NO173230B - AZEOTROP MIXING WITH MINIMUM BOILING POINT AND USE THEREOF - Google Patents

AZEOTROP MIXING WITH MINIMUM BOILING POINT AND USE THEREOF Download PDF

Info

Publication number
NO173230B
NO173230B NO904726A NO904726A NO173230B NO 173230 B NO173230 B NO 173230B NO 904726 A NO904726 A NO 904726A NO 904726 A NO904726 A NO 904726A NO 173230 B NO173230 B NO 173230B
Authority
NO
Norway
Prior art keywords
boiling point
azeotrope
tetrafluoroethane
mixture
perfluoropropane
Prior art date
Application number
NO904726A
Other languages
Norwegian (no)
Other versions
NO904726D0 (en
NO904726L (en
NO173230C (en
Inventor
Didier Arnaud
Jean-Claude Tanguy
Daniel Sallet
Original Assignee
Atochem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8914788A external-priority patent/FR2654427B1/en
Application filed by Atochem filed Critical Atochem
Publication of NO904726D0 publication Critical patent/NO904726D0/en
Publication of NO904726L publication Critical patent/NO904726L/en
Publication of NO173230B publication Critical patent/NO173230B/en
Publication of NO173230C publication Critical patent/NO173230C/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0028Liquid extinguishing substances
    • A62D1/0057Polyhaloalkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/30Materials not provided for elsewhere for aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/04Aerosol, e.g. polyurethane foam spray
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/32The mixture being azeotropic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Detergent Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

An azeotrope of minimum boiling point, capable of being employed as refrigerating fluid replacing chlorofluorocarbons or as an extinguishing agent replacing bromofluorocarbons and chlorobromofluorocarbons. The azeotrope according to the invention is a mixture of 1,1,1,2-tetrafluoroethane and perfluoropropane. At normal boiling point (approximately -41.1 DEG C at 1.013 bar) its perfluoropropane content is approximately 76 mass% and that of 1,1,1,2-tetrafluoroethane is 24 %. This azeotrope can also be employed as an aerosol propellant or as a blowing agent for plastic foams.

Description

Foreliggende oppfinnelse angår en azeotrop blanding av fluoralkaner med lavt kokepunkt og som ikke har eller kun har liten innvirkning på omgivelsene og som kan anvendes for å erstatte klorfluorkarboner, CFC, i lavtemperatur-kompresjons-kjølesystemer og for å erstatte trifluorbrommetan og difluorklorbrommetan som brannslokningsmiddel. The present invention relates to an azeotropic mixture of fluoroalkanes with a low boiling point and which has no or only a small impact on the environment and which can be used to replace chlorofluorocarbons, CFCs, in low-temperature compression refrigeration systems and to replace trifluorobromomethane and difluorochlorobromoethane as fire extinguishing agents.

Det er fastslått at CFC på grunn av sin viktige virknings-koeffesient på ozon før eller siden må erstattes med kjølevæsker som inneholder mindre klor og som på grunn av dette er mindre aggresive mot omgivelsene. 1,1,1,2-tetrafluoretan (R 134a) har, på grunn av sin lave innvirkning på omgivelsene, allerede vært foreslått som erstatning for CFC. Imidlertid er anvendelsen av R 134a på grunn av sitt høye kokepunkt på -26,5 °C vært reservert anvendelser ved midlere fordampingstemperaturer (-25 °C; -26 °C) og kan ikke beregnes benyttet ved anvendelser ved lave koketemperaturer (for eksempel -40 °C). I virkeligheten er i praksis den minimale temperatur som nås i fordamperen begrenset av verdien for den vanlige koketemperatur for kjølevæsken for å unngå innføring av luft eller saltlake i installasjonene i tilfelle utslipp fra fordamperen, noe som kan medføre en forstyrrelse av den normale funskjon av systemet. It has been established that, due to its important effect coefficient on ozone, sooner or later CFCs must be replaced with coolants that contain less chlorine and are therefore less aggressive towards the environment. Due to its low impact on the environment, 1,1,1,2-tetrafluoroethane (R 134a) has already been proposed as a replacement for CFCs. However, due to its high boiling point of -26.5 °C, the use of R 134a has been reserved for applications at medium evaporation temperatures (-25 °C; -26 °C) and cannot be calculated to be used for applications at low boiling temperatures (for example - 40 °C). In reality, in practice, the minimum temperature reached in the evaporator is limited by the value of the normal boiling temperature of the coolant in order to avoid the introduction of air or brine into the installations in the event of discharge from the evaporator, which could cause a disturbance of the normal functioning of the system.

På området brannslokning og brannbekjempelse benytter man i det vesentlige klorbromfluoralkaner og bromfluoralkaner, mere spesielt trifluorbrommetan, difluorklorbrommetan og 1,1,2,2-tetrafluor 1,2-dibrometan. Disse forbindelser benyttes spesielt i lokaler der man finner elektriske apparaturer eller elektronikk som er følsom overfor korrosjon (regne-maskiner, telefonsentraler, kommandorom for skip). Som CFC har imidlertid disse forbindelser høyt ODP (ozone depletion potential). In the area of fire extinguishing and fire fighting, chlorobromofluoroalkanes and bromofluoroalkanes are used essentially, more particularly trifluorobromomethane, difluorochlorobromomethane and 1,1,2,2-tetrafluoro 1,2-dibromoethane. These connections are used in particular in premises where there is electrical equipment or electronics that are sensitive to corrosion (calculators, telephone exchanges, command rooms for ships). However, like CFCs, these compounds have a high ODP (ozone depletion potential).

Det er nå imidlertid funnet at 1,1,1,2-tetrafluoretan (R 134a) og perfluorpropan (R 218) danner en azeotrop med et minimum-kokepunkt lik ca -41,1°C ved 1,013 bar og der mengden R 218 ved vanlig kokepunkt er ca 76 vekt-#. Selv-følgelig varierer denne sammensetning som en funksjon av blandingens trykk og kan ved et gitt trykk lett bestemmes i henhold til kjente teknikker. However, it has now been found that 1,1,1,2-tetrafluoroethane (R 134a) and perfluoropropane (R 218) form an azeotrope with a minimum boiling point equal to about -41.1°C at 1.013 bar and where the amount of R 218 at normal boiling point is about 76 wt-#. Of course, this composition varies as a function of the pressure of the mixture and, at a given pressure, can be easily determined according to known techniques.

I henhold til dette angår foreliggende oppfinnelse en azeotrop blanding med minimumkokepunkt og denne blanding karakteriseres ved at den består av en blanding av 1,1,1,2-tetrafluoretan og perfluorpropan og at den ved sitt normale kokepunkt, -41,1 °C under 1,013 bar, inneholder 76 vekt-# perfluorpropan og 24 vekt-# 1,1,1,2-tetrafluoretan. According to this, the present invention concerns an azeotropic mixture with a minimum boiling point and this mixture is characterized by the fact that it consists of a mixture of 1,1,1,2-tetrafluoroethane and perfluoropropane and that at its normal boiling point, -41.1 °C below 1.013 bar, contains 76 wt-# perfluoropropane and 24 wt-# 1,1,1,2-tetrafluoroethane.

Oppfinnelsen angår også anvendelse av azeotropen som beskrevet ovenfor som kjølevæske, aerosoldrivmiddel, ekspansjonsmiddel for plastskum eller slukkemiddel. The invention also relates to the use of the azeotrope as described above as a cooling liquid, aerosol propellant, expansion agent for plastic foam or extinguishing agent.

Azeotropen ifølge oppfinnelsen har fordelen av å oppvise et ODP = 0. Dette betyr at azeotropen er fri for en destruerende virkning vis å vis stratosfærens ozonsjikt. ODP verdien er definert som forholdet mellom senkningen av ozonkolonnen registrert under emisjon av en masseenhet av stoffet og den samme reduksjon for triklorfluormetan som er valgt som referanse, ODP = 1. Som indikasjon er ODP-verdien for trifluorbrommetan = 10. The azeotrope according to the invention has the advantage of exhibiting an ODP = 0. This means that the azeotrope is free of a destructive effect on the ozone layer of the stratosphere. The ODP value is defined as the ratio between the lowering of the ozone column recorded during the emission of one mass unit of the substance and the same reduction for trichlorofluoromethane which is chosen as a reference, ODP = 1. As an indication, the ODP value for trifluorobromomethane = 10.

På grunn av sitt lave kokepunkt kan den azeotrope blanding ifølge oppfinnelsen benyttes som kjølevæske ved anvendelser ved lave koketemperaturer (-40 °C; -41 °C) på samme måte som når det gjelder kommersielle lavtemperaturkjølere der R 218 alene har dårlige termodynamiske egenskaper og der R 134a alene ikke kan benyttes av de ovenfor angitte grunner. Due to its low boiling point, the azeotropic mixture according to the invention can be used as a coolant in applications at low boiling temperatures (-40 °C; -41 °C) in the same way as in the case of commercial low-temperature coolers where R 218 alone has poor thermodynamic properties and where R 134a alone cannot be used for the reasons stated above.

Det er likeledes funnet at denne azeotrop kan benyttes som slukkemiddel ved spesielt å erstatte trifluorbrommetan og difluorklorbrommetan. Den har en "Burner Cup"-verdi på under 10 % og oppviser som konklusjon en høy slukkekraft. Azeotropen ifølge oppfinnelsen kan benyttes for å bekjempe brann i henhold de samme teknikker som trifluorbrommetan og difluorklorbrommetan. Således kan den med fordel benyttes for beskyttelse av lokaler ved den teknikk som kalles total flømming. Den kan settes under trykk med inertgasser som nitrogen, noe som tillater å øke utslippshastigheten. Den kan likeledes benyttes for bærbare slukkere. It has also been found that this azeotrope can be used as an extinguishing agent by particularly replacing trifluorobromomethane and difluorochlorobromomethane. It has a "Burner Cup" value of less than 10% and in conclusion exhibits a high extinguishing power. The azeotrope according to the invention can be used to fight fire according to the same techniques as trifluorobromomethane and difluorochlorobromomethane. Thus, it can be advantageously used for the protection of premises by the technique known as total flooding. It can be pressurized with inert gases such as nitrogen, which allows the discharge rate to be increased. It can also be used for portable extinguishers.

På grunn av de fysikalske egenskaper som ligger nær de til CFC kan blandingen ifølge oppfinnelsen likeledes benyttes som aerosoldrivmiddel eller som ekspansjonsmiddel for plastskum. De følgende eksempler skal illustrere oppfinnelsen uten å begrense den. Due to the physical properties that are close to those of CFCs, the mixture according to the invention can also be used as an aerosol propellant or as an expansion agent for plastic foam. The following examples are intended to illustrate the invention without limiting it.

EKSEMPEL 1 EXAMPLE 1

Azeotropen ifølge oppfinnelsen er studert eksprimentelt ved forskjellige temperaturer ved analyse ved hjelp av gasskrom-atografi av sammensetningen av den flytende fase og av dampfasen for forskjellige blandinger av R 134a og R 218. The azeotrope according to the invention has been studied experimentally at different temperatures by analysis by means of gas chromatography of the composition of the liquid phase and of the vapor phase for different mixtures of R 134a and R 218.

Trykkene ble målt med en nøyaktighet på over 0,02 bar ved hjelp av et HEISE manometer. Temperaturene måles med en nøyaktighet på 0,02 °C ved hjelp av en 1000 ohm platinasonde. The pressures were measured with an accuracy of over 0.02 bar using a HEISE manometer. Temperatures are measured with an accuracy of 0.02 °C using a 1000 ohm platinum probe.

Det vedlagte diagram viser 1ikevektskurven væske:damp for blandingen R 218:R134a, opprettet ved en temperatur på 20,3 °C. I diagrammet viser abcissen vektandelen R 218 og ordinaten det absolutte trykk i bar; tegnene angir forsøkspunktene. The attached diagram shows the liquid:vapor equilibrium curve for the mixture R 218:R134a, created at a temperature of 20.3 °C. In the diagram, the abscissa shows the weight share R 218 and the ordinate the absolute pressure in bar; the signs indicate the experimental points.

For hver temperatur oppnås en kurve analog den i diagrammet. Ved suksessiv tilsettning av R 218 til R 134a øker trykket som utvikles av blandingen regulært og passerer via et maksimum og synker så regulært, noe som viser at det foreligger en azeotrop med et minimum-kokepunkt. For each temperature, a curve analogous to the one in the diagram is obtained. On successive addition of R 218 to R 134a, the pressure developed by the mixture increases regularly and passes via a maximum and then decreases regularly, which shows that an azeotrope with a minimum boiling point exists.

Tabell 1 gir forholdet trykk:temperatur for denne azeotrop, sammenlignet med de til de rene forbindelser. Table 1 gives the pressure:temperature ratio for this azeotrope, compared to those of the pure compounds.

Damptrykket- for azeotopen forblir for et vidt temperatur-spektrum over damptrykket for de rene forbindelser. Disse verdier antyder at blandingen forblir azeotrop over hele temperaturintervallet. The vapor pressure of the azeotope remains for a wide temperature spectrum above the vapor pressure of the pure compounds. These values suggest that the mixture remains azeotropic over the entire temperature range.

EKSEMPEL 2 EXAMPLE 2

Karakteriseringen av azeotropen ved vanlig kokepunkt skjer på direkte måte ved hjelp av koketemperaturen for de forskjellige blandinger R 218:R 134a ved hjelp av et "ebulio-meter" . The characterization of the azeotrope at normal boiling point takes place directly by means of the boiling temperature of the different mixtures R 218:R 134a using an "ebulio-meter".

Tabell 2 resymerer de oppnådde resultater og tillater å karakterisere azeotropen ved: Table 2 summarizes the results obtained and allows the azeotrope to be characterized by:

det normale kokepunkt som er lik ca -41,1 °C, og vektmengden er 218 som er lik ca 76 %. the normal boiling point which is equal to about -41.1 °C, and the amount by weight is 218 which is equal to about 76%.

EKSEMPEL 3 EXAMPLE 3

Dette eksempel viser anvendelsen av azeotropen ifølge oppfinnelsen som kjølevæske. This example shows the use of the azeotrope according to the invention as a coolant.

De termodynamiske ytelser for den azeotrope blanding ifølge oppfinnelsen sammenlignes med ytelsene til de to enkelt-bestanddeler under betingelser nær de man møter i et kommersielt kjølesystem, nemlig følgende: The thermodynamic performance of the azeotropic mixture according to the invention is compared with the performance of the two individual components under conditions close to those encountered in a commercial cooling system, namely the following:

Tabell 3 oppsummerer de termodynamiske ytelser man observerer under betingelser for ren R 134a, ren R 218 og den azeotrope blanding ifølge oppfinnelsen. Table 3 summarizes the thermodynamic performances observed under conditions for pure R 134a, pure R 218 and the azeotropic mixture according to the invention.

Man kan observere at den azeotrope blanding ifølge oppfinnelsen oppviser tallrike fordeler i forhold til ren R 134a eller ren R 218, nemlig: en meget lavere kompresjonsgrad og således en forbedring av kompressorens volumkrav og som et resultat lavere It can be observed that the azeotropic mixture according to the invention exhibits numerous advantages compared to pure R 134a or pure R 218, namely: a much lower compression ratio and thus an improvement of the compressor volume requirement and as a result lower

installasj onsomkostninger; installation costs;

en disponibel volumetrisk kjøleevne som er betydelig for høyt, noe som for en gitt kjøleevne tillater anvendelse av an available volumetric cooling capacity that is significantly too high, which for a given cooling capacity allows the use of

en mindre kompressor enn det som er definert for anvendelse av ren R 134a eller ren R 218. a smaller compressor than that defined for the use of pure R 134a or pure R 218.

Denne økning av den disponible volumetriske kjølekraft tillater når det gjelder azeotropen ifølge oppfinnelsen å øke den disponible kjølekraft med 37 % for en allerede eksi-sterende installasjon som benytter R 134a. This increase in the available volumetric cooling power allows, in the case of the azeotrope according to the invention, to increase the available cooling power by 37% for an already existing installation that uses R 134a.

EKSEMPEL 4 EXAMPLE 4

Dette eksempel viser anvendelsen av azeotropen ifølge oppfinnelsen som slukkemiddel. This example shows the use of the azeotrope according to the invention as an extinguishing agent.

Slukkeeffektiviteten måles generelt i henhold til den metode som kalles "Burner Cup". The extinguishing efficiency is generally measured according to the method called "Burner Cup".

Denne metode beskrives i normen ISO/DIS 7075-1 som den minimale prosentandel slukkemiddel (målt på volumbasis) i en blanding av luft pluss slukkeforbindelse som er nødvendige for å slukke en brennende væske. This method is described in the standard ISO/DIS 7075-1 as the minimum percentage of extinguishing agent (measured on a volume basis) in a mixture of air plus extinguishing compound that is necessary to extinguish a burning liquid.

Jo lavere "Burner Cup"-verdien er, jo mere effektiv er slukkeforbindelsen. The lower the "Burner Cup" value, the more effective the extinguishing connection.

I foreliggende tilfelle ble etanol benyttet som brennbar væske. In the present case, ethanol was used as a flammable liquid.

"Burner Cup"-verdien for den azeotrope blanding R 218:R 134a ifølge oppfinnelsen er 9,5 H>. The "Burner Cup" value for the azeotropic mixture R 218:R 134a according to the invention is 9.5 H>.

Claims (5)

1. Azeotrop blanding med minimum kokepunkt, karakterisert ved at den består av en blanding av 1,1,1,2-tetrafluoretan og perfluorpropan og at den ved sitt normale kokepunkt, -41,1 °C under 1,013 bar, inneholder 76 vekt-# perfluorpropan og 24 vekt-# 1,1,1,2-tetrafluoretan.1. Azeotropic mixture with a minimum boiling point, characterized in that it consists of a mixture of 1,1,1,2-tetrafluoroethane and perfluoropropane and that at its normal boiling point, -41.1 °C under 1.013 bar, it contains 76 wt-# of perfluoropropane and 24 wt # 1,1,1,2-tetrafluoroethane. 2 . Anvendelse av azeotropen ifølge krav 1 som kjølevæske.2. Use of the azeotrope according to claim 1 as a coolant. 3. Anvendelse av azeotropen ifølge krav 1 som aerosoldrivmiddel.3. Use of the azeotrope according to claim 1 as an aerosol propellant. 4 . Anvendelse av azeotropen ifølge krav 1 som ekspansjonsmiddel for plastskum.4. Use of the azeotrope according to claim 1 as an expanding agent for plastic foam. 5 . Anvendelsen av azeotropen ifølge krav 1 som slukkemiddel.5 . The use of the azeotrope according to claim 1 as an extinguishing agent.
NO904726A 1989-11-10 1990-10-31 AZEOTROP MIXING WITH MINIMUM BOILING POINT AND USE THEREOF NO173230C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8914788A FR2654427B1 (en) 1989-11-10 1989-11-10 NEW AZEOTROPIC MIXTURE WITH LOW BOILING POINT BASED ON FLUOROALKANES AND ITS APPLICATIONS.
FR909007153A FR2662944B2 (en) 1989-11-10 1990-06-08 NEW AZEOTROPIC MIXTURE WITH LOW BOILING POINT BASED ON FLUOROALKANES AND ITS APPLICATIONS.

Publications (4)

Publication Number Publication Date
NO904726D0 NO904726D0 (en) 1990-10-31
NO904726L NO904726L (en) 1991-05-13
NO173230B true NO173230B (en) 1993-08-09
NO173230C NO173230C (en) 1993-11-17

Family

ID=26227656

Family Applications (1)

Application Number Title Priority Date Filing Date
NO904726A NO173230C (en) 1989-11-10 1990-10-31 AZEOTROP MIXING WITH MINIMUM BOILING POINT AND USE THEREOF

Country Status (14)

Country Link
EP (1) EP0427604B1 (en)
JP (1) JPH0729956B2 (en)
KR (1) KR920009972B1 (en)
AT (1) ATE88452T1 (en)
AU (1) AU633648B2 (en)
CA (1) CA2028735A1 (en)
DE (1) DE69001423T2 (en)
DK (1) DK0427604T3 (en)
ES (1) ES2069717T3 (en)
FI (1) FI97053C (en)
FR (1) FR2662944B2 (en)
IE (1) IE64735B1 (en)
NO (1) NO173230C (en)
PT (1) PT95848B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU629975B2 (en) * 1989-08-21 1992-10-15 Great Lakes Chemical Corporation Fire extinguishing methods and blends utilizing hydrofluorocarbons
FR2682395B1 (en) * 1991-10-09 1993-12-10 Atochem MIXTURES OF 1,1,1-TRIFLUOROETHANE, PERFLUOROPROPANE AND PROPANE, AND THEIR APPLICATIONS AS REFRIGERANTS, AS AEROSOL PROPELLANTS OR AS PLASTIC FOAM EXPANDING AGENTS.
US5236611A (en) * 1991-10-28 1993-08-17 E. I. Du Pont De Nemours And Company Mixtures of perfluoropropane and trifluoroethane
WO1993011201A1 (en) * 1991-12-03 1993-06-10 United States Environmental Protection Agency Refrigerant compositions and processes for using same
FR2686092B1 (en) * 1992-01-13 1994-09-16 Atochem Elf Sa MIXTURES OF 1,1,1-TRIFLUOROETHANE AND PERFLUOROPROPANE AND THEIR APPLICATIONS AS REFRIGERANTS, AS AEROSOL PROPELLERS OR AS PLASTIC FOAM EXPANSION AGENTS.
EP0556722A1 (en) * 1992-02-19 1993-08-25 Hoechst Aktiengesellschaft Method of decreasing the total pressure in aerosol containers
US5248433A (en) * 1992-04-30 1993-09-28 E. I. Du Pont De Nemours And Company Binary azeotropic mixtures of octafluoropropane and fluoroethane
US5494601A (en) * 1993-04-01 1996-02-27 Minnesota Mining And Manufacturing Company Azeotropic compositions
US5401429A (en) * 1993-04-01 1995-03-28 Minnesota Mining And Manufacturing Company Azeotropic compositions containing perfluorinated cycloaminoether
GB9522701D0 (en) * 1995-11-07 1996-01-10 Star Refrigeration Centrifugal compression refrigerant composition
DK0998539T3 (en) 1997-07-15 2002-10-28 Rhodia Ltd refrigerant compositions
US7258813B2 (en) 1999-07-12 2007-08-21 E.I. Du Pont De Nemours And Company Refrigerant composition
DE10121544B4 (en) * 2001-05-03 2007-08-16 Axima Refrigeration Gmbh Process for the liquefaction of a reactive gas
GB0223724D0 (en) 2002-10-11 2002-11-20 Rhodia Organique Fine Ltd Refrigerant compositions
CA2507639C (en) 2002-11-29 2013-08-06 Rhodia Organique Fine Limited Chiller refrigerants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607755A (en) * 1968-11-25 1971-09-21 Allied Chem Novel halocarbon compositions
US4101467A (en) * 1976-02-27 1978-07-18 The Dow Chemical Company Soft ethylenic polymer foams
US4810403A (en) * 1987-06-09 1989-03-07 E. I. Du Pont De Nemours And Company Halocarbon blends for refrigerant use
US4944890A (en) * 1989-05-23 1990-07-31 E. I. Du Pont De Nemours And Company Compositions and process of using in refrigeration

Also Published As

Publication number Publication date
EP0427604B1 (en) 1993-04-21
DE69001423D1 (en) 1993-05-27
IE904049A1 (en) 1991-05-22
PT95848A (en) 1991-09-13
NO904726D0 (en) 1990-10-31
FI905565A0 (en) 1990-11-09
FI97053B (en) 1996-06-28
PT95848B (en) 1997-11-28
KR920009972B1 (en) 1992-11-09
KR910009620A (en) 1991-06-28
NO904726L (en) 1991-05-13
CA2028735A1 (en) 1991-05-11
EP0427604A1 (en) 1991-05-15
AU6654990A (en) 1991-05-16
DK0427604T3 (en) 1993-05-17
FI97053C (en) 1996-10-10
JPH03173839A (en) 1991-07-29
AU633648B2 (en) 1993-02-04
ATE88452T1 (en) 1993-05-15
IE64735B1 (en) 1995-09-06
FR2662944A2 (en) 1991-12-13
FR2662944B2 (en) 1992-09-04
NO173230C (en) 1993-11-17
DE69001423T2 (en) 1993-09-09
JPH0729956B2 (en) 1995-04-05
ES2069717T3 (en) 1995-05-16

Similar Documents

Publication Publication Date Title
NO173230B (en) AZEOTROP MIXING WITH MINIMUM BOILING POINT AND USE THEREOF
JP2732545B2 (en) Refrigerant for use as a substitute for R-502
US5340490A (en) Azeotrope-like compositions of trifluoromethane and carbon dioxide or hexafluoroethane and carbon dioxide
US5744052A (en) Azeotrope-like compositions containing difluoromethane, pentafluoroethane, and carbon dioxide
KR101618900B1 (en) Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene
JPH0753674B2 (en) Azeotropic mixtures with the lowest boiling points and the use of the mixtures as liquid refrigerants, aerosol propellants and blowing agents for plastic foams
JP3369559B2 (en) Composition of difluoromethane and tetrafluoroethane
US5800729A (en) Mixtures of pentafluoropropane and a hydrofluorocarbon having 3 to 6 carbon atoms
NO173387B (en) MIXTURES OF DIMETYLETS AND 1,1,1,2-TETRAFLUORETHANE AND THEIR APPLICATIONS
EP0592555A1 (en) Azeotropic or azeotrope-like compositions of pentafluoroethane and propane or isobutane.
KR960006072B1 (en) Mixture of 1,1,1-trifluoroethane and perfluoroethane and their use as refrigerant aerosol propellent or blowing agent for plastici foams
JP6924541B1 (en) Thermal medium
JPH06220435A (en) Refrigerant composition
ES2321804T3 (en) HYDROFLUOROCARBONATED COMPOSITIONS.
JPH06220433A (en) Refrigerant composition
JPH0762334A (en) Refrigerant composition
JPH06220434A (en) Refrigerant composition
JP2003268357A (en) Hydrocarbon coolant and air conditioner for automobile using the same