into the cytosol for subsequent presentation on the cell surface by means of class I MHC antigens to trigger a class I limited immune response and expand the relevant population of CD8<+->T lymphocytes. Vaccines produced using the above-mentioned method can be used against viruses, intracellular bacteria and parasites, and against malignant conditions.

Figurtekster Figure texts

Figur 1. N-endeforlengelser av difteritoksin. Figure 1. N-terminal extensions of diphtheria toxin.

A. Det kodende område for difteritoksingenet som bærer en trippelmutasjon som endrer Glu<148> til Ser, og hvor Gly<1 >var erstattet med initiator-Met plassert bak en T3-promoter, hvorved man fikk pBD-lS (McGill, S., Stenmark, H., Sandvig, K. A. The coding region of the diphtheria toxin gene carrying a triple mutation that changes Glu<148> to Ser, and where Gly<1> was replaced with initiator-Met placed behind a T3 promoter, resulting in pBD-1S (McGill, S. , Stenmark, H., Sandvig, K.

& Olsnes, S.: EMBO J. 8, 2843-2848 (1989)). For å oppnå pB-B3-Dl, ble pBD-1 spaltet med Ncol, og et oligonukleotid som koder for oligopeptidet MGVDEYNEMPMPVN (henvist til som B3) ble inn-føyd. pGD-2 koder for difteritoksin med sin naturlige signalsekvens MSRKLFASILIGALLGIGAPPSAHA (henvist til som ss), etter en SP6-promoter. Plasmidet ble erholdt ved å dele opp pGD-1 (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)) med Hindlll og Pstl, fjerne overhengene med S^nuklease og religere, hvorved pGD-2 dannes. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)). To obtain pB-B3-D1, pBD-1 was cleaved with NcoI, and an oligonucleotide encoding the oligopeptide MGVDEYNEMPMPVN (referred to as B3) was inserted. pGD-2 encodes diphtheria toxin with its native signal sequence MSRKLFASILIGALLGIGAPPSAHA (referred to as ss), following an SP6 promoter. The plasmid was obtained by dividing pGD-1 (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)) with HindIII and Pstl, removing the overhangs with S^nuclease and religase, whereby pGD-2 is formed.

B. Genene ble transskribert in vltro og de erholdte mRNA-er ble translatert i kaninretikulocyttlysat-systemer i nærvær av [<35>S]metionin (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)). For å fjerne reduksjonsmidler og la disulfidbroer dannes, ble translasjons-blandingen dialysert over natten mot PBS (0,14 M NaCl, 10 mM Na-fosfat, pH 7,4), og så i 4 timer mot Hepes-medium (Dul-becco-modifisert Eagles medium hvor bikarbonatet var blitt erstattet med 20 mM Hepes, pH 7,4). En aliquot av hver prøve ble analysert med polyakrylamidgelelektroforese i nærvær av natriumdodecylsulfat (SDS-PAGE) under reduserende betingelser (Olsnes, S. & Eiklid, K. J. Biol. Chem. 255, 284-289 (1980)). I noen tilfeller ble translasjonsproduktet behandlet med protein A-"Sepharose" som tidligere var blitt inkubert med kanin-anti-B3-antiserum (feltene 3 og 4) eller antiricin (felt 5). Det adsorberte materiale ble analysert ved hjelp av SDS-PAGE. DT, translasjonsprodukt fra pBD-1; B3-DT, translasjonsprodukt fra pB-B3-Dl; ss-DT, translasjonsprodukt fra pGD-2. B. The genes were transcribed in vitro and the mRNAs obtained were translated in rabbit reticulocyte lysate systems in the presence of [<35>S]methionine (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)). To remove reducing agents and allow disulfide bridges to form, the translation mixture was dialyzed overnight against PBS (0.14 M NaCl, 10 mM Na phosphate, pH 7.4), and then for 4 h against Hepes medium (Dul-becco -modified Eagle's medium where the bicarbonate had been replaced with 20 mM Hepes, pH 7.4). An aliquot of each sample was analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) under reducing conditions (Olsnes, S. & Eiklid, K. J. Biol. Chem. 255, 284-289 (1980)). In some cases, the translation product was treated with protein A-Sepharose previously incubated with rabbit anti-B3 antiserum (lanes 3 and 4) or antiricin (lane 5). The adsorbed material was analyzed by SDS-PAGE. DT, translation product from pBD-1; B3-DT, translation product from pB-B3-D1; ss-DT, translation product from pGD-2.

Figur 2. Translokering til cytosol av A-fragment med N-endetilsatt B3-oligopeptid. pBD-1 og pB-B3-Dl ble transskribert og translatert in vitro. De tilsvarende translasjonsprodukter (DT og B3-DT) ble tilsatt til Vero-celler som vokste som monolag i 24-brønners mikrotiterplater og holdt ved 24 °C i 20 minutter i nærvær av 10 uM monensin (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 Figure 2. Translocation to cytosol of A-fragment with N-terminally added B3-oligopeptide. pBD-1 and pB-B3-D1 were transcribed and translated in vitro. The corresponding translation products (DT and B3-DT) were added to Vero cells grown as monolayers in 24-well microtiter plates and maintained at 24 °C for 20 minutes in the presence of 10 µM monensin (McGill, S., Stenmark, H. , Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848

(1989)). Cellene ble vasket to ganger med Hepes-medium og der-etter behandlet med 0,4 pg/ml TPCK (N-tosyl-L-fenylalanin-klormetylketon)-behandlet trypsin i Hepes-medium inneholdende 10 uM monensin i 5 minutter ved 20 "C. Cellene ble vasket og eksponert mot Hepes-medium, pH 4,8, inneholdende 10 mM Na-glukonat for å øke bufferkapasiteten ved den lave pH. Etter 2 minutter ved 37 °C ble cellene vasket med Hepes-medium, pH 7,4, og så behandlet med 3 mg/ml pronase i Hepes-medium, pH 7,4, inneholdende 10 pM monensin i 5 minutter ved 37 °C. Cellene som ble løsnet fra plasten ved behandlingen, ble gjen-vunnet ved sentrifugering og vasket én gang med Hepes-medium inneholdende 1 mM NEM (N-etylmaleimid) og 1 mM PMSF (fenyl-metylsulfonylfluorid). I noen tilfeller (feltene 1-3 og 8-10) ble cellene lysert med "Triton X-100" i fosfatbufret saltopp-løsning inneholdende 1 mM PMSF og 1 mM NEM, kjerner ble fjernet ved sentrifugering og proteinet i supernatantfrak-sjonen utfelt med 10 % (vekt/volum) trikloreddiksyre eller utfelt immunologisk med anti-B3-antistoffer adsorbert til protein A-"Sepharose". I andre tilfeller (feltene 4-7) ble cellene behandlet med 50 ug/ml saponin i PBS inneholdende 1 mM PMSF og 1 mM NEM for å frigjøre translokert A-fragment, og så ble både proteinene i pelleten og i supernatantfraksjonene utfelt med trikloreddiksyre. I alle tilfellene ble det utfelte materiale analysert ved hjelp av SDS-PAGE (13,5 % gel) under ikke-reduserende betingelser. Figur 3. Translokering til cytosol av difteritoksin med signal sekvens. Feltene 1-4: <125>I-merket naturlig toksin (wt-DT, felt 1) og in vitro translatert pGD-2 ( [35S]metionin-merket toksin med signalsekvens, ss-DT) ble bundet til Vero-celler og "nicked" på cellene (feltene 1 og 2). I felt 3 ble cellene behandlet som i felt 2, bortsett fra at det ble anvendt seks ganger mer translasjonsprodukt, og cellene ble så eksponert mot pH 4,8 og pronase som i figur 2. Cellene ble lysert med "Triton X-100" og kjernene fjernet. Supernatantene ble inkubert med protein A-"Sepharose" som var blitt for-inkubert med kanin-antidifteritoksinserum. Det adsorberte materiale ble analysert ved hjelp av reduserende (feltene 1 og 2) eller ikke-reduserende (feltene 3 og 4) SDS-PAGE (10 % gel). I felt 4 ble de pronasebehandlede celler behandlet med 50 ug/ml saponin, og materialet som ble frigjort til mediet ble analysert direkte. Feltene 5-12: Translasjonsprodukt fra pBD-1 (DT) og pGD-2 (ss-DT) ble bundet til Vero-celler, "nicked", eksponert mot pH 4,8 og så behandlet med pronase. De lyserte celler ble enten analysert med ikke-reduserende SDS-PAGE (15 % gel) direkte (feltene 5-8), eller de ble behandlet med saponin, og membranpelletene (feltene 9 og 10) og super-natantf r aksjonene (feltene 11 og 12) ble analysert hver for seg. (1989)). The cells were washed twice with Hepes medium and then treated with 0.4 µg/ml TPCK (N-tosyl-L-phenylalanine-chloromethyl ketone)-treated trypsin in Hepes medium containing 10 µM monensin for 5 minutes at 20" C. The cells were washed and exposed to Hepes medium, pH 4.8, containing 10 mM Na-gluconate to increase buffering capacity at the low pH.After 2 minutes at 37°C, the cells were washed with Hepes medium, pH 7, 4, and then treated with 3 mg/ml pronase in Hepes medium, pH 7.4, containing 10 pM monensin for 5 minutes at 37° C. The cells detached from the plastic by the treatment were recovered by centrifugation and washed once with Hepes medium containing 1 mM NEM (N-ethylmaleimide) and 1 mM PMSF (phenyl-methylsulfonyl fluoride). In some cases (lanes 1-3 and 8-10) the cells were lysed with "Triton X-100" in the phosphate buffer saline solution containing 1 mM PMSF and 1 mM NEM, nuclei were removed by centrifugation and the protein in the supernatant fraction precipitated with 10% (w/v) trichloroacetic acid e or precipitated immunologically with anti-B3 antibodies adsorbed to protein A-"Sepharose". In other cases (lanes 4-7), the cells were treated with 50 µg/ml saponin in PBS containing 1 mM PMSF and 1 mM NEM to release translocated A fragment, and then both the proteins in the pellet and in the supernatant fractions were precipitated with trichloroacetic acid. In all cases, the precipitated material was analyzed by SDS-PAGE (13.5% gel) under non-reducing conditions. Figure 3. Translocation to cytosol of diphtheria toxin with signal sequence. Lanes 1-4: <125>I-labeled native toxin (wt-DT, lane 1) and in vitro translated pGD-2 ([35S]methionine-labeled toxin with signal sequence, ss-DT) were bound to Vero cells and "nicked" on the cells (fields 1 and 2). In field 3, the cells were treated as in field 2, except that six times more translation product was used, and the cells were then exposed to pH 4.8 and pronase as in Figure 2. The cells were lysed with "Triton X-100" and cores removed. The supernatants were incubated with protein A-Sepharose which had been pre-incubated with rabbit anti-diphtheria toxin serum. The adsorbed material was analyzed by reducing (lanes 1 and 2) or non-reducing (lanes 3 and 4) SDS-PAGE (10% gel). In field 4, the pronase-treated cells were treated with 50 µg/ml saponin, and the material released into the medium was analyzed directly. Lanes 5-12: Translation product from pBD-1 (DT) and pGD-2 (ss-DT) was ligated to Vero cells, "nicked", exposed to pH 4.8 and then treated with pronase. The lysed cells were either analyzed by non-reducing SDS-PAGE (15% gel) directly (lanes 5-8), or they were treated with saponin, and the membrane pellets (lanes 9 and 10) and the supernatant fractions (lanes 11 and 12) were analyzed separately.

Nærmere beskrivelse Detailed description

Difteritoksin syntetiseres ved hjelp av patogene stammer av Corynebacterium diphtheriae som et énkjedepolypep-tid. Proteinet splittes lett ("nicked") i et trypsinfølsomt sete, hvorved man får to disulfidbundne fragmenter, A and B (Pappenheimer, A.M., Jr. Rnnu. Rev. Biochem. 46, 69-94 Diphtheria toxin is synthesized by pathogenic strains of Corynebacterium diphtheriae as a single-chain polypeptide. The protein is easily split ("nicked") in a trypsin-sensitive site, whereby two disulfide-bonded fragments, A and B, are obtained (Pappenheimer, A.M., Jr. Rnnu. Rev. Biochem. 46, 69-94

(1977)). (1977)).

B-fragmentet (37 kD) bindes til celleoverflateresep-torer, mens A-fragmentet (21 kD) er et enzym som translokeres til cytosolen hvor det inaktiverer forlengelsesfaktor 2 ved ADP-ribosylering og derved blokkerer proteinsyntesen (Van Ness, B.G., Hovard, J.B. & Bodley, J.W. J. Biol. Chem. 255, 10710-10716 (1980)). Translokeringen som normalt skjer over grensemembranen til endosomer, utløses av den lave pH i de sure vesikler (Draper, R.K. & Simon, M.I. J. Cell Biol. 87, 849-854 (1980); Sandvig, K. & Olsnes, S. J. Cell Biol. 87, 828-832 (1980)). Når celler med overflatebundet toksin ekspo-neres mot surt medium, inntrer translokering fra celleoverflaten (Sandvig, K. & Olsnes, S. J. Biol. Chem. 256, 9068-9076 The B-fragment (37 kD) binds to cell surface receptors, while the A-fragment (21 kD) is an enzyme that is translocated to the cytosol where it inactivates elongation factor 2 by ADP-ribosylation and thereby blocks protein synthesis (Van Ness, B.G., Hovard, J.B. & Bodley, J. W. J. Biol. Chem. 255, 10710-10716 (1980)). The translocation that normally occurs across the boundary membrane of endosomes is triggered by the low pH in the acidic vesicles (Draper, R.K. & Simon, M.I. J. Cell Biol. 87, 849-854 (1980); Sandvig, K. & Olsnes, S. J. Cell Biol. 87 , 828-832 (1980)). When cells with surface-bound toxin are exposed to acidic medium, translocation occurs from the cell surface (Sandvig, K. & Olsnes, S. J. Biol. Chem. 256, 9068-9076

(1981)). Vi har i de fremlagte eksempler brukt dette kunstige system fordi det gjør det mulig å skjelne mellom translokert og ikke-translokert materiale (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 262, 10339-10345 (1987); Moskaug, J.Ø., Sandvig, K. & Olsnes, S. J. Biol. Chem. 263, 2518-2525 (1981)). In the presented examples, we have used this artificial system because it makes it possible to distinguish between translocated and non-translocated material (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 262, 10339-10345 ( 1987); Moskaug, J.Ø., Sandvig, K. & Olsnes, S.J. Biol. Chem. 263, 2518-2525

(1988)). (1988)).

For å unngå toksisk effekt på cellene med difteri-toksinvektoren, ble det anvendt et mutanttoksin som inneholder en trippelmutasjon som endrer Glu<148>, som befinner seg i toksinets enzymatisk aktive sete, til Ser (Barbieri, J. T. & Collier, R.J. Infect. Immun. 55, 1647-1651 (1987)). Det modi-fiserte toksin har sterkt redusert toksisitet. To avoid a toxic effect on the cells with the diphtheria toxin vector, a mutant toxin containing a triple mutation that changes Glu<148>, located in the toxin's enzymatic active site, to Ser was used (Barbieri, J. T. & Collier, R. J. Infect. Immun .55, 1647-1651 (1987)). The modified toxin has greatly reduced toxicity.

Eksempler Examples

Det ble anvendt to varianter av det muterte toksin, én uten (pBD-1) (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)), og én med (pGD-2), den naturlige 25-aminosyrers signalsekvens (figur IA). I ett tilfelle ble et fremmed oligopeptid, kalt B3, bundet til toksinets N-ende, hvorved man fikk plasmidet pB-B3-Dl. Two variants of the mutated toxin were used, one without (pBD-1) (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)) , and one with (pGD-2), the natural 25-amino acid signal sequence (Figure 1A). In one case, a foreign oligopeptide, called B3, was bound to the N-terminus of the toxin, resulting in the plasmid pB-B3-D1.

Konstruksjonene som ble plassert bak T3- eller SP6-RNA-polymerasepromoterer, ble transskribert og translatert in vitro (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 (1989)). I hvert tilfelle ble det oppnådd et hovedbånd svarende til full lengde-proteinet og bare spor av materiale med lavere molekylvekter (figur IB). Toksin med signalsekvens (felt 7) eller med B3 (felt 1) migrerte som for-ventet litt saktere enn toksin som sådant (feltene 2 og 6). Dessuten ble toksin med B3 selektivt utfelt med anti-B3 (felt 4), men ikke med et kontrollserum (felt 5). Toksin uten B3 ble ikke utfelt med anti-B3 (felt 3). The constructs placed behind T3 or SP6 RNA polymerase promoters were transcribed and translated in vitro (McGill, S., Stenmark, H., Sandvig, K. & Olsnes, S.: EMBO J. 8, 2843-2848 ( 1989)). In each case, a major band corresponding to the full-length protein and only traces of lower molecular weight material was obtained (Figure 1B). Toxin with signal sequence (lane 7) or with B3 (lane 1) migrated as expected slightly slower than toxin as such (lanes 2 and 6). Moreover, toxin with B3 was selectively precipitated with anti-B3 (lane 4), but not with a control serum (lane 5). Toxin without B3 was not precipitated with anti-B3 (lane 3).

De dialyserte translasjonsprodukter ble bundet til Vero-celler, "nicked" på cellene med lave konsentrasjoner av trypsin, og så ble cellene eksponert mot pH 4,8. Under disse betingelsene ble en del av det bundne toksin translokert til cytosolen og ble derved beskyttet mot pronase tilsatt mediet (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 263, 2518-2525 (1988)). I tilfellet med difteritoksin som sådant ble det under disse betingelsene beskyttet to fragmenter (molekylvekter 21 kD og 25 kD) (figur 2, felt 1) som svarer til hele A-fragmentet (21 kD) og en del av B-fragmentet (25 kD av i alt 37 kD). Interfragmentdisulfidet ble redusert, åpen-bart etter eksponering mot cytosolen (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 262, 10339-10345 (1987)). The dialyzed translation products were bound to Vero cells, "nicked" on the cells with low concentrations of trypsin, and then the cells were exposed to pH 4.8. Under these conditions, part of the bound toxin was translocated to the cytosol and was thereby protected against pronase added to the medium (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 263, 2518-2525 (1988)) . In the case of diphtheria toxin as such, under these conditions two fragments (molecular weights 21 kD and 25 kD) were protected (Figure 2, lane 1) corresponding to the whole A fragment (21 kD) and part of the B fragment (25 kD of a total of 37 kD). The interfragment disulfide was reduced, obviously after exposure to the cytosol (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 262, 10339-10345 (1987)).

Eksempel 1 Example 1

Når det samme forsøk ble utført med toksin inneholdende B3, ble det beskyttet to hovedfragmenter (25 kD og 22,5 kD) i tillegg til små mengder av 21 kD-fragmentet (felt 2). Det sistnevnte utgjør sannsynligvis A-fragment hvor B3 var blitt avspaltet. Når eksponeringen mot lav pH ble utelatt, ble ingen fragmenter beskyttet (felt 3). 22,5 kD-fragmentet ble utfelt med anti-B3 (felt 9), men ikke med preimmunserum (felt 10). Beskyttet A-fragment uten oligopeptidet ble ikke utfelt med anti-B3 (felt 8). Den tilsynelatende større mengde beskyttet A-fragment med B3 skyldes mer inkorporert radioaktivitet ettersom B3 inneholder tre metioniner og A-fragmentet alene 5. When the same experiment was performed with toxin containing B3, two major fragments (25 kD and 22.5 kD) were protected in addition to small amounts of the 21 kD fragment (lane 2). The latter probably constitutes the A fragment where B3 had been cleaved off. When exposure to low pH was omitted, no fragments were protected (lane 3). The 22.5 kD fragment was precipitated with anti-B3 (lane 9) but not with preimmune serum (lane 10). Protected A fragment without the oligopeptide was not precipitated with anti-B3 (lane 8). The apparent greater amount of protected A fragment with B3 is due to more incorporated radioactivity as B3 contains three methionines and the A fragment alone 5.

Når celler med translokert difteritoksin behandles med lav konsentrasjon av saponin som gjør det mulig for cyto-plasmiske markørenzymer å lekke ut i cellene uten å oppløse membranene, frigjøres det translokerte A-fragment i mediet, mens det B-fragmentavledede 25 kD-polypeptid forblir bundet til membranfraksjonen (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 263, 2518-2525 (1988); Moskaug, 3. 0., Sletten, K., Sandvig, K. & Olsnes, S. J. Biol. Chem. 264, 15709-15713 When cells with translocated diphtheria toxin are treated with a low concentration of saponin that allows cytoplasmic marker enzymes to leak into the cells without dissolving the membranes, the translocated A fragment is released into the medium, while the B fragment-derived 25 kD polypeptide remains bound to the membrane fraction (Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 263, 2518-2525 (1988); Moskaug, 3. 0., Sletten, K., Sandvig, K. & Olsnes, S. J. Biol. Chem. 264, 15709-15713

(1989); Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 264, 11367-11372 (1989)). Dette indikerer at det translokerte A-fragment er fritt i cytosolen, mens 25 kD-polypeptidet er innføyd i membranen. Også mesteparten av A-fragmentet inneholdende B3 ble frigjort med saponin (felt 7) på samme måte som normalt A-fragment (felt 6), mens 25 kD-fragmentet ble bundet til membranene (feltene 4 og 5). Det synes derfor som om difteritoksin er i stand til å translokere B3 (14 aminosyrer) til cytosolen. (1989); Moskaug, 3. 0., Sandvig, K. & Olsnes, S. J. Biol. Chem. 264, 11367-11372 (1989)). This indicates that the translocated A fragment is free in the cytosol, while the 25 kD polypeptide is inserted into the membrane. Also, most of the A-fragment containing B3 was released with saponin (lane 7) in the same way as normal A-fragment (lane 6), while the 25 kD fragment was bound to the membranes (lanes 4 and 5). It therefore appears that diphtheria toxin is able to translocate B3 (14 amino acids) into the cytosol.

Eksempel 2 Example 2

For å teste om også et større oligopeptid kunne translokeres, ble toksin som bærer sin normale signalsekvens (25 aminosyrer) valgt. Som vist i figur 3, felt 2, ble dette proteinet "nicked" ved hjelp av trypsin i et 23,5 kD A-fragment og i et 37 kD B-fragment. (I dette forsøket ble toksinet bare delvis "nicked". Delvis "nicked" <125>I-merket naturlig toksin er vist for sammenligning i felt 1. ) Når toksinet med signalsekvens ble bundet til celler, "nicked" og så eksponert mot pH 4,8, ble to fragmenter (23,5 kD og 25 kD) beskyttet mot pronase (felt 8). Beskyttet A-fragment med uspaltet signalsekvens er også vist i felt 3, hvor materialet ble utfelt med et anti-difteritoksinserum som binder hele toksinet, A-fragmentet samt hele B-fragmentet (se feltene 1 og 2), men ikke 25 kD-fragmentet. Når de pronasebehandlede celler ble behandlet med saponin, ble det forlengede A-fragment frigjort til mediet (feltene 4 og 12), mens 25 kD-fragmentet for-ble i membranfraksjonen (felt 10). To test whether a larger oligopeptide could also be translocated, toxin carrying its normal signal sequence (25 amino acids) was chosen. As shown in Figure 3, lane 2, this protein was "nicked" by trypsin into a 23.5 kD A fragment and into a 37 kD B fragment. (In this experiment, the toxin was only partially "nicked". Partially "nicked" <125>I-labeled natural toxin is shown for comparison in panel 1. ) When the toxin with signal sequence was bound to cells, "nicked" and then exposed to pH 4.8, two fragments (23.5 kD and 25 kD) were protected against pronase (lane 8). Protected A fragment with uncleaved signal sequence is also shown in lane 3, where the material was precipitated with an anti-diphtheria toxin serum that binds the entire toxin, the A fragment as well as the entire B fragment (see lanes 1 and 2), but not the 25 kD fragment . When the pronase-treated cells were treated with saponin, the extended A fragment was released into the medium (lanes 4 and 12), while the 25 kD fragment remained in the membrane fraction (lane 10).

Claims (4)

1. Fremgangsmåte for fremstilling av et peptidkonj ugat med evne til å trenge inn i cellecytosol, karakterisert ved at genet som koder for peptidet bindes ved rekombinant DNA-teknologi til genet som koder for A-delen av et bakterie- eller planteholotoksin, eller for en mutant derav, som er blitt forandret ved mutasjon slik at det har mistet sin toksisitet uten å ha mistet evnen til å trenge inn i cellecytosol og bringe ytterligere peptidmateriale inn i cytosolen, hvoretter peptid-toksin-forbindelsen uttrykkes.1. Method for producing a peptide conjugate with the ability to penetrate the cell cytosol, characterized in that the gene that codes for the peptide is linked by recombinant DNA technology to the gene that codes for the A part of a bacterial or plant holotoxin, or for a mutant thereof, which has been altered by mutation so that it has lost its toxicity without having lost the ability to penetrate the cell cytosol and bring additional peptide material into the cytosol, after which the peptide-toxin compound is expressed. 2. Fremgangsmåte ifølge krav 1 for fremstilling av en vaksine, karakterisert ved at genet som koder for et peptid bindes ved rekombinant DNA-teknologi til genet som koder for A-delen av et bakterie- eller planteholotoksin, eller for en mutant derav, som er blitt forandret ved mutasjon slik at det har mistet sin toksisitet uten å ha mistet evnen til å trenge inn i cellecytosol og bringe ytterligere peptidmateriale inn i cytosolen, hvoretter peptid-toksin-forbindelsen med evne til å trenge inn i cellecytosol uttrykkes, slik at peptidet kan translokeres inn i cytosolen for etterfølgende presentasjon på celleoverflaten ved hjelp av klasse I MHC-antigener for å utløse en klasse I begrenset immunrespons og utvide den relevante populasjon av CD8<+->T-lymfocytter.2. Method according to claim 1 for the production of a vaccine, characterized in that the gene that codes for a peptide is linked by recombinant DNA technology to the gene that codes for the A part of a bacterial or plant holotoxin, or for a mutant thereof, which has been changed by mutation so that it has lost its toxicity without to have lost the ability to penetrate the cell cytosol and bring additional peptide material into the cytosol, after which the cell cytosol-penetrating peptide-toxin compound is expressed, allowing the peptide to be translocated into the cytosol for subsequent presentation on the cell surface by class I MHC antigens to trigger a class I limited immune response and expand the relevant population of CD8<+->T lymphocytes. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det anvendes en ikke-toksisk mutant av difteriholotoksin eller et beslektet holo-toksin, slik som ricin, abrin, modeccin, viscumin, volkensin, Pseudomonas aeruginosa exotoxin A, Siiigella-toksin, anthrax-toksin, kolera-toksin, E. coil varmelabilt toksin eller kikhostetoksin.3. Method according to claim 1 or 2, characterized in that a non-toxic mutant of diphtheria holotoxin or a related holotoxin is used, such as ricin, abrin, modeccin, viscumin, volkensin, Pseudomonas aeruginosa exotoxin A, Siiigella toxin, anthrax -toxin, cholera toxin, E. coil heat-labile toxin or pertussis toxin. 4. Fremgangsmåte ifølge kravene 1-3, karakterisert ved at det anvendes en ikke-toksisk mutant av difteriholotoksin.4. Method according to claims 1-3, characterized in that a non-toxic mutant of diphtheria holotoxin is used.
NO902871A 1990-06-27 1990-06-27 Process for Preparing a Peptide Conjugate with the ability to penetrate cell cytosol NO175188C (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NO902871A NO175188C (en) 1990-06-27 1990-06-27 Process for Preparing a Peptide Conjugate with the ability to penetrate cell cytosol
JP3510777A JPH06503552A (en) 1990-06-27 1991-06-26 How to introduce peptides into the cytosol
AU80001/91A AU653158C (en) 1990-06-27 1991-06-26 Method of introducing a peptide into the cytosol
HU924125A HUT63061A (en) 1990-06-27 1991-06-26 Process for entering peptide in cytosol
PCT/NO1991/000093 WO1992000099A1 (en) 1990-06-27 1991-06-26 Method of introducing a peptide into the cytosol
CA002086342A CA2086342A1 (en) 1990-06-27 1991-06-26 Method of introducing a peptide into a cytosol
EP91911315A EP0542756A1 (en) 1990-06-27 1991-06-26 Method of introducing a peptide into the cytosol
FI925869A FI925869A (en) 1990-06-27 1992-12-23 FOERFARANDE FOER INFOERANDE AV EN PEPTID I CYTOSOL
LTIP835A LTIP835A (en) 1990-06-27 1993-08-03 Method of introducting a peptide into the cytosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO902871A NO175188C (en) 1990-06-27 1990-06-27 Process for Preparing a Peptide Conjugate with the ability to penetrate cell cytosol

Publications (4)

Publication Number Publication Date
NO902871D0 NO902871D0 (en) 1990-06-27
NO902871L NO902871L (en) 1991-12-30
NO175188B true NO175188B (en) 1994-06-06
NO175188C NO175188C (en) 1994-09-14

Family

ID=19893304

Family Applications (1)

Application Number Title Priority Date Filing Date
NO902871A NO175188C (en) 1990-06-27 1990-06-27 Process for Preparing a Peptide Conjugate with the ability to penetrate cell cytosol

Country Status (8)

Country Link
EP (1) EP0542756A1 (en)
JP (1) JPH06503552A (en)
CA (1) CA2086342A1 (en)
FI (1) FI925869A (en)
HU (1) HUT63061A (en)
LT (1) LTIP835A (en)
NO (1) NO175188C (en)
WO (1) WO1992000099A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043057A (en) * 1988-09-16 2000-03-28 Vitec Aktiebolag Recombinant systems for expression of the cholera B-sub-unit with the aid of foreign promoters and/or leader peptides
US5314813A (en) * 1992-02-19 1994-05-24 Scripps Research Institute Drosophila cell lines expressing genes encoding MHC class I antigens and B2-microglobulin and capable of assembling empty complexes and methods of making said cell lines
US5935580A (en) * 1992-04-21 1999-08-10 Institut Pasteur Recombinant mutants for inducing specific immune responses
PT637335E (en) * 1992-04-21 2007-10-31 Pasteur Institut Recombinant mutants for inducing specific immune responses
US6455673B1 (en) 1994-06-08 2002-09-24 President And Fellows Of Harvard College Multi-mutant diphtheria toxin vaccines
US20030165543A1 (en) * 2000-01-27 2003-09-04 Langridge William H.R. Transgenic plant-based vaccines
US6777546B2 (en) 1997-10-07 2004-08-17 Loma Linda University Methods and substances for preventing and treating autoimmune disease
US7422747B2 (en) 1997-10-07 2008-09-09 Loma Linda University Transgenic plant-based vaccines
US6004815A (en) * 1998-08-13 1999-12-21 The Regents Of The University Of California Bacteria expressing nonsecreted cytolysin as intracellular microbial delivery vehicles to eukaryotic cells
DE60042687D1 (en) 2000-09-15 2009-09-17 Pasteur Institut Protein-containing vectors for introducing molecules into CD11b-expressing cells
GB0524408D0 (en) * 2005-11-30 2006-01-11 Glaxosmithkline Biolog Sa Vaccines
US11965009B2 (en) 2016-03-10 2024-04-23 The Johns Hopkins University Methods of producing aggregate-free monomeric diphtheria toxin fusion proteins and therapeutic uses
CA3017143A1 (en) * 2016-03-10 2017-09-14 The Johns Hopkins University Methods of producing aggregate-free monomeric diphtheria toxin fusion proteins and therapeutic uses

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108146B1 (en) * 1982-05-12 1987-01-28 The President And Fellows Of Harvard College Fused genes encoding hybrid proteins, cloning vectors containing them and the use thereof
FR2532850B1 (en) * 1982-09-15 1985-12-20 Pasteur Institut IMMUNOGENIC CONJUGATES BETWEEN A HAPTENA AND A CARRIER MOLECULE DERIVED FROM A TOXIN, THE VACCINES CONTAINING THEM AND PROCESS FOR OBTAINING THEM
US4808700A (en) * 1984-07-09 1989-02-28 Praxis Biologics, Inc. Immunogenic conjugates of non-toxic E. coli LT-B enterotoxin subunit and capsular polymers
IL89504A0 (en) * 1988-03-08 1989-09-10 Univ Wyoming Diphtheria toxin derivative,process for the preparation thereof and pharmaceutical composition containing the same
FR2636842B1 (en) * 1988-09-27 1994-06-10 Liege Universite Etat FUSION PROTEIN OF A SEQUENCE DERIVED FROM CHOLERIC TOXIN B SUBUNIT B AND A HETEROLOGOUS ANTIGEN HAVING IMMUNOGENIC PROPERTIES, RECOMBINANT NUCLEIC ACID CONTAINING VACCINE COMPOSITIONS CONTAINING NUCLEOTIDITE CODING SEQUENCE
WO1991009871A1 (en) * 1989-12-22 1991-07-11 Seragen Incorporated Hybrid molecules having translocation region and cell-binding region

Also Published As

Publication number Publication date
HU9204125D0 (en) 1993-04-28
LTIP835A (en) 1995-02-27
JPH06503552A (en) 1994-04-21
FI925869A0 (en) 1992-12-23
NO902871D0 (en) 1990-06-27
CA2086342A1 (en) 1991-12-28
NO175188C (en) 1994-09-14
WO1992000099A1 (en) 1992-01-09
NO902871L (en) 1991-12-30
EP0542756A1 (en) 1993-05-26
HUT63061A (en) 1993-07-28
FI925869A (en) 1992-12-23
AU653158B2 (en) 1994-09-22
AU8000191A (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US8044188B2 (en) Genetically engineered clostridial genes, proteins encoded by the engineered genes, and uses thereof
Stenmark et al. Peptides fused to the amino-terminal end of diphtheria toxin are translocated to the cytosol.
CA2691539C (en) Modified toxins
Antoine et al. Roles of the disulfide bond and the carboxy-terminal region of the S1 subunit in the assembly and biosynthesis of pertussis toxin
US5601827A (en) Diphtheria toxin vaccines
ES2290950T3 (en) RECOMBINANT MUTANTS TO INDUCE SPECIFIC IMMUNE RESPONSES.
ES2076160T5 (en) ANALOGS OF THE SUBUNITIES OF THE TOXIN OF BORDETELLA OBTAINED FROM RECOMBINANT DNA.
NO175188B (en)
EP0646599B1 (en) Modification of pertussis toxin
ES2529442T3 (en) Fusion protein for expression of secretory proteins
Madshus et al. Membrane translocation of diphtheria toxin carrying passenger protein domains
De Haan et al. Enhanced delivery of exogenous peptides into the class I antigen processing and presentation pathway
KR100338894B1 (en) Vaccine compositions
US8425917B2 (en) Mutant forms of EtxB and CtxB and their use as carriers
Idziorek et al. Low pH-induced changes in Pseudomonas exotoxin and its domains: increased binding of Triton X-114
WO2016187076A1 (en) Engineered clostridium botulinum toxin adapted to deliver molecules into selected cells
AU653158C (en) Method of introducing a peptide into the cytosol
Stenmark et al. Elimination of the disulphide bridge in fragment B of diphtheria toxin: effect on membrane insertion, channel formation, and ATP binding
US20160244488A1 (en) Cholera toxin a-like polypeptide useful as adjuvant component
Loregian et al. Use ofVibriospp. for Expression ofEscherichia coliEnterotoxin B Subunit Fusion Proteins: Purification and Characterization of a Chimera Containing a C-Terminal Fragment of DNA Polymerase from Herpes Simplex Virus Type 1
Guidi‐Rontani Cytotoxic activity of a recombinant chimaeric protein between Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin