NO174195B - Process for removing impurities from an aromatic stream - Google Patents

Process for removing impurities from an aromatic stream Download PDF

Info

Publication number
NO174195B
NO174195B NO911050A NO911050A NO174195B NO 174195 B NO174195 B NO 174195B NO 911050 A NO911050 A NO 911050A NO 911050 A NO911050 A NO 911050A NO 174195 B NO174195 B NO 174195B
Authority
NO
Norway
Prior art keywords
aromatic
impurities
compounds
alkyl
stream
Prior art date
Application number
NO911050A
Other languages
Norwegian (no)
Other versions
NO911050D0 (en
NO174195C (en
NO911050L (en
Inventor
Mark Rule
Joseph Floyd Jeter
Gerald Charles Tustin
Regina Michelle Moncier
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/245,485 external-priority patent/US4814545A/en
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of NO911050D0 publication Critical patent/NO911050D0/en
Publication of NO911050L publication Critical patent/NO911050L/en
Publication of NO174195B publication Critical patent/NO174195B/en
Publication of NO174195C publication Critical patent/NO174195C/en

Links

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for selektiv fjerning av tetralin, alkylforbindelser, cykloalkylforbindelser og alkylsubstituerte aromatiske forbindelser fra en aromatisk strøm som inneholder disse forbindelsene som urenheter. The present invention relates to a method for the selective removal of tetralin, alkyl compounds, cycloalkyl compounds and alkyl-substituted aromatic compounds from an aromatic stream containing these compounds as impurities.

Petroleum- og kjemiske prosesstrømmer som hovedsakelig består av aromatiske forbindelser, inneholder ofte en rekke forskjellige andre organiske forbindelser som er urenheter i strømmen. Forskjellige teknikker har blitt utviklet for på selektiv måte å fjerne disse urenhetene fra slike strømmer, inkludert ekstraksjon, destillasjon, krystallisasjon og kromatografisk adsorpsjon. Disse teknikkene er egnet for fjerning av store mengder urenheter, men er generelt ikke effektive for fjerning av små mengder urenheter, spesielt når urenhetene har lignende kokepunkter eller kokrystalliserer med de aromatiske forbindelsene. Ofte vil disse lave nivåene av urenhetene ikke materielt påvirke kvaliteten på produktet, men i noen tilfeller kan nedstrømsprosesser ikke tolerere selv spormengder av disse urenheter. Eksempler på slike tilfeller innbefatter benzen i toluen av nitrerings-kvalitet og tiofener i platformeringsråmaterialet. Petroleum and chemical process streams consisting primarily of aromatic compounds often contain a variety of other organic compounds that are impurities in the stream. Various techniques have been developed to selectively remove these impurities from such streams, including extraction, distillation, crystallization and chromatographic adsorption. These techniques are suitable for the removal of large amounts of impurities, but are generally not effective for the removal of small amounts of impurities, especially when the impurities have similar boiling points or co-crystallize with the aromatic compounds. Often these low levels of the impurities will not materially affect the quality of the product, but in some cases downstream processes cannot tolerate even trace amounts of these impurities. Examples of such cases include benzene in nitration-grade toluene and thiophenes in the platforming feedstock.

P.g.a. det store antall av forskjellige urenheter som kan finnes i enhver spesiell aromatisk strøm og også p.g.a. det varierende nivå av hver urenhet, er det viktig at en fremgangsmåte for fjerning av disse urenhetene har evne til å fjerne vesentlig alle urenhetene, uansett kokepunkt, smeltepunkt eller kjemisk struktur. Because of. the large number of different impurities that can be found in any particular aromatic stream and also due to the varying level of each impurity, it is important that a method for removing these impurities has the ability to remove substantially all of the impurities, regardless of boiling point, melting point or chemical structure.

Man har nå funnet at lave nivåer av alkyl, cykloalkyl og alkylsubstituerte aromatiske forbindelser, som kan anses som urenheter, kan fjernes fra en aromatisk strøm ved å bringe strømmen i kontakt med luft og en zeolittkatalysator ved forhøyede temperaturer. I denne fremgangsmåten blir alkyl, cykloalkyl og de alkylsubstituerte aromatiske forbindelsene oksydativt dekomponert til C02, CO og H2O. De usubstituerte aromatiske forbindelsene som omfatter størstedelen av strømmen, blir ikke oksydert og forblir uendret. It has now been found that low levels of alkyl, cycloalkyl and alkyl substituted aromatic compounds, which may be considered impurities, can be removed from an aromatic stream by contacting the stream with air and a zeolite catalyst at elevated temperatures. In this method, alkyl, cycloalkyl and the alkyl-substituted aromatic compounds are oxidatively decomposed into CO2, CO and H2O. The unsubstituted aromatic compounds which comprise the majority of the stream are not oxidized and remain unchanged.

Ifølge foreliggende oppfinnelse er det således tilveiebragt en fremgangsmåte for fjerning av alkylsubstituerte aromatiske forbindelser, tetralin, alkylforbindelser, eller cykloalkylforbindelser fra en aromatisk strøm inneholdende disse forbindelsene, og denne fremgangsmåten er kjennetegnet ved at man bringer den aromatiske strømmen i kontakt med molekylært oksygen i nærvær av en zeolitt som har en porediameter som er større enn 6 Ångstrøm ved en temperatur i området 200-500°C. According to the present invention, there is thus provided a method for removing alkyl-substituted aromatic compounds, tetralin, alkyl compounds, or cycloalkyl compounds from an aromatic stream containing these compounds, and this method is characterized by bringing the aromatic stream into contact with molecular oxygen in the presence of a zeolite having a pore diameter greater than 6 Angstroms at a temperature in the range of 200-500°C.

Med betegnelsen "aromatisk strøm" menes en strøm av forskjellige hydrokarbonforbindelser hvor en vesentlig del av hydrokarbonforbindelsene er usubstituerte aromatiske forbindelser. Disse strømmene er ofte knyttet til destillasjonen av petroleum, men andre strømmer som ikke er forbundet med destillasjonen av petroleum, omfattes også av foreliggende oppfinnelse. Eksempler på usubstituerte aromatiske forbindelser innbefatter benzen, naftalen, bifenyl, difenyleter og dibenzofuran. Foretrukne forbindelser er benzen, naftalen og bifenyl. En spesielt foretrukken forbindelse er naftalen fordi selv sterkt raffinert naftalen inneholder et antall sporurenheter som er vanskelige å fjerne ved hjelp av konvensjonelle teknikker. The term "aromatic stream" means a stream of different hydrocarbon compounds where a significant part of the hydrocarbon compounds are unsubstituted aromatic compounds. These streams are often linked to the distillation of petroleum, but other streams which are not linked to the distillation of petroleum are also covered by the present invention. Examples of unsubstituted aromatic compounds include benzene, naphthalene, biphenyl, diphenyl ether and dibenzofuran. Preferred compounds are benzene, naphthalene and biphenyl. A particularly preferred compound is naphthalene because even highly refined naphthalene contains a number of trace impurities which are difficult to remove by conventional techniques.

Alkylsubstituerte aromater som blir oksydativt dekomponert ved denne fremgangsmåten, er benzen, naftalen, bifenyl og difenyleter substituert med alkylgrupper. Uten å være bundet til noen spesiell teori, så antar man at alkylsubstituenten aktiverer molekylet mot oksydativ dekomponering ved tilveie-bringelse av et sete hvor oksygen kan bli festet til molekylet. Det oksygenerte molekylet er relativt ikke-flyktig, og enda mindre oksydativt stabilt, og forblir derfor på katalysatoren inntil det er fullstendig dekomponert til CO, CO2og H2O. Alkylsubstituenter som forårsaker at de aromatiske urenhetene blir mottagelige for oksydativ dekompone ring, er C-l til C-20 hydrokarboner. Eksempler innbefatter metyl, etyl, propyl, isopropyl, butyl, cykloheksyl, heksyl, heptyl, decyl, o.l. Olefiniske substitituenter slik som etenyl, propenyl, isopropenyl og cykloheksenyl er også aktive substituenter. Spesifikke eksempler på alkylsubstituerte aromatiske urenheter som kan dekomponeres oksydativt ved foreliggende fremgangsmåte, innbefatter toluen, etylbenzen, isopropylbenzen, isopropenylbenzen, xylen, mesitylen, duren, indan, metylnaftalen, tetralin, metylinden, etylnaftalen, metylbifenyl, isopropyldifenyl, styren, fenylacetylen og dimetylnaf talener. Alkyl-substituted aromatics that are oxidatively decomposed by this method are benzene, naphthalene, biphenyl and diphenyl ether substituted with alkyl groups. Without being bound to any particular theory, it is assumed that the alkyl substituent activates the molecule against oxidative decomposition by providing a site where oxygen can be attached to the molecule. The oxygenated molecule is relatively non-volatile, and even less oxidatively stable, and therefore remains on the catalyst until it is completely decomposed into CO, CO2 and H2O. Alkyl substituents which cause the aromatic impurities to become susceptible to oxidative decomposition are C-1 to C-20 hydrocarbons. Examples include methyl, ethyl, propyl, isopropyl, butyl, cyclohexyl, hexyl, heptyl, decyl, and the like. Olefinic substituents such as ethenyl, propenyl, isopropenyl and cyclohexenyl are also active substituents. Specific examples of alkyl-substituted aromatic impurities that can be oxidatively decomposed by the present method include toluene, ethylbenzene, isopropylbenzene, isopropenylbenzene, xylene, mesitylene, durene, indane, methylnaphthalene, tetralin, methylindene, ethylnaphthalene, methylbiphenyl, isopropyldiphenyl, styrene, phenylacetylene, and dimethylnaphthalenes.

Alkyl- og cykloalkylforbindelser som kan dekomponeres oksydativt ved foreliggende fremgangsmåte, kan bredt beskrives som en C-l til C-20 cyklisk eller acyklisk ikke-aromatisk hydrokarbonforbindelse. Den acykliske alkylforbindelsen kan være forgrenet eller uforgrenet, og inneholder fortrinnsvis 1-12 karbonatomer. Eksempler innbefatter metan, etan, butan, isobutan, pentan, 2-metyl-pentan, 2,2-dimetylpropan, metylcyklopentan, o.l. Disse urenhetene er ofte til stede i aromatiske råmaterialer ved lave nivåer p.g.a. ufullstendig ekstraksjon av aromater fra paraffinisk reformat, partiell eller fullstendig hydrogene-ring av aromater i hydrodealkylerings- eller hydro-avsvovlingsreaksjoner, og fra krysskontaminering i lagrings-tanker. Ofte er disse hydrokarbonurenhetene vanskelige eller umulige å fjerne fra det aromatiske produktet ved konvensjonelle teknikker p.g.a. likhetene i fysikalske egenskaper slik som kokepunkt og smeltepunkt med det aromatiske råmaterialet. Den cykliske alkylforbindelsen inneholder fortrinnsvis 5-20 karbonatomer. Eksempler innbefatter cyklo-heksan, cyklobutan, cyklopentan, metylcyklopentan, dekalin, metyldekalin, dicykloheksyl, metyldicykloheksyl og dimetyl-dekalin. Alkyl and cycloalkyl compounds that can be oxidatively decomposed by the present method can be broadly described as a C-1 to C-20 cyclic or acyclic non-aromatic hydrocarbon compound. The acyclic alkyl compound can be branched or unbranched, and preferably contains 1-12 carbon atoms. Examples include methane, ethane, butane, isobutane, pentane, 2-methylpentane, 2,2-dimethylpropane, methylcyclopentane, and the like. These impurities are often present in aromatic raw materials at low levels due to incomplete extraction of aromatics from paraffinic reformate, partial or complete hydrogenation of aromatics in hydrodealkylation or hydrodesulfurization reactions, and from cross-contamination in storage tanks. Often these hydrocarbon impurities are difficult or impossible to remove from the aromatic product by conventional techniques due to the similarities in physical properties such as boiling point and melting point with the aromatic raw material. The cyclic alkyl compound preferably contains 5-20 carbon atoms. Examples include cyclohexane, cyclobutane, cyclopentane, methylcyclopentane, decalin, methyldecalin, dicyclohexyl, methyldicyclohexyl and dimethyl decalin.

Selv om en hvilken som helst mengde urenheter kan fjernes ved denne fremgangsmåten, så er mengdene av urenheter generelt mindre enn 10 vekt-56 av den aromatiske strømmen. Et mer foretrukket nivå av urenheter er 1% eller mindre, og et spesielt foretrukket nivå er 0,5$ eller mindre. Fordi denne fremgangsmåten selektivt vil fjerne vesentlig alle alkyl-, cykloalkyl- og alkylsubstituerte urenheter fra aromatiske strømmer, så er den nøyaktige mengde og type av urenheter ikke kritisk. Although any amount of impurities can be removed by this process, the amounts of impurities are generally less than 10 wt-56 of the aromatic stream. A more preferred level of impurities is 1% or less, and a particularly preferred level is 0.5$ or less. Because this process will selectively remove substantially all alkyl, cycloalkyl and alkyl substituted impurities from aromatic streams, the exact amount and type of impurities is not critical.

Zeolittene som kan benyttes i foreliggende oppfinnelse, kan generelt beskrives ved at de har en poreåpning som er større enn 6 Ångstrøm. Zeolitter med små porer som ikke kan gi adgang for aromatiske molekyler, har ikke blitt funnet å være effektive. Forholdet for silisium til aluminium er ikke kritisk, og kan variere fra 1:1 til 100:1, men jo lavere forholdet er, desto større er katalysatorens aktivitet. Et foretrukket forhold for silisium til aluminium er mindre enn 10:1, og et spesielt foretrukket forhold er mindre enn 5:1. De foretrukne motionene som inneholdes i zeolitten, er de som er valgt fra gruppen bestående av hydrogen, alkaliske, jord-alkaliske og sjelden jordartelementer, men en annen hoved-gruppe eller overgangselementioner er ikke skadelig. Generelt, jo mindre kationet er, desto større er katalysatorens selektivitet og aktivitet. Overraskende har det vist seg at en rekke forskjellige oksydasjonsmetaller på konvensjonelle bærere slik som aluminiumoksyd, er ineffektive for denne reaksjonen. Eksempler på katalysatorer som er effektive for denne reaksjonen, innbefatter LiX, NaX, KX, CaX, NaY, KY, HY, HReY, Na-omega, Na-mordenitt, E-ZSM-5, H-silikalitt og KL. Spesielt foretrukne katalysatorer innbefatter NaY, HY og HReY. Det nøyaktige valg av katalysator vil til en viss grad avhenge av den termiske og oksyda-tive stabilitet til det aromatiske kjerneråmaterialet, men valget av den optimale katalysator er enkelt og kan lett bestemmes av en fagmann på området. En foretrukket katalysator for benzenrensing er HReY, mens en foretrukket katalysator for naftalenrensing er NaY. The zeolites that can be used in the present invention can generally be described as having a pore opening greater than 6 Angstroms. Zeolites with small pores that cannot allow access to aromatic molecules have not been found to be effective. The ratio of silicon to aluminum is not critical, and can vary from 1:1 to 100:1, but the lower the ratio, the greater the activity of the catalyst. A preferred ratio of silicon to aluminum is less than 10:1, and a particularly preferred ratio is less than 5:1. The preferred counterions contained in the zeolite are those selected from the group consisting of hydrogen, alkaline, alkaline earth and rare earth elements, but other main group or transition element ions are not harmful. In general, the smaller the cation, the greater the selectivity and activity of the catalyst. Surprisingly, it has been found that a number of different oxidation metals on conventional supports such as aluminum oxide are ineffective for this reaction. Examples of catalysts effective for this reaction include LiX, NaX, KX, CaX, NaY, KY, HY, HReY, Na-omega, Na-mordenite, E-ZSM-5, H-silicalite and KL. Particularly preferred catalysts includes NaY, HY and HReY. The exact choice of catalyst will depend to a certain extent on the thermal and oxidative stability of the aromatic core raw material, but the choice of the optimum catalyst is simple and can be easily determined by a person skilled in the field. A preferred catalyst for benzene purification is HReY, while a preferred catalyst for naphthalene purification is NaY.

Temperaturen som kan benyttes varierer fra 200 til 500°C. Under 200°C blir. reaks j onshast igheten uakseptabel langsom; over 500°C blir uselektiv forbrenning dominerende. Et foretrukket temperaturområde er 200-450°C. Den optimale reaksjonstemperaturen avhenger av den nøyaktige katalysator som benyttes. Generelt vil avtagende kationstørrelse redusere den optimale reaksjonstemperaturen, mens økning av forholdet for silisium til aluminium øker den. Typen av råmateriale har ingen særlig virkning på den optimale reaksjonstemperaturen, men lineære alkaner krever imidlertid noe høyere reaksjonstemperaturer for å forbrenne enn cykloalifatiske og alkylaromatiske urenheter. Generelt kan imidlertid de foretrukne katalysatorene opereres over et bredt temperaturområde. The temperature that can be used varies from 200 to 500°C. Below 200°C becomes. reaction speed unacceptably slow; above 500°C non-selective combustion becomes dominant. A preferred temperature range is 200-450°C. The optimum reaction temperature depends on the exact catalyst used. In general, decreasing cation size will decrease the optimum reaction temperature, while increasing the ratio of silicon to aluminum increases it. The type of raw material has no particular effect on the optimum reaction temperature, but linear alkanes do, however, require somewhat higher reaction temperatures to burn than cycloaliphatic and alkylaromatic impurities. In general, however, the preferred catalysts can be operated over a wide temperature range.

Trykket som kan benyttes, er ikke kritisk, og under-atmosfæriske og overatmosfæriske trykk er egnet. Et foretrukket trykk er fra 0,2 til 20 atmosfærer. The pressure that can be used is not critical, and sub-atmospheric and super-atmospheric pressures are suitable. A preferred pressure is from 0.2 to 20 atmospheres.

En kilde for molekylært oksygen er egnet, idet luft er mest foretrukket. Rent oksygen kan også anvendes. Den aromatiske strømmen og luft blir bragt i kontakt i nærvær av zeolitten ved teknikker som er velkjent på området. F.eks. kan den flytende aromatiske tilførselen fordampes ved forhøyede temperaturer, blandes med luft og deretter bringes i kontakt med zeolittkatalysatoren. En annen fremgangsmåte er å bringe zeolittkatalysatoren direkte i kontakt med den flytende aromatiske strømmen og en oksygenholdig gass. Den aromatiske strømmen er fortrinnsvis vesentlig i dampfasen før den bringes i kontakt med zeolittkatalysatoren. A source of molecular oxygen is suitable, with air being most preferred. Pure oxygen can also be used. The aromatic stream and air are brought into contact in the presence of the zeolite by techniques well known in the art. E.g. the liquid aromatic feed can be vaporized at elevated temperatures, mixed with air and then brought into contact with the zeolite catalyst. Another method is to bring the zeolite catalyst directly into contact with the liquid aromatic stream and an oxygen-containing gas. The aromatic stream is preferably substantially in the vapor phase before it is brought into contact with the zeolite catalyst.

Selv om foreliggende oppfinnelse kan anvendes for å fjerne urenheter fra en hvilken som helst aromatisk strøm, så er en særlig foretrukket utførelse den selekive fjerning av alkylaromater fra naftalen. Naftalen som oppnådd fra kulltjære- og/eller petroleumraffinering, kan inneholde en rekke forskjellige alkylsubstituerte aromatiske forbindelser som ikke på hensiktsmessig måte kan fjernes ved konvensjonelle metoder, slik som destillasjon og krystallisasjon, p.g.a. deres nærliggende kokepunkter og tilbøyelighet til å kokrystallisere med naftalen. Although the present invention can be used to remove impurities from any aromatic stream, a particularly preferred embodiment is the selective removal of alkyl aromatics from naphthalene. Naphthalene obtained from coal tar and/or petroleum refining may contain a number of different alkyl-substituted aromatic compounds which cannot be suitably removed by conventional methods, such as distillation and crystallization, due to their close boiling points and tendency to co-crystallize with naphthalene.

Eksmepler 1- 12 Examples 1-12

I de følgende eksempler demonstreres den selektive fjerning av en alkylsubstituert aromatisk forbindelse (toluen) fra en aromatisk strøm bestående av den alkylsubstituerte aromatiske forbindelsen og benzen. I alle forsøkene ble en 8,4 mol-% oppløsning av toluen i benzen tilført ved en hastighet på 0,0304 ml/min over 10 cm<3>katalysator med 100 ml/min luft. Ovnstemperaturen ble holdt ved 300°C; reaksjonstemperaturen er angitt som sjikttemperaturen. Kolonnen med prosent omdannelse rapporterer antall prosent toluen som er fjernet fra produktet. In the following examples, the selective removal of an alkyl-substituted aromatic compound (toluene) from an aromatic stream consisting of the alkyl-substituted aromatic compound and benzene is demonstrated. In all experiments, an 8.4 mol% solution of toluene in benzene was fed at a rate of 0.0304 ml/min over 10 cm<3>catalyst with 100 ml/min of air. The oven temperature was maintained at 300°C; the reaction temperature is indicated as the bed temperature. The percent conversion column reports the percentage of toluene removed from the product.

Eksempler 13- 18 Examples 13-18

I de følgende eksempler "ble en aromatisk strøm bestående av benzen inneholdende 1,0 vekt-# toluen ført ved 0,304 ml/min med 100 ml/min luft over 5 cm<3>av de angitte katalysatorene. Ovnstemperaturen, sjikttemperaturen, den prosentvise omdannelse av toluen og avgassanalysen er rapportert. Under disse betingelsene ville fullstendig forbrenning av toluen og 05é forbrenning av benzen resultere i 0,45$ CO+CO2i avgassen. In the following examples "an aromatic stream consisting of benzene containing 1.0 wt-# toluene was passed at 0.304 ml/min with 100 ml/min of air over 5 cm<3> of the indicated catalysts. The furnace temperature, bed temperature, percent conversion of toluene and the flue gas analysis is reported Under these conditions complete combustion of toluene and 05é combustion of benzene would result in 0.45$ CO+CO2in the flue gas.

Eksempler 19- 21 Examples 19-21

I disse eksemplene ble en aromatisk strøm av 1,0 vekt-5é heksan, 1,0 vekt-56 toluen og 98,0 vekt-# benzen ført ved 0,0304 ml/min over 5 cm<3>av de angitte katalysatorene. Resultatene er rapportert som før. In these examples, an aromatic stream of 1.0 wt-5e hexane, 1.0 wt-56 toluene and 98.0 wt-# benzene was passed at 0.0304 ml/min over 5 cm<3> of the indicated catalysts. The results are reported as before.

Eksempel 22 Example 22

I dette eksempelet var betingelsene de samme som i eksempel 18 med unntagelse for at 15 cm<3>NaY ble benyttet og ovnstemperaturen var 350°C. Sjikttemperaturen var 361°C, og toluenomdannelsen var 96,356 med 2,42$ CO+CO2i avgassen. In this example, the conditions were the same as in example 18 with the exception that 15 cm<3>NaY was used and the furnace temperature was 350°C. The bed temperature was 361°C, and the toluene conversion was 96.356 with 2.42$ CO+CO2 in the off gas.

Eksempel 23 Example 23

I dette eksempelet ble 0,38 g/min av en aromatisk strøm bestående av naftalen inneholdende 0,05 vekt-56 urenheter, hvor hovedurenhetene var tetralin og 2-metylnaftalen, ført med 135 ml/min luft over 75 cm<3>NaX ved en ovnstemperatur på 250°C. Sjikttemperaturen var 375°C og avgassen inneholdt 18$ CO+CO2. GC-analyse av produktet fant at 82$ av urenhetene hadde blitt fjernet. In this example, 0.38 g/min of an aromatic stream consisting of naphthalene containing 0.05 wt-56 impurities, the main impurities being tetralin and 2-methylnaphthalene, was carried with 135 ml/min of air over 75 cm<3>NaX at an oven temperature of 250°C. The bed temperature was 375°C and the exhaust gas contained 18$ CO+CO2. GC analysis of the product found that 82% of the impurities had been removed.

Eksempel 24 Example 24

I dette eksempelet ble 0,38 g/min av en aromatisk strøm bestående av naftalen inneholdende 0,08 vekt-56 urenheter, idet hovedurenhetene var tetralin og 2-metylnaftalen, ført med 135 ml/min luft over 100 cm<3>NaY ved en ovnstemperatur på 275°C. Sjikttemperauren var 281°C, og avgassen inneholdt 0,356 CO+CO2. GC-analyse av produktet fant 9656 fjerning av urenhetene. In this example, 0.38 g/min of an aromatic stream consisting of naphthalene containing 0.08 wt-56 impurities, the main impurities being tetralin and 2-methylnaphthalene, was carried with 135 ml/min of air over 100 cm<3>NaY at an oven temperature of 275°C. The bed temperature was 281°C, and the exhaust gas contained 0.356 CO+CO2. GC analysis of the product found 9656 removal of the impurities.

Claims (4)

1. Fremgangsmåte for fjerning av alkylsubstituerte aromatiske forbindelser, tetralin, alkylforbindelser, eller cykloalkylforbindelser fra en aromatisk strøm inneholdende disse forbindelsene,karakterisert vedat man bringer den aromatiske strømmen i kontakt med molekylært oksygen i nærvær av en zeolitt som har en porediameter som er større enn 6 Ångstrøm ved en temperatur i området 200-500°C.1. Process for removing alkyl-substituted aromatic compounds, tetralin, alkyl compounds, or cycloalkyl compounds from an aromatic stream containing these compounds, characterized by contacting the aromatic stream with molecular oxygen in the presence of a zeolite having a pore diameter greater than 6 Angstroms at a temperature in the range 200-500°C. 2. Fremgangsmåte ifølge krav 1,karakterisertved at zeolitten er en faujasitt-zeolitt.2. Method according to claim 1, characterized in that the zeolite is a faujasite zeolite. 3. Fremgangsmåte ifølge krav 1,karakterisertved at den aromatiske strømmen er en naftalenholdig strøm.3. Method according to claim 1, characterized in that the aromatic stream is a naphthalene-containing stream. 4. Fremgangsmåte ifølge krav 1,karakterisertved at den aromatiske strømmen er en benzenholdig strøm.4. Method according to claim 1, characterized in that the aromatic stream is a benzene-containing stream.
NO911050A 1988-09-19 1991-03-15 Process for removing impurities from an aromatic stream NO174195C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/245,485 US4814545A (en) 1988-09-19 1988-09-19 Process for removing impurities from an aromatic stream
PCT/US1989/003945 WO1990003355A1 (en) 1988-09-19 1989-09-11 Process for removing impurities from an aromatic stream

Publications (4)

Publication Number Publication Date
NO911050D0 NO911050D0 (en) 1991-03-15
NO911050L NO911050L (en) 1991-03-15
NO174195B true NO174195B (en) 1993-12-20
NO174195C NO174195C (en) 1994-04-06

Family

ID=26779960

Family Applications (1)

Application Number Title Priority Date Filing Date
NO911050A NO174195C (en) 1988-09-19 1991-03-15 Process for removing impurities from an aromatic stream

Country Status (1)

Country Link
NO (1) NO174195C (en)

Also Published As

Publication number Publication date
NO911050D0 (en) 1991-03-15
NO174195C (en) 1994-04-06
NO911050L (en) 1991-03-15

Similar Documents

Publication Publication Date Title
US5856607A (en) Process for production of ethylbenzene frome dilute ethylene streams
CN110177859B (en) Integrated process for producing benzene and xylenes from heavy aromatics
WO2010042440A1 (en) An integrated process to coproduce aromatic hydrocarbons and ethylene and propylene
NO833840L (en) PROCEDURE FOR MANUFACTURING SYNTHETIC FUELS AND LUBRICANTS FROM VAAT NATURAL GAS
US11618723B2 (en) Integrated process for optimum production of para-xylene
NO166406B (en) PROCEDURE FOR CONVERSION OF HYDROCARBONES.
TW201710225A (en) Processes and apparatuses for toluene methylation in an aromatics complex
WO2016097855A1 (en) Xylene isomerization
JP2018514546A (en) Process and apparatus for producing para-xylene
US11292754B2 (en) Integrated process for maximizing production of para-xylene from full reformate
CN110546124B (en) Method and apparatus for improving paraxylene yield in aromatics complex
TW201835015A (en) Removal of feed treatment units in aromatics complex designs
US4814545A (en) Process for removing impurities from an aromatic stream
US9422208B2 (en) Treatment of aromatic hydrocarbon stream
NO174195B (en) Process for removing impurities from an aromatic stream
US3691247A (en) Selectively removing monoalkylbenzenes from mixtures thereof with dialkylbenzenes
US10822291B2 (en) Processes and apparatuses for naphthene recycle in the production of aromatic products
US10927057B1 (en) Two bed liquid phase isomerization process
US20210206704A1 (en) Oxygenate removal for para-xylene purification via adsorption separation
US3492363A (en) Production of naphthalenes
JP2817382B2 (en) Method for modifying alkyl naphthalene mixture
JP3402488B2 (en) Process for producing a fraction rich in methylnaphthalene and dimethylnaphthalenes
EP0276524A1 (en) Xylene production employing isomerization and transalkylation