NO172590B - BROWN HOLE FLUID AND USE OF THIS FOR AA REDUCE THE PERMEABILITY OF A BACKGROUND FORM THAT REPLACES A DRILL HOLE - Google Patents

BROWN HOLE FLUID AND USE OF THIS FOR AA REDUCE THE PERMEABILITY OF A BACKGROUND FORM THAT REPLACES A DRILL HOLE Download PDF

Info

Publication number
NO172590B
NO172590B NO865299A NO865299A NO172590B NO 172590 B NO172590 B NO 172590B NO 865299 A NO865299 A NO 865299A NO 865299 A NO865299 A NO 865299A NO 172590 B NO172590 B NO 172590B
Authority
NO
Norway
Prior art keywords
acid
condensation product
wellbore
wellbore fluid
molecular weight
Prior art date
Application number
NO865299A
Other languages
Norwegian (no)
Other versions
NO865299D0 (en
NO865299L (en
NO172590C (en
Inventor
Harold Edward Bellis
Edward Francis Mcbride
Original Assignee
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont filed Critical Du Pont
Publication of NO865299D0 publication Critical patent/NO865299D0/en
Publication of NO865299L publication Critical patent/NO865299L/en
Publication of NO172590B publication Critical patent/NO172590B/en
Publication of NO172590C publication Critical patent/NO172590C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/885Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/925Completion or workover fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/926Packer fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/933Acidizing or formation destroying

Abstract

This invention relates to a composition and method of temporarily reducing the permeability of subterranean formations penetrated by a wellbore. In particular, it relates to an inexpensive, low molecular weight condensation product of hydroxy acetic acid with itself or compounds containing other hydroxy-, carboxylic-acid-, or hydroxycarboxylic-acid moieties and method for preventing fluid loss during well treatment.

Description

Denne oppfinnelse angår en brønnhullsvæske og anvendelse av denne for å redusere permeabiliteten av en undergrunnsformasjon som gjennomtrenges av et borehull. This invention relates to a wellbore fluid and its use to reduce the permeability of a subsurface formation penetrated by a borehole.

På forskjellige tidspunkter i løpet av levetiden for en brønn dannet i en undergrunnsformasjon for produksjon av olje og gass er det ønskelig å behandle brønnen. Slike behandlinger innbefatter perforering, pakking med grus, frakturering og etsing. For å utføre disse behandlinger benyttes fluidtapsregulerende midler og avledningsmidler, hvilke i denne beskrivelse betegnes som behandlingsmidler. At various times during the lifetime of a well formed in an underground formation for the production of oil and gas, it is desirable to treat the well. Such treatments include perforation, gravel packing, fracturing and etching. To carry out these treatments, fluid loss regulating agents and diverting agents are used, which in this description are referred to as treatment agents.

Skjønt stor fluidpermeabilitet er en viktig egenskap ved en hydrokarbonavgivende formasjon, vil stor permeabilitet ha uheldig innvirkning på diverse behandlinger. Under f.eks. en fraktureringsbehandling er det ønskelig å begrense tapet av behandlingsvæske til formasjonen for å opprettholde en kløve-virkning og avstedkomme forplantning av bruddet. Derfor krever en effektiv utførelse av visse behandlinger av brønnhullet en temporær reduksjon av permeabiliteten av visse formasjonslag for å redusere tapet av behandlingsvæske under behandlingen. Flere midler for å hindre fluidtap og avledningsmidler er blitt utviklet for bruk ved visse behandlinger, men mange av dem etterlater et residuum i brønnhullet eller i forma-sjonslagene etter at behandlingen er fullført. Dette residuum kan forårsake permanent forringelse av formasjonens produk-sjonsevne. Eksempler på materialer som er blitt benyttet for å redusere permeabiliteten, innbefatter naturlig forekommende materialer, såsom knust kalksten, stensalt, østersskall og silikamel. Disse relativt inerte materialer danner en fil-terkake som kan bli igjen på formasjonsoverflaten og forårsake en uønsket, permanent gjentetting. Andre materialer, såsom salt, benzosyre og naftalener, har en viss vann- eller olje-oppløselighet, eller de kan være sublimerbare. Disse materialer medfører ulemper, da det ofte er vanskelig å bestemme brønnens omgivelser. Ytterligere andre typer materialer er oljeoppløselige, vannuoppløselige materialer, såsom såper, geler, voksmaterialer og harpikspolymerer. Disse materialer er beregnet å skulle fjernes ved hjelp av hydrokarbonvæsker fra undergrunnen. Imidlertid har man ingen garanti for at det finner sted noen kontakt med olje i mikroskopiske bergartporer, og således er det mulighet for at disse materialer ikke vil bli bragt i oppløsning og at det kan oppstå permanent skade på formasjonen. Although high fluid permeability is an important property of a hydrocarbon-yielding formation, high permeability will have an adverse effect on various treatments. Under e.g. a fracturing treatment, it is desirable to limit the loss of treatment fluid to the formation in order to maintain a cleavage effect and cause propagation of the fracture. Therefore, the effective performance of certain treatments of the wellbore requires a temporary reduction of the permeability of certain formation layers to reduce the loss of treatment fluid during the treatment. Several agents to prevent fluid loss and diversion agents have been developed for use in certain treatments, but many of them leave a residue in the wellbore or in the formation layers after the treatment is completed. This residue can cause permanent deterioration of the production capacity of the formation. Examples of materials that have been used to reduce permeability include naturally occurring materials such as crushed limestone, rock salt, oyster shell and silica flour. These relatively inert materials form a filter cake that can remain on the formation surface and cause an unwanted, permanent reseal. Other materials, such as salt, benzoic acid and naphthalenes, have some water or oil solubility, or they may be sublimable. These materials cause disadvantages, as it is often difficult to determine the well's surroundings. Still other types of materials are oil-soluble, water-insoluble materials, such as soaps, gels, wax materials and resin polymers. These materials are intended to be removed using hydrocarbon liquids from the subsoil. However, there is no guarantee that there will be any contact with oil in microscopic rock pores, and thus there is a possibility that these materials will not be dissolved and that permanent damage to the formation may occur.

Polyesterpolymerer av hydroksyeddiksyre med melkesyre er blitt foreslått som oljebrøhnbehandlingsmidler. Disse poly-merer ble i utstrakt grad undersøkt i 1950-årene som mulige tekstilfibere, inntil det viste seg at de lett hydrolyserte når de var utsatt for varme og fuktighet. Polyesterpolymerene angis å være i det vesentlige uoppløselige i brønnhullvæsken, men de nedbrytes i nærvær av vann ved forhøyede temperaturer i løpet av omtrent fra 1 til 7 dager under dannelse av oligome-rer som er i det minste delvis oppløselige i f ormas j onsvæsken og lett fjernes fra brønnen når denne er i produksjon. Disse polyesterpolymerer er kostbare å fremstille, og de har begren-set virkningsgrad ved lave temperaturer. Det foreligger fortsatt et behov for et billig middel for å hindre fluidtap og for avledningsformål, som har hydrolyttiske egenskaper som muliggjør dets anvendelse i oljebrønner med et bredt område av omgivelsestemperaturer. Dette behandlingsmiddel må til å be-gynne med være uoppløselig i brønnhullvæsken, og det må forbli uoppløselig tilstrekkelig lenge til at behandlingen kan ut-føres, og det må nedbrytes hurtig så snart behandlingen er fullført, slik at brønnen raskt kan bringes tilbake i produksjon. Behandlingsmidlet må også ha tilstrekkelig høy krystallinitet og tilstrekkelig høyt smeltepunkt til å muliggjøre maling til den ønskede partikkelstørrelse og til å hindre smelting eller mykning under malingen eller under bruk. Fortrinnsvis må behandlingsmidlet være i stand til å kunne avpas-ses etter temperaturbetingelser og ønsket timing ved en olje-brønnbehandling. Dette innebærer at nedbrytningstiden ved en gitt temperatur må kunne tilpasses. Den foreliggende oppfinnelse imøtekommer disse krav. Polyester polymers of hydroxyacetic acid with lactic acid have been proposed as oil spill treatment agents. These polymers were extensively investigated in the 1950s as possible textile fibers, until it was found that they easily hydrolyzed when exposed to heat and moisture. The polyester polymers are stated to be substantially insoluble in the wellbore fluid, but they degrade in the presence of water at elevated temperatures within about 1 to 7 days to form oligomers that are at least partially soluble in the formation fluid and are easily removed from the well when it is in production. These polyester polymers are expensive to produce, and they have limited effectiveness at low temperatures. There remains a need for an inexpensive agent for preventing fluid loss and for diversion purposes, which has hydrolytic properties that enable its use in oil wells with a wide range of ambient temperatures. This treatment agent must initially be insoluble in the wellbore fluid, and it must remain insoluble long enough for the treatment to be carried out, and it must break down quickly as soon as the treatment is completed, so that the well can quickly be brought back into production. The treatment agent must also have sufficiently high crystallinity and a sufficiently high melting point to enable painting to the desired particle size and to prevent melting or softening during painting or during use. Preferably, the treatment agent must be capable of being adapted to temperature conditions and the desired timing during an oil well treatment. This means that the decomposition time at a given temperature must be adaptable. The present invention meets these requirements.

Med -oppfinnelsen tilveiebringes det således en brønn-hullsvæske for å redusere permeabiliteten av en undergrunnsformasjon som gjennomtrenges av et brønnhull, inneholdende dispergerte faste partikler av et kondensasjons-produkt på basis av hydroksyeddiksyre, hvilket kondensasjonsprodukt har et smeltepunkt som er på minst 65,6°C og er tilstrekkelig høyt til at mykning eller smelting unngås under bruk, er i det vesentlige uoppløselig i brønnhullsvæsken og er nedbrytbart i nærvær av vann ved forhøyet temperatur til monomerer og dimerer som er i det minste delvis oppløselige i olje eller vann. Den nye brønnhullsvæske er karakteristisk yed at kondensasjonsproduktet er et kondensasjonsprodukt av hydroksyeddiksyre med inntil 15 vekt% kokondenserende forbindelser inneholdende andre hydroksy-, karboksylsyre- eller hydroksykarboksylsyregrupper og har en antallsmidlere molekylvekt på 200-4000 og er i det vesentlige krystallinsk både ved omgivelsenes temperatur og ved de aktuelle brønnhullstemperaturer. The invention thus provides a wellbore fluid to reduce the permeability of a subsurface formation penetrated by a wellbore, containing dispersed solid particles of a condensation product based on hydroxyacetic acid, which condensation product has a melting point of at least 65.6° C and is sufficiently high to avoid softening or melting during use, is essentially insoluble in the wellbore fluid and is degradable in the presence of water at elevated temperature into monomers and dimers which are at least partially soluble in oil or water. The new wellbore fluid is characteristic in that the condensation product is a condensation product of hydroxyacetic acid with up to 15% by weight of cocondensing compounds containing other hydroxy, carboxylic acid or hydroxycarboxylic acid groups and has a number average molecular weight of 200-4000 and is essentially crystalline both at the ambient temperature and at the relevant wellbore temperatures.

Kondensasjonsproduktet på basis av hydroksyeddiksyre som anvendes ved fremgangsmåten, utgjøres fortrinnsvis av oli-gomerer med en antallsmidlere molekylvekt på fra 200 til 650. De er først og fremst fra trimerer og opptil dekamerer. De er oppløselige i både vandige medier og hydrokarbonmedier, men vil nedbrytes med gitte hastigheter ved innvirkning av fuktighet og temperaturer over 48,9°C under dannelse av opp-løselige monomerer og dimerer. Hydrolysehastigheten ved en gitt temperatur kan økes ved innlemmelse av små mengder av andre molekyler (vanligvis mindre enn 15 vekt%) i reaksjons-miljøet hvor hydroksyeddiksyren kondenseres. Disse materialer utgjøres vanligvis av fleksible eller mer voluminøse molekyler som delvis hindrer krystallinitet, men som ikke hindrer at kondensasjonsproduktet blir lettsmuldrende. Således kan behandlingsmidlet "skreddersys" slik at hydrolysehastigheten kan innstilles på fra noen timer til flere dager, ved at man regu-lerer mengden og arten av krystallinitet. The condensation product based on hydroxyacetic acid which is used in the method is preferably made up of oligomers with a number average molecular weight of from 200 to 650. They are primarily from trimers and up to decamers. They are soluble in both aqueous media and hydrocarbon media, but will break down at given rates when exposed to moisture and temperatures above 48.9°C, forming soluble monomers and dimers. The rate of hydrolysis at a given temperature can be increased by incorporating small amounts of other molecules (usually less than 15% by weight) in the reaction environment where the hydroxyacetic acid is condensed. These materials are usually made up of flexible or more voluminous molecules which partially prevent crystallinity, but which do not prevent the condensation product from becoming easily crumbly. Thus, the treatment agent can be "tailored" so that the hydrolysis rate can be set from a few hours to several days, by regulating the amount and nature of crystallinity.

Brønnhullsvæsken ifølge oppfinnelsen inneholder dispergert et middel for å hindre fluidtap eller for å avstedkomme bortledning, hvilket middel som nevnt omfatter lav-molekylære kondensasjonsprodukter av (1) hydroksyeddiksyre eller av (2) hydroksyeddiksyre som er kokondensert med inntil 15 vekt% forbindelser inneholdende andre hydroksy-, karboksylsyre- eller hydroksykarboksylsyregrupper, eller kombinasjoner eller blandinger derav. Forbindelsene inneholdende disse grup-per, og som hydroksyeddiksyren kokondenseres med, betegnes her som modifiserende molekyler. Disse modifiserende molekyler innbefatter eddiksyre, tribasiske syrer såsom sitronsyre, di-basiske syrer såsom adipinsyre, dioler såsom etylenglycol, og polyoler. De innbefatter også bifunksjonelle molekyler såsom 2,2-(bishydroksymetyl)-propansyre. Ved kokondensering av hydroksyeddiksyre med forskjellige modifiserende molekyler fås varierte fysikalske og hydrolyttiske egenskaper, hvilket gjør det mulig å "skreddersy" behandlingsmidlet til oljebrønn-temperaturene og den nødvendige timing i forbindelse med behandlingen. Forlikelige myknere kan også benyttes for å modi-fisere den krystallinske karakter, men de har vist seg mindre effektive enn de ovennevnte kokondensasjonsmolekyler. Foretrukne modifiserende molekyler er melkesyre, sitronsyre, 2, 2-(bishydroksymetyl)-propansyre, trimetyloletan og adipinsyre. De mest foretrukne er melkesyre og sitronsyre. Konden-sas jonsproduktet har som nevnt en antallsmidlere molekylvekt på fra 200 til 4000. Fortrinnsvis er kondensasjonsproduktet en oligomer med en antallsmidlere molekylvekt på fra 200 til 650, og den omfatter først og fremst fra trimerer og opp til dekamerer. The wellbore fluid according to the invention contains dispersed an agent to prevent fluid loss or to cause drainage, which agent as mentioned comprises low-molecular condensation products of (1) hydroxyacetic acid or of (2) hydroxyacetic acid which is co-condensed with up to 15% by weight of compounds containing other hydroxy- , carboxylic acid or hydroxycarboxylic acid groups, or combinations or mixtures thereof. The compounds containing these groups, and with which the hydroxyacetic acid is cocondensed, are referred to here as modifying molecules. These modifying molecules include acetic acid, tribasic acids such as citric acid, dibasic acids such as adipic acid, diols such as ethylene glycol, and polyols. They also include bifunctional molecules such as 2,2-(bishydroxymethyl)-propanoic acid. By cocondensing hydroxyacetic acid with different modifying molecules, varied physical and hydrolytic properties are obtained, which makes it possible to "tailor" the treatment agent to the oil well temperatures and the necessary timing in connection with the treatment. Compatible plasticizers can also be used to modify the crystalline character, but they have proven to be less effective than the above-mentioned cocondensation molecules. Preferred modifying molecules are lactic acid, citric acid, 2,2-(bishydroxymethyl)propanoic acid, trimethylolethane and adipic acid. The most preferred are lactic acid and citric acid. As mentioned, the condensation product has a number average molecular weight of from 200 to 4000. Preferably, the condensation product is an oligomer with a number average molecular weight of from 200 to 650, and it comprises primarily from trimers up to decamers.

Behandlingsmidlet må være tilstrekkelig hardt eller lettsmuldrende til at det kan males til liten partikkelstør-relse, og det må ha et tilstrekkelig høyt smeltepunkt til at mykning og deformering unngås under bruk og under maling. De prosentvise andeler hydroksyeddiksyre og kokondenseringsfor-bindelser kan reguleres slik at det oppnås en tilstrekkelig krystallinitet og et tilstrekkelig høyt smeltepunkt eller myk-ningspunkt. Smeltepunktet må være høyere enn 65,6°C. Også kon-densas jonstiden og -temperaturen kan varieres. The treatment agent must be sufficiently hard or easily crumbly so that it can be ground to a small particle size, and it must have a sufficiently high melting point to avoid softening and deformation during use and during painting. The percentages of hydroxyacetic acid and cocondensation compounds can be regulated so that a sufficient crystallinity and a sufficiently high melting point or softening point is achieved. The melting point must be higher than 65.6°C. The condensation time and temperature can also be varied.

Kondensasjons- og kokondensasjonsproduktene som anvendes i brønnhullsvæsken ifølge oppfinnelsen, fremstilles etter i faget velkjente metoder. Hydroksyeddiksyren kan oppvarmes alene eller sammen med de ovenfor omtalte kokondensasjonsmolekyler, i nærvær av en katalysator såsom antimontrioksid. Kondensasjonen utføres fortrinnsvis i en inert at-mosfære og ved et vakuum på 30-60 mm. Ved at man varierer de prosentvise andeler hydroksyeddiksyre og kokondensasjonsfor-bindelser og likeledes kondensasjonstemperaturene og -tiden, blir det mulig å "skreddersy" kondensasjonsproduktet slik at det nedbrytes med ulike hastigheter for gitte brønnhull-temperaturer. Forskjellige kondensasjons- og kokondensasjonsprodukter kan blandes fysikalsk med hverandre eller smel-tes sammen for å oppnå et enda bredere område av nedbryt-ningshastigheter. The condensation and cocondensation products used in the wellbore fluid according to the invention are produced according to methods well known in the art. The hydroxyacetic acid can be heated alone or together with the cocondensation molecules mentioned above, in the presence of a catalyst such as antimony trioxide. The condensation is preferably carried out in an inert atmosphere and at a vacuum of 30-60 mm. By varying the percentages of hydroxyacetic acid and co-condensation compounds and likewise the condensation temperatures and time, it becomes possible to "tailor" the condensation product so that it breaks down at different rates for given wellbore temperatures. Different condensation and cocondensation products can be physically mixed with each other or fused together to achieve an even wider range of degradation rates.

Brønnhullsvæsken kan utgjøres av vann, olje, xylen, toluen, saltoppløsninger, vann-i-olje-emulsjoner eller olje-i-vann-emulsjoner. Mengden av behandlingsmiddel som kreves for en tilfredsstillende fluidregulering vil variere sterkt, av-hengig av størrelsen av formasjonen, graden av permeabilitet av formasjonen, størrelsen av partiklene av behandlingsmidlet og av andre variable, såsom viskositeten av brønnhullsvæsken og de volumetriske fluidtap som kan tillates. Imidlertid antas det at for et behandlingsmiddel med partikkelstørrelse i om-rådet fra 0,1 til 1500 um vil det for de fleste anvendelser være tilstrekkelig med en mengde behandlingsmiddel på fra 38 til 380 g/m<3> brønnhullsvæ^'-». The wellbore fluid can consist of water, oil, xylene, toluene, salt solutions, water-in-oil emulsions or oil-in-water emulsions. The amount of treatment agent required for satisfactory fluid control will vary greatly, depending on the size of the formation, the degree of permeability of the formation, the size of the particles of the treatment agent and on other variables, such as the viscosity of the wellbore fluid and the volumetric fluid losses that can be allowed. However, it is assumed that for a treatment agent with a particle size in the range from 0.1 to 1500 µm, an amount of treatment agent of from 38 to 380 g/m<3> wellbore water will be sufficient for most applications.

Oppfinnelsen ane... også en anvendelse av den nye brønnhullsvæske for å redusere permeabiliteten av en under-grunns formasjon som gjennomtrenges av et brønnhull. The invention also contemplates an application of the new wellbore fluid to reduce the permeability of an underground formation penetrated by a wellbore.

For å kunne bruke brønnhullsvæsken ifølge oppfinnelsen må man først bestemme brønnens temperatur. Det velges et behandlingsmiddel som er tilpasset til denne temperatur, og dette blandes med brønnhullsvæsken i det passende mengdefor-hold. For brønntemperaturer over 93,3°C kan kondensasjonsprodukter av bare hydroksyeddiksyre benyttes. For temperaturer under 93,3°C bør krystalliniteten være delvis brutt gjennom kokondensering av hydroksyeddiksyre med modifiserende molekyler som ovenfor beskrevet. Når brønnhullsvæsken inji-seres i formasjonen, vil behandlingsmidlet som inneholdes i væsken, gjøre at behandlingsvæskens inntrengning i formasjonen blir så liten som mulig. Etter fullført behandling kan brønnen tillates å oppvarmes tilbake til dens omgivelsestemperatur. Ved denne temperatur vil behandlingsmidlet, i nærvær av sted-egent vann, nedbrytes til oppløselige eller partielt opp-løselige monomerer og dimerer i løpet av fra noen timer til noen dager. Disse i det minste partielt oppløselige monomerer og dimerer lar seg lett fjerne fra brønnen under produksjons-fasen. In order to be able to use the wellbore fluid according to the invention, one must first determine the temperature of the well. A treatment agent is selected which is adapted to this temperature, and this is mixed with the wellbore fluid in the appropriate proportion. For well temperatures above 93.3°C, condensation products of only hydroxyacetic acid can be used. For temperatures below 93.3°C, the crystallinity should be partially broken through cocondensation of hydroxyacetic acid with modifying molecules as described above. When the wellbore fluid is injected into the formation, the treatment agent contained in the fluid will ensure that the penetration of the treatment fluid into the formation is as small as possible. After completion of treatment, the well may be allowed to warm back to its ambient temperature. At this temperature, the treatment agent, in the presence of local water, will break down into soluble or partially soluble monomers and dimers within a few hours to a few days. These at least partially soluble monomers and dimers can be easily removed from the well during the production phase.

De følgende eksempler illustrerer oppfinnelsen. The following examples illustrate the invention.

eksempler 1-8 angir fremgangsmåter for fremstilling av kondensasjons- og kokondensasjonsprodukter av hydroksyeddiksyre som egner seg for anvendelse i henhold til oppfinnelsen. Eksempler IA og 6A viser virkningen av etteroppvarmning av kondensasjonsproduktene fra henholdsvis eksempel 1 og eksempel 6. Alle prosentvise mengder er regnet på vektbasis. examples 1-8 indicate methods for producing condensation and cocondensation products of hydroxyacetic acid which are suitable for use according to the invention. Examples IA and 6A show the effect of post-heating of the condensation products from example 1 and example 6 respectively. All percentage amounts are calculated on a weight basis.

Den antallsmidlere molekylvekt for kondensasjons-eller kokondensasjonsproduktet i hvert eksempel ble bestemt etter den følgende metode: The number average molecular weight of the condensation or cocondensation product in each example was determined by the following method:

Metode for bestemmelse av molekylvekt. Method for determining molecular weight.

Ca. 0,3 g kondensasjonsprodukt oppløses i 60 ml dime-tylsulfoksid, og oppløsningen titreres til pH 8,0 med 0,1 N natriumhydroksyd. Den antallsmidlere molekylvekt bestemmes ved hjelp av den følgende formel: molekylvekten = g materiale/ml 0,1 N NaOH x 10.000. Som følge av den ekstreme uoppløselighet av disse kondensasjonsprodukter vil små mengder av uoppløste materialer gi høyere antallsmidlere molekylvekt etter denne metode enn de virkelige verdier. About. 0.3 g of condensation product is dissolved in 60 ml of dimethyl sulphoxide, and the solution is titrated to pH 8.0 with 0.1 N sodium hydroxide. The number-average molecular weight is determined using the following formula: molecular weight = g material/ml 0.1 N NaOH x 10,000. As a result of the extreme insolubility of these condensation products, small amounts of undissolved materials will give higher number average molecular weights by this method than the real values.

Den vektprosentige hydrolyse for hvert kondensasjons-eller kokondensasjonsprodukt som er angitt i tabeller I, II og III, ble bestemt etter den følgende metode: The weight percent hydrolysis for each condensation or cocondensation product listed in Tables I, II and III was determined by the following method:

Metode for bestemmelse av % hydrolyse. Method for determining % hydrolysis.

Ca. lg kondensasjonsprodukt settes til 100 ml 2%-ig kaliumkloridoppløsning (KC1), og blandingen holdes ved en regulert temperatur i varierende tidsrom. Det tas deretter ut 10 ml's alikvoter, og disse settes til 60 ml dimetylformamid. Denne oppløsning titreres til nøytral pH med 0,1 N natrium-hydroksid. Mengden av hydrolyse i vektprosent beregnes ved hjelp av den følgende formel: % hydrolyse = ml 0,1 N Na0H/g prøve x 6,25. Verdien 6,25 sva-rer til en hydroksyeddiksyretetramer med en ekvivalent midlere molekylvekt på 62,5 pr. enhet. About. Ig of condensation product is added to 100 ml of 2% potassium chloride solution (KC1), and the mixture is kept at a regulated temperature for varying periods of time. Aliquots of 10 ml are then taken out, and these are added to 60 ml of dimethylformamide. This solution is titrated to neutral pH with 0.1 N sodium hydroxide. The amount of hydrolysis in weight percent is calculated using the following formula: % hydrolysis = ml 0.1 N NaOH/g sample x 6.25. The value 6.25 corresponds to a hydroxyacetic acid tetramer with an equivalent average molecular weight of 62.5 per unit.

Eksempler Examples

Eksempel 1. 100%- hydroksyeddiksyre ( HAA). Example 1. 100% hydroxyacetic acid (HAA).

En blanding av 181,4 kg (netto) 70%-ig HAA og 18 g antimontrioksid ble oppvarmet under nitrogen til 170°C under fjerning av vann, på hvilket tidspunkt det ble påtrykket et vakuum på 30-60 ml, og temperaturen ble øket til 200°C under fortsatt fjerning av kondensasjonsvann. Reaksjonsblåndingen ble holdt i ca. 6 timer ved 200-220°C og deretter tatt ut og tillatt å avkjøles til et krystallinsk fast stoff med smeltepunkt 206°C. Det ble oppnådd 94,3 kg produkt. Den antallsmidlere molekylvekt var 606. A mixture of 181.4 kg (net) 70% HAA and 18 g of antimony trioxide was heated under nitrogen to 170°C while removing water, at which time a vacuum of 30-60 ml was applied and the temperature was increased to 200°C with continued removal of condensation water. The reaction bluing was held for approx. 6 hours at 200-220°C and then removed and allowed to cool to a crystalline solid of melting point 206°C. 94.3 kg of product was obtained. The number average molecular weight was 606.

Eksempel IA. Etteroppvarmninq av produktet fra eksempel 1. Example IA. Post-heating of the product from example 1.

En prøve av produktet fra eksempel 1 ble oppvarmet i en vakuumovn ved 150°C i 24 timer ved et vakuum på 30-60 ml Hg. Smeltepunktet øket til 210-211°C, og den antallsmidlere molekylvekt øket til 4019. A sample of the product from Example 1 was heated in a vacuum oven at 150°C for 24 hours at a vacuum of 30-60 ml Hg. The melting point increased to 210-211°C, and the number average molecular weight increased to 4019.

Eksempel 2. 8% melkesyre/ 92% hydroksyeddiksyre ( LA/ HAA). Example 2. 8% lactic acid/ 92% hydroxyacetic acid (LA/ HAA).

170,6 kg (netto) 70%-ig HAA, 11,8 kg (netto) 88% LA og 18 g antimontrioksid ble oppvarmet under nitrogen og oppar-beidet på samme måte som beskrevet i eksempel 1. Det ble oppnådd en total mengde krystallinsk produkt på 95,7 kg. Smeltepunkt 185°C. Den antallsmidlere molekylvekt var 226. Etter ekstraksjon av oppløselig monomer og dimer fra kondensasjonsproduktet var den antallsmidlere molekylvekt 303. 170.6 kg (net) of 70% HAA, 11.8 kg (net) of 88% LA and 18 g of antimony trioxide were heated under nitrogen and prepared in the same manner as described in Example 1. A total amount was obtained crystalline product of 95.7 kg. Melting point 185°C. The number average molecular weight was 226. After extraction of soluble monomer and dimer from the condensation product, the number average molecular weight was 303.

Eksempel 3. 8% melkesyre/ 92% hydroksyeddiksyre ( LA/ HAA). Example 3. 8% lactic acid/ 92% hydroxyacetic acid (LA/ HAA).

En blanding av 170,6 kg (netto) 70%-ig HAA, 11,8 kg (netto) 88%-ig melkesyre og 18 g antimontrioksid ble oppvarmet under nitrogen til 167°C under fjerning av vann, på hvilket tidspunkt det ble påtrykket et vakuum på 30-60 mm Hg og temperaturen ble øket til 117°C under fortsatt fjerning av konden-sas jonsvann. Reaksjonsblandingen ble holdt i 3 timer ved 170-180°C og ble deretter tatt ut og tillatt å avkjøles, hvor-ved det ble oppnådd et krystallinsk faststoff med smeltepunkt 172-173°C. Produktet ble oppnådd i en mengde av 98,0 g. Den antallsmidlere molekylvekt var 193. A mixture of 170.6 kg (net) 70% HAA, 11.8 kg (net) 88% lactic acid and 18 g antimony trioxide was heated under nitrogen to 167°C while removing water, at which point a vacuum of 30-60 mm Hg was applied and the temperature was increased to 117°C with continued removal of water of condensation. The reaction mixture was held for 3 hours at 170-180°C and was then taken out and allowed to cool, yielding a crystalline solid of melting point 172-173°C. The product was obtained in an amount of 98.0 g. The number average molecular weight was 193.

Eksempel 4. 8% melkesyre/ 92% hydroksyeddiksyre ( LA/ HAA). Example 4. 8% lactic acid/ 92% hydroxyacetic acid (LA/ HAA).

En blanding av 170,6 kg (netto) 70%-ig HAA, 11,8 kg (netto) 88%-ig melkesyre og 18 g antimontrioksid ble oppvarmet under nitrogen til 167°C under fjerning av vann, på hvilket tidspunkt det ble påtrykket et vakuum på 30-60 mm og temperaturen ble øket til 170°C under fortsatt fjerning av kondensasjonsvann. Reaksjonsblandingen ble holdt i 2,75 timer ved 170-174°C og deretter tatt ut og tillatt å avkjøles. Det ble erholdt et krystallinsk faststoff med smeltepunkt ca. 160-162°C. Vekten av produktet var 98,4 kg. Den antallsmidlere molekylvekt var 151. Produktet var for mykt til å kunne males uten anvendelse av tørris. A mixture of 170.6 kg (net) 70% HAA, 11.8 kg (net) 88% lactic acid and 18 g antimony trioxide was heated under nitrogen to 167°C while removing water, at which point applied a vacuum of 30-60 mm and the temperature was increased to 170°C while still removing condensation water. The reaction mixture was held for 2.75 hours at 170-174°C and then removed and allowed to cool. A crystalline solid with a melting point of approx. 160-162°C. The weight of the product was 98.4 kg. The number average molecular weight was 151. The product was too soft to be ground without the use of dry ice.

Både graden av kondensasjon og den prosentvise mengde kokondenserte molekyler har innvirkning på hydrolysehastigheten. Tabell I viser virkningen som oppnås når man går fra kondensasjonsprodukter på basis av 100% HAA til kondensasjonsprodukter inneholdende 8% LA og 92% HAA og virkningene som oppnås ved kondensering av 8% LA/92% HAA i kortere tid og/eller ved lavere temperaturer. Both the degree of condensation and the percentage amount of co-condensed molecules have an impact on the rate of hydrolysis. Table I shows the effect achieved when moving from condensation products based on 100% HAA to condensation products containing 8% LA and 92% HAA and the effects achieved by condensation of 8% LA/92% HAA for a shorter time and/or at lower temperatures .

Av tabellen vil det ses at tilsetning av melkesyre til hydroksyeddiksyre øket hydrolysehastigheten. Utførelse av kondensasjonen ved 180°C (Eksempel 3) istedenfor ved 220°C (Eksempel 2) resulterte i hurtigere hydrolyse og lavere antallsmidlere molekylvekt, og dette ble også oppnådd med den svake reduksjon av syklustiden ved 180°C som ble foretatt i eksempel 4, sammenlignet med eksempel 3. I eksempel 4 var imidlertid minskningen av den antallsmidlere molekylvekt tilstrekkelig stor til å hindre at produktet kunne males uten bruk av tørris. From the table, it will be seen that the addition of lactic acid to hydroxyacetic acid increased the rate of hydrolysis. Carrying out the condensation at 180°C (Example 3) instead of at 220°C (Example 2) resulted in faster hydrolysis and lower number average molecular weight, and this was also achieved with the slight reduction of the cycle time at 180°C that was made in Example 4 , compared to example 3. In example 4, however, the reduction in the number average molecular weight was sufficiently large to prevent the product from being ground without the use of dry ice.

Skjønt den laveste antallsmidlere molekylvekt ga de største hydrolysehastigheter, var det fortsatt ønskelig med ytterligere økninger. Forbedringer ble oppnådd gjennom innlemmelse av enda mer voluminøse molekyler enn melkesyre i HAA-kondensasjonen. Tabeller II og III viser virkningene av å til-sette disse molekyler. Although the lowest number average molecular weight gave the greatest hydrolysis rates, further increases were still desirable. Improvements were achieved through the incorporation of even more bulky molecules than lactic acid in the HAA condensation. Tables II and III show the effects of adding these molecules.

Eksempel 5. 7% sitronsvre/ 93% hydroksyeddiksyre ( CA/ HAA). Example 5. 7% citric acid/ 93% hydroxyacetic acid (CA/ HAA).

En blanding av 1630 g (netto) 70%-ig HAA, 252 g CA og 0,169 g antimontrioksid ble oppvarmet under nitrogen til 150°C under fjerning av vann, på hvilket tidspunkt det ble påtrykket et vakuum på 30-60 mm Hg og oppvarmningen ble fortsatt til A mixture of 1630 g (net) 70% HAA, 252 g CA and 0.169 g antimony trioxide was heated under nitrogen to 150°C while removing water, at which time a vacuum of 30-60 mm Hg was applied and the heating continued to exist

180°C. Etter 7,5 timer ved 180-190°C ble blandingen tatt ut og tillatt å avkjøles. Det ble oppnådd et produkt med smeltepunkt 170-171°C. Den antallsmidlere molekylvekt var 177. 180°C. After 7.5 hours at 180-190°C, the mixture was taken out and allowed to cool. A product with a melting point of 170-171°C was obtained. The number average molecular weight was 177.

Eksempel 6. 4% sitronsyre/ 3% melkesyre/ 2% 2, 2-( bishydroksy-metyl)- propansyre/ 91% hydroksyeddiksyre Example 6. 4% citric acid/ 3% lactic acid/ 2% 2, 2-(bishydroxy-methyl)-propanoic acid/ 91% hydroxyacetic acid

( CA/ LA/ BHMPA/ HAA). ( CA/ LA/ BHMPA/ HAA).

En blanding av 1646 g (netto) 70%-ig HAA, 126 g CA, 54 g (netto) 88%-ig LA, 40 g BHMPA og 0,169 g antimontrioksid ble oppvarmet under nitrogen til 150°C under fjerning av vann, på hvilket tidspunkt det ble påtrykket et vakuum på 30-60 mm Hg og oppvarmingen ble fortsatt til 180°C. Etter 7 timer ved 180°C ble blandingen tatt ut og tillatt å avkjøles. Det ble oppnådd et produkt med smeltepunkt 166-168°C. Den antallsmidlere molekylvekt var 208. A mixture of 1646 g (net) 70% HAA, 126 g CA, 54 g (net) 88% LA, 40 g BHMPA and 0.169 g antimony trioxide was heated under nitrogen to 150°C while removing water, on at which point a vacuum of 30-60 mm Hg was applied and heating was continued to 180°C. After 7 hours at 180°C, the mixture was taken out and allowed to cool. A product with a melting point of 166-168°C was obtained. The number average molecular weight was 208.

Eksempel 6A. Etteroppvarminq av produktet fra eksempel 6. Example 6A. Post-heating of the product from example 6.

Materiale fra eksempel 6 ble oppvarmet ved 120°C under et vakuum på 635 mm i 65 timer (over helgen) for å oppnå tverrbinding og høyere molekylvekt. Smeltepunktet steg til 172-174°C, og det ble oppnådd en antallsmidlere molekylvekt på 608 etter ekstraksjon av 2 vekt% uomsatt monomer og oppløselig dimer. Material from Example 6 was heated at 120°C under a 635 mm vacuum for 65 hours (over the weekend) to achieve cross-linking and higher molecular weight. The melting point rose to 172-174°C, and a number average molecular weight of 608 was obtained after extraction of 2% by weight of unreacted monomer and soluble dimer.

Eksempel 7. 5% adipinsvre/ 4% etylenqlycol/ 1% trimety-lol- etan/ 90% hydroksyeddiksyre ( AA/ EG/ TME/ HAA). Example 7. 5% adipic acid/ 4% ethylene glycol/ 1% trimethylol-ethane/ 90% hydroxyacetic acid ( AA/ EG/ TME/ HAA).

En blanding av 1600 g (netto) 70%-ig HAA, 108 g AA, 41 g EG, 12,3 g TME og 0,169 g antimontrioksid ble oppvarmet under nitrogen til 150°C under fjerning av vann, på hvilket tidspunkt det ble påtrykket et vakuum på 30-60 mm Hg og oppvarmingen ble fortsatt til 180°C. Etter 6,5 timer ved 180°C ble blandingen tatt ut og tillatt å avkjøles. Det ble oppnådd et produkt med smeltepunkt 165°C. Den antallsmidlere molekylvekt var 301. A mixture of 1600 g (net) 70% HAA, 108 g AA, 41 g EG, 12.3 g TME and 0.169 g antimony trioxide was heated under nitrogen to 150°C while removing water, at which point it was pressurized a vacuum of 30-60 mm Hg and heating was continued to 180°C. After 6.5 hours at 180°C, the mixture was taken out and allowed to cool. A product with a melting point of 165°C was obtained. The number average molecular weight was 301.

Eksempel 8. 4% sitronsyre/ 4% melkesyre/ 92% hydroksyeddiksyre Example 8. 4% citric acid/ 4% lactic acid/ 92% hydroxyacetic acid

( CA/ LA/ HAA). (CA/LA/HAA).

En blanding av 1646 g (netto) 70%-ig HAA, 140 g CA, 68 g (netto) 88%-ig LA og 0,169 g antimontrioksid ble oppvarmet under nitrogen til 150°C under fjerning av vann, på hvilket tidspunkt det ble påtrykket et vakuum på 30-60 mm Hg og oppvarmingen ble fortsatt til 180°C. Etter 6 timer ved 180°C ble blandingen tatt ut og tillatt å avkjøles. Det ble oppnådd et produkt med smeltepunkt 172-173°C. Den antallsmidlere molekylvekt var 193. A mixture of 1646 g (net) 70% HAA, 140 g CA, 68 g (net) 88% LA and 0.169 g antimony trioxide was heated under nitrogen to 150°C while removing water, at which point applied a vacuum of 30-60 mm Hg and heating was continued to 180°C. After 6 hours at 180°C, the mixture was taken out and allowed to cool. A product with a melting point of 172-173°C was obtained. The number average molecular weight was 193.

Verdiene som i tabeller I, II og III er oppført for vektprosent hydrolyse, er basert på en antatt molekylvekt for kondensasjonsproduktene på 62,5 pr. kondensert enhet. Da verdien 62,5 bare er en aproksimasjon, er også verdien for vektprosent hydrolyse en aproksimasjon av kondensasjonsproduktets evne til å gjentette/oppheve gjentetting. En mer rigorøs The values listed in Tables I, II and III for weight percent hydrolysis are based on an assumed molecular weight for the condensation products of 62.5 per condensed unit. As the value 62.5 is only an approximation, the value for weight percent hydrolysis is also an approximation of the ability of the condensation product to reseal/unreseal. A more rigorous one

metode for måling av mengden av kondensasjonsprodukt som er method for measuring the amount of condensation product that is

blitt oppløseliggjort ved en gitt temperatur i løpet av en gitt tid er den isolasjonsteknikk som er beskrevet nedenfor. Denne teknikk krever ikke at man antar en molekylvekt, og den viser også mengden av uomsatt monomer og oppløselig dimer som er tilstede i kondensasjonsproduktet. Den uomsatte monomer og den oppløselige dimer vil være ineffektive med hensyn til gjentetting, og de bør derfor ikke medregnes ved bestemmelse av behandlingsmidlets evne til å gjentette/oppheve gjentetting. Det vises til tabeller IV, V og VI. been solubilized at a given temperature during a given time is the isolation technique described below. This technique does not require the assumption of a molecular weight, and it also shows the amount of unreacted monomer and soluble dimer present in the condensation product. The unreacted monomer and the soluble dimer will be ineffective with regard to resealing, and they should therefore not be taken into account when determining the treatment agent's ability to reseal/remove resealing. Reference is made to tables IV, V and VI.

Metode for bestemmelse % oppløseliqqjørinq ved isolasjon. Method for determining % solubility by isolation.

Ca. lg kondensasjonsprodukt settes til 25 ml 2 vekt% KC1-oppløsning eller 15 vekt% HC1, og blandingen holdes ved en regulert temperatur i tidsrom av varierende lengde. Den av-kjølte blanding blir så filtrert, og det isolerte faste stoff vaskes med 10 ml vann og tørres deretter. Det faste stoff (sammen med tarert filterpapir) tørkes i vakuum ved 65-70°C. Mengden av uoppløst materiale sammenlignes med den opprin-nelige vekt. About. Ig condensation product is added to 25 ml of 2% by weight KC1 solution or 15% by weight HC1, and the mixture is kept at a regulated temperature for periods of varying length. The cooled mixture is then filtered, and the isolated solid is washed with 10 ml of water and then dried. The solid (together with tared filter paper) is dried in a vacuum at 65-70°C. The amount of undissolved material is compared to the original weight.

Tabeller IV, V og VI viser resultatet av etteroppvarmning, som øker den antallsmidlere molekylvekt. Dataene etter 1 time ved romtemperatur gir en indikasjon om den uomsatte monomer og den oppløselige dimer, som ikke vil ha noen gjen-tettingseffekt. En vesentlig reduksjon finner sted etter etteroppvarmning. De øvrige dataer viser at det etteroppvar-mede materiale oppløses langsommere ved en gitt temperatur, både i 2%-ig KCl-oppløsning og i 15%-ig HC1. Tables IV, V and VI show the result of post-heating, which increases the number average molecular weight. The data after 1 hour at room temperature gives an indication of the unreacted monomer and the soluble dimer, which will have no resealing effect. A significant reduction takes place after post-heating. The other data show that the reheated material dissolves more slowly at a given temperature, both in a 2% KCl solution and in 15% HC1.

Claims (5)

1. Brønnhullsvæske for å redusere permeabiliteten av en undergrunnsformasjon som gjennomtrenges av et brønnhull, inneholdende dispergerte faste partikler av et kondensasjons-produkt på basis av hydroksyeddiksyre, hvilket kondensasjons-produkt har et smeltepunkt som er på minst 65,6°C og er tilstrekkelig høyt til at mykning eller smelting unngås under bruk, er i det vesentlige uoppløselig i brønnhullsvæsken og er nedbrytbart i nærvær av vann ved forhøyet temperatur til monomerer og dimerer som er i det minste delvis oppløselige i olje eller vann, karakterisert ved at kondensasjonsproduktet er et kondensasjonsprodukt av hydroksyeddiksyre med inntil 15 vekt% kokondenserende forbindelser inneholdende andre hydroksy-, karboksylsyre- eller hydroksykarboksylsyregrupper og har en antallsmidlere molekylvekt på 200-4000 og er i det vesentlige krystallinsk både ved omgivelsenes temperatur og ved de aktuelle brønnhullstemperaturer.1. Wellbore fluid for reducing the permeability of a subsurface formation penetrated by a wellbore, containing dispersed solid particles of a condensation product based on hydroxyacetic acid, which condensation product has a melting point of at least 65.6°C and is sufficiently high to avoid softening or melting during use, is essentially insoluble in the wellbore fluid and is degradable in the presence of water at elevated temperature into monomers and dimers which are at least partially soluble in oil or water, characterized in that the condensation product is a condensation product of hydroxyacetic acid with up to 15% by weight of cocondensing compounds containing other hydroxy, carboxylic acid or hydroxycarboxylic acid groups and has a number average molecular weight of 200-4000 and is essentially crystalline both at the ambient temperature and at the relevant wellbore temperatures. 2. Brønnhullsvæske ifølge krav 1, karakterisert ved at kondensasjonsproduktet er en oligomer med en antallsmidlere molekylvekt på 200-650.2. Wellbore fluid according to claim 1, characterized in that the condensation product is an oligomer with a number average molecular weight of 200-650. 3. Brønnhullsvæske ifølge krav 2, karakterisert ved at kondensasjonsproduktet omfatter fra trimerer og opp til dekamerer.3. Wellbore fluid according to claim 2, characterized in that the condensation product comprises from trimers up to decamers. 4. Brønnhullsvæske ifølge krav 1, karakterisert ved at de ko-kondenserende forbindelser er melkesyre, sitronsyre, adipinsyre, trimetyloletan eller 2,2-(bishydroksymetyl)-propansyre, fortrinnsvis melkesyre eller sitronsyre.4. Wellbore fluid according to claim 1, characterized in that the co-condensing compounds are lactic acid, citric acid, adipic acid, trimethylolethane or 2,2-(bishydroxymethyl)-propanoic acid, preferably lactic acid or citric acid. 5. Anvendelse av en brønnhullsvæske ifølge krav 1-4 for å redusere permeabiliteten av en undergrunnsformasjon som gjennomtrenges av et brønnhull.5. Use of a wellbore fluid according to claims 1-4 to reduce the permeability of an underground formation that is penetrated by a wellbore.
NO865299A 1985-12-27 1986-12-23 BROWN HOLE FLUID AND USE OF THIS FOR AA REDUCE THE PERMEABILITY OF A BACKGROUND FORM THAT REPLACES A DRILL HOLE NO172590C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/822,589 US4715967A (en) 1985-12-27 1985-12-27 Composition and method for temporarily reducing permeability of subterranean formations

Publications (4)

Publication Number Publication Date
NO865299D0 NO865299D0 (en) 1986-12-23
NO865299L NO865299L (en) 1987-06-29
NO172590B true NO172590B (en) 1993-05-03
NO172590C NO172590C (en) 1993-08-11

Family

ID=25236447

Family Applications (1)

Application Number Title Priority Date Filing Date
NO865299A NO172590C (en) 1985-12-27 1986-12-23 BROWN HOLE FLUID AND USE OF THIS FOR AA REDUCE THE PERMEABILITY OF A BACKGROUND FORM THAT REPLACES A DRILL HOLE

Country Status (13)

Country Link
US (1) US4715967A (en)
EP (1) EP0228196B1 (en)
JP (1) JPS62160398A (en)
AT (1) ATE72016T1 (en)
AU (1) AU598219B2 (en)
BR (1) BR8606314A (en)
CA (1) CA1262508A (en)
DE (1) DE3683618D1 (en)
ES (1) ES2032274T3 (en)
MX (1) MX165677B (en)
MY (1) MY100743A (en)
NO (1) NO172590C (en)
NZ (1) NZ218784A (en)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246602A (en) * 1986-02-24 1993-09-21 Forrest Gabriel T Method and composition fracturing subterranean formations
US4957165A (en) * 1988-02-16 1990-09-18 Conoco Inc. Well treatment process
US4848467A (en) * 1988-02-16 1989-07-18 Conoco Inc. Formation fracturing process
US4986353A (en) * 1988-09-14 1991-01-22 Conoco Inc. Placement process for oil field chemicals
US4961466A (en) * 1989-01-23 1990-10-09 Halliburton Company Method for effecting controlled break in polysaccharide gels
US4986355A (en) * 1989-05-18 1991-01-22 Conoco Inc. Process for the preparation of fluid loss additive and gel breaker
US7168489B2 (en) 2001-06-11 2007-01-30 Halliburton Energy Services, Inc. Orthoester compositions and methods for reducing the viscosified treatment fluids
US7140438B2 (en) 2003-08-14 2006-11-28 Halliburton Energy Services, Inc. Orthoester compositions and methods of use in subterranean applications
US7080688B2 (en) 2003-08-14 2006-07-25 Halliburton Energy Services, Inc. Compositions and methods for degrading filter cake
US7276466B2 (en) 2001-06-11 2007-10-02 Halliburton Energy Services, Inc. Compositions and methods for reducing the viscosity of a fluid
WO2003027431A2 (en) * 2001-09-26 2003-04-03 Cooke Claude E Jr Method and materials for hydraulic fracturing of wells
US7216711B2 (en) 2002-01-08 2007-05-15 Halliburton Eenrgy Services, Inc. Methods of coating resin and blending resin-coated proppant
US7267171B2 (en) 2002-01-08 2007-09-11 Halliburton Energy Services, Inc. Methods and compositions for stabilizing the surface of a subterranean formation
US7343973B2 (en) 2002-01-08 2008-03-18 Halliburton Energy Services, Inc. Methods of stabilizing surfaces of subterranean formations
US6691780B2 (en) 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US7677311B2 (en) * 2002-08-26 2010-03-16 Schlumberger Technology Corporation Internal breaker for oilfield treatments
US7219731B2 (en) * 2002-08-26 2007-05-22 Schlumberger Technology Corporation Degradable additive for viscoelastic surfactant based fluid systems
US7398826B2 (en) * 2003-11-14 2008-07-15 Schlumberger Technology Corporation Well treatment with dissolvable polymer
US20040211561A1 (en) 2003-03-06 2004-10-28 Nguyen Philip D. Methods and compositions for consolidating proppant in fractures
US7114570B2 (en) 2003-04-07 2006-10-03 Halliburton Energy Services, Inc. Methods and compositions for stabilizing unconsolidated subterranean formations
US20090107684A1 (en) 2007-10-31 2009-04-30 Cooke Jr Claude E Applications of degradable polymers for delayed mechanical changes in wells
US20040231845A1 (en) 2003-05-15 2004-11-25 Cooke Claude E. Applications of degradable polymers in wells
US6978836B2 (en) 2003-05-23 2005-12-27 Halliburton Energy Services, Inc. Methods for controlling water and particulate production
US7413010B2 (en) 2003-06-23 2008-08-19 Halliburton Energy Services, Inc. Remediation of subterranean formations using vibrational waves and consolidating agents
US7114560B2 (en) 2003-06-23 2006-10-03 Halliburton Energy Services, Inc. Methods for enhancing treatment fluid placement in a subterranean formation
US6994166B2 (en) * 2003-06-24 2006-02-07 Baker Hughes Incorporated Composition and method for diversion agents for acid stimulation of subterranean formations
US7013976B2 (en) 2003-06-25 2006-03-21 Halliburton Energy Services, Inc. Compositions and methods for consolidating unconsolidated subterranean formations
US7228904B2 (en) 2003-06-27 2007-06-12 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7036587B2 (en) 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
US7044220B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7032663B2 (en) 2003-06-27 2006-04-25 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
US7178596B2 (en) * 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7044224B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores
US7021379B2 (en) 2003-07-07 2006-04-04 Halliburton Energy Services, Inc. Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures
US7066258B2 (en) 2003-07-08 2006-06-27 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US7497278B2 (en) 2003-08-14 2009-03-03 Halliburton Energy Services, Inc. Methods of degrading filter cakes in a subterranean formation
US8541051B2 (en) 2003-08-14 2013-09-24 Halliburton Energy Services, Inc. On-the fly coating of acid-releasing degradable material onto a particulate
US7059406B2 (en) 2003-08-26 2006-06-13 Halliburton Energy Services, Inc. Production-enhancing completion methods
US7237609B2 (en) 2003-08-26 2007-07-03 Halliburton Energy Services, Inc. Methods for producing fluids from acidized and consolidated portions of subterranean formations
US7156194B2 (en) 2003-08-26 2007-01-02 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulate
US7017665B2 (en) 2003-08-26 2006-03-28 Halliburton Energy Services, Inc. Strengthening near well bore subterranean formations
US6997259B2 (en) 2003-09-05 2006-02-14 Halliburton Energy Services, Inc. Methods for forming a permeable and stable mass in a subterranean formation
US7032667B2 (en) 2003-09-10 2006-04-25 Halliburtonn Energy Services, Inc. Methods for enhancing the consolidation strength of resin coated particulates
US7021377B2 (en) 2003-09-11 2006-04-04 Halliburton Energy Services, Inc. Methods of removing filter cake from well producing zones
US7674753B2 (en) 2003-09-17 2010-03-09 Halliburton Energy Services, Inc. Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations
US7829507B2 (en) 2003-09-17 2010-11-09 Halliburton Energy Services Inc. Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
US7833944B2 (en) 2003-09-17 2010-11-16 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US7345011B2 (en) 2003-10-14 2008-03-18 Halliburton Energy Services, Inc. Methods for mitigating the production of water from subterranean formations
US7063150B2 (en) 2003-11-25 2006-06-20 Halliburton Energy Services, Inc. Methods for preparing slurries of coated particulates
US7195068B2 (en) 2003-12-15 2007-03-27 Halliburton Energy Services, Inc. Filter cake degradation compositions and methods of use in subterranean operations
US7131493B2 (en) 2004-01-16 2006-11-07 Halliburton Energy Services, Inc. Methods of using sealants in multilateral junctions
US7096947B2 (en) 2004-01-27 2006-08-29 Halliburton Energy Services, Inc. Fluid loss control additives for use in fracturing subterranean formations
US7036586B2 (en) 2004-01-30 2006-05-02 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using crack resistant cement compositions
US7156174B2 (en) 2004-01-30 2007-01-02 Halliburton Energy Services, Inc. Contained micro-particles for use in well bore operations
US7204312B2 (en) 2004-01-30 2007-04-17 Halliburton Energy Services, Inc. Compositions and methods for the delivery of chemical components in subterranean well bores
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7063151B2 (en) 2004-03-05 2006-06-20 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
US7093664B2 (en) * 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7353879B2 (en) * 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7073581B2 (en) 2004-06-15 2006-07-11 Halliburton Energy Services, Inc. Electroconductive proppant compositions and related methods
US7547665B2 (en) 2005-04-29 2009-06-16 Halliburton Energy Services, Inc. Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
US7621334B2 (en) 2005-04-29 2009-11-24 Halliburton Energy Services, Inc. Acidic treatment fluids comprising scleroglucan and/or diutan and associated methods
US7475728B2 (en) 2004-07-23 2009-01-13 Halliburton Energy Services, Inc. Treatment fluids and methods of use in subterranean formations
US7380600B2 (en) * 2004-09-01 2008-06-03 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7775278B2 (en) * 2004-09-01 2010-08-17 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7275596B2 (en) 2005-06-20 2007-10-02 Schlumberger Technology Corporation Method of using degradable fiber systems for stimulation
US7299869B2 (en) 2004-09-03 2007-11-27 Halliburton Energy Services, Inc. Carbon foam particulates and methods of using carbon foam particulates in subterranean applications
US7281580B2 (en) 2004-09-09 2007-10-16 Halliburton Energy Services, Inc. High porosity fractures and methods of creating high porosity fractures
US7255169B2 (en) 2004-09-09 2007-08-14 Halliburton Energy Services, Inc. Methods of creating high porosity propped fractures
US7413017B2 (en) 2004-09-24 2008-08-19 Halliburton Energy Services, Inc. Methods and compositions for inducing tip screenouts in frac-packing operations
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7648946B2 (en) 2004-11-17 2010-01-19 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations
US7553800B2 (en) 2004-11-17 2009-06-30 Halliburton Energy Services, Inc. In-situ filter cake degradation compositions and methods of use in subterranean formations
US7281581B2 (en) 2004-12-01 2007-10-16 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
US7273099B2 (en) 2004-12-03 2007-09-25 Halliburton Energy Services, Inc. Methods of stimulating a subterranean formation comprising multiple production intervals
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7334635B2 (en) 2005-01-14 2008-02-26 Halliburton Energy Services, Inc. Methods for fracturing subterranean wells
US8030249B2 (en) 2005-01-28 2011-10-04 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US20060169182A1 (en) 2005-01-28 2006-08-03 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US7267170B2 (en) 2005-01-31 2007-09-11 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US20080009423A1 (en) 2005-01-31 2008-01-10 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US7497258B2 (en) 2005-02-01 2009-03-03 Halliburton Energy Services, Inc. Methods of isolating zones in subterranean formations using self-degrading cement compositions
US7353876B2 (en) 2005-02-01 2008-04-08 Halliburton Energy Services, Inc. Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US8598092B2 (en) 2005-02-02 2013-12-03 Halliburton Energy Services, Inc. Methods of preparing degradable materials and methods of use in subterranean formations
US7334636B2 (en) 2005-02-08 2008-02-26 Halliburton Energy Services, Inc. Methods of creating high-porosity propped fractures using reticulated foam
US7506689B2 (en) 2005-02-22 2009-03-24 Halliburton Energy Services, Inc. Fracturing fluids comprising degradable diverting agents and methods of use in subterranean formations
US7216705B2 (en) 2005-02-22 2007-05-15 Halliburton Energy Services, Inc. Methods of placing treatment chemicals
US7318473B2 (en) 2005-03-07 2008-01-15 Halliburton Energy Services, Inc. Methods relating to maintaining the structural integrity of deviated well bores
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US7677315B2 (en) 2005-05-12 2010-03-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7662753B2 (en) 2005-05-12 2010-02-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7608567B2 (en) 2005-05-12 2009-10-27 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7337839B2 (en) * 2005-06-10 2008-03-04 Schlumberger Technology Corporation Fluid loss additive for enhanced fracture clean-up
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7595280B2 (en) 2005-08-16 2009-09-29 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US7484564B2 (en) 2005-08-16 2009-02-03 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US7713916B2 (en) 2005-09-22 2010-05-11 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US7461697B2 (en) 2005-11-21 2008-12-09 Halliburton Energy Services, Inc. Methods of modifying particulate surfaces to affect acidic sites thereon
US20070173416A1 (en) 2006-01-20 2007-07-26 Halliburton Energy Services, Inc. Well treatment compositions for use in acidizing a well
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US7407010B2 (en) 2006-03-16 2008-08-05 Halliburton Energy Services, Inc. Methods of coating particulates
US7237610B1 (en) 2006-03-30 2007-07-03 Halliburton Energy Services, Inc. Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
US7608566B2 (en) 2006-03-30 2009-10-27 Halliburton Energy Services, Inc. Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
US20070284097A1 (en) * 2006-06-08 2007-12-13 Halliburton Energy Services, Inc. Consumable downhole tools
US20080257549A1 (en) 2006-06-08 2008-10-23 Halliburton Energy Services, Inc. Consumable Downhole Tools
US7591318B2 (en) * 2006-07-20 2009-09-22 Halliburton Energy Services, Inc. Method for removing a sealing plug from a well
US8329621B2 (en) 2006-07-25 2012-12-11 Halliburton Energy Services, Inc. Degradable particulates and associated methods
US8481462B2 (en) 2006-09-18 2013-07-09 Schlumberger Technology Corporation Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids
US7635028B2 (en) 2006-09-18 2009-12-22 Schlumberger Technology Corporation Acidic internal breaker for viscoelastic surfactant fluids in brine
US7678743B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7687438B2 (en) 2006-09-20 2010-03-30 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678742B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7455112B2 (en) 2006-09-29 2008-11-25 Halliburton Energy Services, Inc. Methods and compositions relating to the control of the rates of acid-generating compounds in acidizing operations
US7686080B2 (en) 2006-11-09 2010-03-30 Halliburton Energy Services, Inc. Acid-generating fluid loss control additives and associated methods
US8220548B2 (en) 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US20080202764A1 (en) 2007-02-22 2008-08-28 Halliburton Energy Services, Inc. Consumable downhole tools
US8695708B2 (en) * 2007-03-26 2014-04-15 Schlumberger Technology Corporation Method for treating subterranean formation with degradable material
US8327926B2 (en) 2008-03-26 2012-12-11 Robertson Intellectual Properties, LLC Method for removing a consumable downhole tool
US8235102B1 (en) 2008-03-26 2012-08-07 Robertson Intellectual Properties, LLC Consumable downhole tool
US8006760B2 (en) 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
US8936085B2 (en) 2008-04-15 2015-01-20 Schlumberger Technology Corporation Sealing by ball sealers
US9212535B2 (en) * 2008-04-15 2015-12-15 Schlumberger Technology Corporation Diversion by combining dissolvable and degradable particles and fibers
US7906464B2 (en) * 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
WO2010001323A1 (en) * 2008-07-01 2010-01-07 Schlumberger Canada Limited System, method, and apparatus for injection well clean-up operations
US7833943B2 (en) * 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US8561696B2 (en) 2008-11-18 2013-10-22 Schlumberger Technology Corporation Method of placing ball sealers for fluid diversion
US8016040B2 (en) * 2008-11-26 2011-09-13 Schlumberger Technology Corporation Fluid loss control
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US20100323932A1 (en) 2009-06-17 2010-12-23 Oscar Bustos Methods for treating a well or the like
US8082992B2 (en) 2009-07-13 2011-12-27 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
CN103154182B (en) * 2010-10-14 2015-09-30 株式会社吴羽 The auxiliary dispersion liquid of petroleum drilling
AU2011343765A1 (en) 2010-12-14 2013-07-18 Altarock Energy, Inc. High temperature temporary diverter and lost circulation material
WO2012121294A1 (en) * 2011-03-08 2012-09-13 株式会社クレハ Polyglycolic acid resin particulate composition for boring, and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302719A (en) * 1965-01-25 1967-02-07 Union Oil Co Method for treating subterranean formations
US3784585A (en) * 1971-10-21 1974-01-08 American Cyanamid Co Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
US3898167A (en) * 1972-05-01 1975-08-05 Dow Chemical Co Fluid loss additive for acidizing liquid
US3989632A (en) * 1972-09-29 1976-11-02 Union Oil Company Of California Method of conducting drilling operations
US4526695A (en) * 1981-08-10 1985-07-02 Exxon Production Research Co. Composition for reducing the permeability of subterranean formations

Also Published As

Publication number Publication date
BR8606314A (en) 1987-10-06
ES2032274T3 (en) 1993-02-01
EP0228196A3 (en) 1988-08-24
NO865299D0 (en) 1986-12-23
JPS62160398A (en) 1987-07-16
NO865299L (en) 1987-06-29
MX165677B (en) 1992-11-30
NZ218784A (en) 1989-02-24
EP0228196A2 (en) 1987-07-08
AU598219B2 (en) 1990-06-21
NO172590C (en) 1993-08-11
EP0228196B1 (en) 1992-01-22
MY100743A (en) 1991-02-14
DE3683618D1 (en) 1992-03-05
US4715967A (en) 1987-12-29
ATE72016T1 (en) 1992-02-15
CA1262508A (en) 1989-10-31
AU6697486A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
NO172590B (en) BROWN HOLE FLUID AND USE OF THIS FOR AA REDUCE THE PERMEABILITY OF A BACKGROUND FORM THAT REPLACES A DRILL HOLE
US4986355A (en) Process for the preparation of fluid loss additive and gel breaker
US4526695A (en) Composition for reducing the permeability of subterranean formations
US4387769A (en) Method for reducing the permeability of subterranean formations
US4716964A (en) Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion
CA1319819C (en) Formation fracturing process
US5226479A (en) Fracturing fluid having a delayed enzyme breaker
US7677311B2 (en) Internal breaker for oilfield treatments
EP1556582B1 (en) Generating acid downhole in acid fracturing
EP0404489B1 (en) Well treatment process
US4986354A (en) Composition and placement process for oil field chemicals
CA1099088A (en) Well treating composition and method
US3960736A (en) Self-breaking viscous aqueous solutions and the use thereof in fracturing subterranean formations
CA2582275C (en) Self-cleaning well control fluid
AU658744B2 (en) Methods of fracture acidizing subterranean formations
US5441109A (en) Enzyme breakers for breaking fracturing fluids and methods of making and use thereof
WO2010146493A1 (en) Methods for treating a well
EP1460121B1 (en) Well treating fluids
WO1998054272A1 (en) Improved polymer expansion for oil and gas recovery
GB2240567A (en) Method of treating subterranean formations using a non-damaging fracturing fluid
NO176731B (en) Aqueous fracturing fluid and hydraulic fracturing method
EP2209868A1 (en) High temperature aqueous-based zirconium fracturing fluid and use
Borchardt Chemicals used in oil-field operations
EP2225345A1 (en) Hf acidizing compositions and methods for improved placement in a subterranean formation to remediate formation damage