NO171921B - PROCEDURE FOR MANUFACTURING NORMALLY LIQUID HYDROCARBON PRODUCTS FROM PLASTIC MATERIAL - Google Patents

PROCEDURE FOR MANUFACTURING NORMALLY LIQUID HYDROCARBON PRODUCTS FROM PLASTIC MATERIAL Download PDF

Info

Publication number
NO171921B
NO171921B NO880170A NO880170A NO171921B NO 171921 B NO171921 B NO 171921B NO 880170 A NO880170 A NO 880170A NO 880170 A NO880170 A NO 880170A NO 171921 B NO171921 B NO 171921B
Authority
NO
Norway
Prior art keywords
plastic material
zeolite
catalytic conversion
product
range
Prior art date
Application number
NO880170A
Other languages
Norwegian (no)
Other versions
NO880170D0 (en
NO171921C (en
NO880170L (en
Inventor
Kiyoshi Saito
Takashi Fukuda
Satoru Suzuki
Hideki Sato
Toshio Hirota
Original Assignee
Mobil Oil Corp
Agency Ind Science Techn
Japan Res Dev Corp
Fuji Tech Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp, Agency Ind Science Techn, Japan Res Dev Corp, Fuji Tech Kk filed Critical Mobil Oil Corp
Publication of NO880170D0 publication Critical patent/NO880170D0/en
Publication of NO880170L publication Critical patent/NO880170L/en
Publication of NO171921B publication Critical patent/NO171921B/en
Publication of NO171921C publication Critical patent/NO171921C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av et normalt flytende hydrokarbonprodukt, som bl.a. er nyttig som et råmateriale for fremstilling av bensin, fra plastmateriale. The present invention relates to a method for producing a normal liquid hydrocarbon product, which i.a. is useful as a raw material for the manufacture of gasoline, from plastic material.

Ettersom mengden av fremstilt plast har vokst i de senere år, har avhending av plastskrap blitt et økende problem. Selv om forskjellige termiske spaltningsfremgangsmåter har vært foreslått som potensielle løsninger på avhendingsproblemet, er de imidlertid uhensiktsmessige ved at dannelsen av en betydelig mengde koks og voksholdige materialer, som viser tendens til å klebe til innerveggen av reaksjonsbeholderen, ikke kan unngås. Følgelig har det ikke vært mulig å sette disse fremgangsmåtene i praktisk anvendelse ved avhending av vanlig brukte plasttyper. As the amount of manufactured plastic has grown in recent years, disposal of plastic scrap has become a growing problem. Although various thermal decomposition methods have been proposed as potential solutions to the disposal problem, they are however inconvenient in that the formation of a significant amount of coke and waxy materials, which tend to adhere to the inner wall of the reaction vessel, cannot be avoided. Consequently, it has not been possible to put these methods into practical use when disposing of commonly used types of plastic.

Foreliggende oppfinnelse tilveiebringer en fremgangsmåte for fremstilling av et flytende hydrokarbonprodukt innbefattende C5-C22~hyclrokart>oner» omfattende termisk spaltning av et plastmateriale i smeltet, flytende fase i nærvær av et uorganisk, porøst partikkelformig materiale og katalytisk omdannelse av det dampformige produktet som derved genereres ved kontakt med en zeolitt, kjennetegnet ved at den katalytiske omdannelsen utføres ved en temperatur i området mellom 200 og 350°C, og at det anvendes en zeolitt som har en begrensningsindeks i området mellom 1 og 12. The present invention provides a method for the production of a liquid hydrocarbon product including C5-C22~hyclrocartons" comprising thermal decomposition of a plastic material in the molten, liquid phase in the presence of an inorganic, porous particulate material and catalytic conversion of the vaporous product that is thereby generated in contact with a zeolite, characterized in that the catalytic conversion is carried out at a temperature in the range between 200 and 350°C, and that a zeolite is used which has a restriction index in the range between 1 and 12.

Plastmaterialet som benyttes i fremgangsmåten ifølge oppfinnelsen kan være en hvilken som helst polymer eller kopolymer av en etylenisk umettet monomer, innbefattende aromatiske species, såsom polystyren og polyetylentereftalat, selv om halogenholdige polymerer og kopolymerer bør unngås. Fortrinnsvis er materialet et polyolefinisk plastmateriale, spesielt polyetylen, polypropylen og polybutylen (innbefattende kopolymerer og blandinger inneholdende denne som en vesentlig komponent). Siden foreliggende fremgangsmåte spesifikt er utformet for avhending av skrapplast kan plastmaterialet som anvendes anta en lang rekke former, såsom filmer, lag og formgitte gjenstander, selv om filmer og lag er foretrukket. Disse materialene tilføres, etter at de er pulverisert ved hjelp av egnede anordninger, kontinuerlig til en termisk spaltningsreaktor ved hjelp av en ekstruder, samtidig som de oppvarmes til en flytende eller smeltet tilstand. The plastic material used in the method according to the invention can be any polymer or copolymer of an ethylenically unsaturated monomer, including aromatic species, such as polystyrene and polyethylene terephthalate, although halogen-containing polymers and copolymers should be avoided. Preferably, the material is a polyolefinic plastic material, especially polyethylene, polypropylene and polybutylene (including copolymers and mixtures containing this as an essential component). Since the present method is specifically designed for the disposal of scrap plastic, the plastic material used can assume a wide variety of forms, such as films, layers and shaped objects, although films and layers are preferred. These materials, after being pulverized by means of suitable devices, are fed continuously to a thermal cleavage reactor by means of an extruder, while heating them to a liquid or molten state.

Det termiske spaltningstrinnet ved fremgangsmåten ifølge oppfinnelsen gjennomføres med plastmaterialet i smeltet, flytende fase. Temperaturen som anvendes i det termiske spaltningstrinnet er fortrinnsvis 390-500"C, mer foretrukket 400-450°C, og trykket er fortrinnsvis atmosfæretrykk. Det er foretrukket å tilføre plastmaterialet til det termiske spaltningstrinnet kontinuerlig, slik at nivået av den smeltede, flytende fasen i spaltningsreaktoren holdes i det vesentlige konstant. Den termiske spaltningsreaksjonen utføres fortrinnsvis under omrøring og i nærvær av et uorganisk, porøst partikkelformig materiale. Selv om det ikke foreligger noen spesiell begrensning når det gjelder naturen og størrelsen av det uorganiske, porøse partikkelformige materialet, forutsatt at det ikke deformeres eller nedbrytes, er det vanligvis foretrukket å anvende porøst partikkelformig materiale som har en størrelse på 1-10 mm. Illustrerende eksempler på egnede porøse partikkelformige materialer er naturlige zeolitter, bauxitt og rød leire (resten som blir igjen etter fjernelse av aluminium fra bauxitt). Det porøse partikkelformige materialet kan vise en viss spaltningsaktivitet, selv om denne bør være lavere enn den for zeolitt-katalysatoren som benyttes i det etterfølgende katalytiske omvandlingstrinnet. The thermal splitting step in the method according to the invention is carried out with the plastic material in a molten, liquid phase. The temperature used in the thermal decomposition step is preferably 390-500°C, more preferably 400-450°C, and the pressure is preferably atmospheric pressure. It is preferred to supply the plastic material to the thermal decomposition step continuously, so that the level of the molten, liquid phase in the fission reactor is kept substantially constant. The thermal fission reaction is preferably carried out under stirring and in the presence of an inorganic porous particulate material. Although there is no particular limitation as to the nature and size of the inorganic porous particulate material, provided that does not deform or degrade, it is usually preferred to use porous particulate material having a size of 1-10 mm. Illustrative examples of suitable porous particulate materials are natural zeolites, bauxite and red clay (the residue remaining after the removal of aluminum from bauxite).The porous particulate feed the rial may show some cleavage activity, although this should be lower than that of the zeolite catalyst used in the subsequent catalytic conversion step.

Anvendelse av det uorganiske partikkelformige materialet letter varmeoverføringen under termisk spaltning, inhiberer festing av koks til reaktorbeholderen, og nedsetter koke-punktet for det dampformige produktet som dannes, derved lettes tilførselen av det dampformige produktet til det katalytiske omvandlingstrinnet, og kvaliteten og utbyttet av den endelige fremstilte hydrokarbonoljen forbedres. Mengden av det uorganiske partikkelformige materialet er fortrinnsvis minst 5 vekt-#, men kan være opp til 200-400 vekt-#, av det smeltede materialet i reaksjonsbeholderen. Use of the inorganic particulate material facilitates heat transfer during thermal cracking, inhibits sticking of coke to the reactor vessel, and lowers the boiling point of the vapor product that is formed, thereby facilitating the supply of the vapor product to the catalytic conversion step, and the quality and yield of the final the produced hydrocarbon oil is improved. The amount of the inorganic particulate material is preferably at least 5 wt-#, but may be up to 200-400 wt-#, of the molten material in the reaction vessel.

Det paraffinrike, dampformige produktet som dannes i det termiske spaltningstrinnet føres deretter til en katalytisk omvandlingsenhet som inneholder en zeolitt som har en begrensningsindeks mellom 1 og 12. Betegnelsen begrensningsindeks er definert f.eks. i U.S. patent nr. 4.016.218. Eksempler på egnede zeolitter innbefatter ZSM-5 (se U.S. patent nr. 3702886), ZMS-11 (se U.S. patent nr. 3709979), ZMS-12 (se U.S. patent nr. 3832449), ZSM-23 (se U.S. patent nr. 4076842), ZSM-35 (se U.S. patent nr. 4016245) og ZSM-48 (se U.S. patent nr. 4375573), selv om ZSM-5 er foretrukket. Zeolitten anvendes normalt i dens hydrogenform, selv om den kan inneholde et metall såsom platina. Zeolitten kombineres også vanligvis med et bindemiddel, såsom aluminiumoksyd, og fremstilles som partikler som har en størrelse på 0,1-10 mm. The paraffin-rich, vaporous product formed in the thermal cracking step is then fed to a catalytic conversion unit containing a zeolite having a restriction index between 1 and 12. The term restriction index is defined e.g. in the U.S. Patent No. 4,016,218. Examples of suitable zeolites include ZSM-5 (see U.S. Patent No. 3702886), ZMS-11 (see U.S. Patent No. 3709979), ZMS-12 (see U.S. Patent No. 3832449), ZSM-23 (see U.S. Patent No. 4076842), ZSM-35 (see U.S. Patent No. 4,016,245), and ZSM-48 (see U.S. Patent No. 4,375,573), although ZSM-5 is preferred. The zeolite is normally used in its hydrogen form, although it may contain a metal such as platinum. The zeolite is also usually combined with a binder, such as aluminum oxide, and produced as particles having a size of 0.1-10 mm.

Den katalytiske omvandlingsreaksjonen utføres normalt ved atmosfæretrykk, ved en vektromhastighet pr. time på 0,8-0,85,'Og en temperatur på 200-350°C, fortinnsvis på 250-340°C. Drift ved så lav temperatur er uventet og medfører ikke bare økonomiske fordeler, men inhiberer også uønskede bireak-sjoner. The catalytic conversion reaction is normally carried out at atmospheric pressure, at a weight room velocity per hour of 0.8-0.85,' and a temperature of 200-350°C, preferably of 250-340°C. Operation at such a low temperature is unexpected and not only brings economic benefits, but also inhibits unwanted side-reactions.

Anvendelse av zeolitten i det andre spaltningstrinnet tillater ikke bare en reduksjon av spaltningstemperaturen og kontinuerlig drift, men forbedrer også kvaliteten og utbyttet av produktet. Elding av zeolitt-katalysatoren er funnet å være relativt langsom, og foreliggende fremgangsmåte kan gjennomføres med en zeolitt-katalysator som er regenerert etter anvendelse i denne eller en annen reaksjon. Application of the zeolite in the second cleavage stage not only allows a reduction of the cleavage temperature and continuous operation, but also improves the quality and yield of the product. Aging of the zeolite catalyst has been found to be relatively slow, and the present method can be carried out with a zeolite catalyst which has been regenerated after use in this or another reaction.

Det resulterende produktet er en hydrokarbonolje med lavt stivnepunkt som demonstrerer opptreden av ikke bare spalt ningsreaksjonen, men også av isomeriseringsreaksjoner. Fravær av stoffer med høy molekylvekt i produktet kan også fastslås. The resulting product is a low pour point hydrocarbon oil that demonstrates the occurrence of not only the cleavage reaction but also isomerization reactions. The absence of high molecular weight substances in the product can also be determined.

Det viser seg at hydrokarbonoljeproduktet inneholder bare hydrokarboner med mer enn 22 karbonatomer i betydelige mengder. Hydrokarbonoljeproduktet kan følgelig tilsettes direkte til bensinblandingsbassenget. Gassformige biprodukter oppnås også ved foreliggende fremgangsmåte, men disse inneholder en betydelig andel av verdifulle C3~C5-for-bindelser. It turns out that the hydrocarbon oil product contains only hydrocarbons with more than 22 carbon atoms in significant amounts. Consequently, the hydrocarbon oil product can be added directly to the gasoline blending pool. Gaseous by-products are also obtained by the present method, but these contain a significant proportion of valuable C3~C5 compounds.

Oppfinnelsen skal i det følgende beskrives under henvisning til den vedlagte tegningen, som er en skjematisk illustrasjon av en apparatur for utførelse av en fremgangsmåte ifølge et eksempel på oppfinnelsen. The invention will be described below with reference to the attached drawing, which is a schematic illustration of an apparatus for carrying out a method according to an example of the invention.

Under henvisning til tegningen er den termiske spaltningsreaktoren generelt angitt ved 1 og innbefatter en råstoff-tilførselssone 2, en termisk spaltningsreaksjonssone 3 og en rører 4, montert på toppen av sone 3. Eåstoff-tilførselssonen 2 innbefatter en skruemater 5 som i sin tur tilfører plastmaterialet til toppen av den termiske spaltningsreaksjonssonen 3. Inne i den teemiske spaltningsreaksjonssonen 3 er det innført en nivåmåler 6 for å måle høyden av det smeltede råstoffet, og et termometer 7. Referring to the drawing, the thermal cracking reactor is generally indicated at 1 and includes a feedstock feed zone 2, a thermal cracking reaction zone 3 and a stirrer 4, mounted on top of zone 3. The feedstock feed zone 2 includes a screw feeder 5 which in turn feeds the plastic material to the top of the thermal fission reaction zone 3. Inside the themic fission reaction zone 3, a level gauge 6 is introduced to measure the height of the molten raw material, and a thermometer 7.

Toppen av den termiske spaltningsreaktoren 1 er forbundet med en katalytisk reaksjonssone 8 som er fylt med HZSM-5, som har en partikkelstørrelse på ca. 3 mm, hvori det også er innført et termometer 9. Bunnen av den termiske spaltningsreaktoren 1 er utstyrt med en gassbrenner 10. The top of the thermal cracking reactor 1 is connected to a catalytic reaction zone 8 which is filled with HZSM-5, which has a particle size of approx. 3 mm, in which a thermometer 9 is also introduced. The bottom of the thermal fission reactor 1 is equipped with a gas burner 10.

Den termiske spaltningsreaksjonssonen 3 holdes ved den ønskede driftstemperaturen ved hjelp av brenneren 10, mens den katalytiske reaksjonssonen 8 holdes ved driftstemperaturen ved hjelp av varmekapasiteten av det dampformige, termiske spaltningsproduktet, selv om en ytre oppvarmingsinn-retning (ikke vist) også kan anvendes. The thermal decomposition reaction zone 3 is kept at the desired operating temperature by means of the burner 10, while the catalytic reaction zone 8 is kept at the operating temperature by means of the heat capacity of the vaporous thermal decomposition product, although an external heating device (not shown) can also be used.

Effluenten fra den katalytiske reaksjonssonen 8 tilføres ved hjelp av et avkjølingsrør 12, utstyrt med en vannkjølings-kondensator 11 til ol jelagringsbeholdere 13 og 14 for oppsamling. The effluent from the catalytic reaction zone 8 is supplied by means of a cooling pipe 12, equipped with a water cooling condenser 11 to oil storage containers 13 and 14 for collection.

I en praktisk utførelse ble apparaturen vist i figur 1 konstruert og drevet som følger: (A) Skruemateren 5 var av to-akse skruetypen og ble drevet ved en temperatur på 330 "C og en tilførselshastighet In a practical embodiment, the apparatus shown in Figure 1 was constructed and operated as follows: (A) The screw feeder 5 was of the two-axis screw type and was operated at a temperature of 330 "C and a feed rate

på 680-706 g/t. of 680-706 g/h.

(B) Den termiske spaltningsreaktoren 1 var en sylindrisk beholder med høyde 560 mm, diameter 105 mm og volum 4,85 (B) The thermal fission reactor 1 was a cylindrical vessel with height 560 mm, diameter 105 mm and volume 4.85

liter. Den termiske spaltningsreaksjonssonen 3, dvs. arealet for smeltet, flytende fase av reaktoren 1, hadde høyde 250 mm, var fylt med 250 g naturlig zeolitt, produsert i Kasaoka, Japan (partikkelstørrelse på ca. 0,5 mm) og ble omrørt ved 8 opm. litres. The thermal cleavage reaction zone 3, i.e. the molten liquid phase area of the reactor 1, had a height of 250 mm, was filled with 250 g of natural zeolite, produced in Kasaoka, Japan (particle size of about 0.5 mm) and was stirred at 8 op.

(C) Den katalytiske spaltningsreaksjonssonen 8 var et sylindrisk tårn med høyde 300 mm, innerdiameter 76 mm og (C) The catalytic cracking reaction zone 8 was a cylindrical tower with a height of 300 mm, an inner diameter of 76 mm and

volum 1,36 liter og var fylt med 613 g ZSM-5 i hydrogenform. volume 1.36 liters and was filled with 613 g of ZSM-5 in hydrogen form.

Oppfinnelsen skal beskrives nærmere i de følgende eksemplene. The invention shall be described in more detail in the following examples.

EKSEMPEL 1 EXAMPLE 1

Polyetylenfilm, oppnådd som urbant avfall, ble samlet og pulverisert til en størrelse på ca. 5 mm. Det pulveriserte råstoffet ble plassert i råstoff-tilførselssonen 2, opp-varmet til smelting i skruemateren 5 og tilført til det første trinnet, den termiske spaltningsreaksjonssonen. Det dampformige produktet som derved ble dannet ble ført til det andre trinnet, den katalytiske reaksjonssonen 8, hvori den katalytiske omvandlingen ble utført. Betingelsene som ble anvendt og de oppnådde resultatene er sammenfattet i den følgende tabellen: Polyethylene film, obtained as urban waste, was collected and pulverized to a size of approx. 5 mm. The pulverized raw material was placed in the raw material supply zone 2, heated to melting in the screw feeder 5 and fed to the first stage, the thermal cleavage reaction zone. The vaporous product thereby formed was led to the second stage, the catalytic reaction zone 8, in which the catalytic conversion was carried out. The conditions used and the results obtained are summarized in the following table:

Analyse av et typisk hydrokarbonoljeprodukt ga følgende resultater: Analysis of a typical hydrocarbon oil product produced the following results:

Analyse av et typisk gassformig biprodukt fra fremgangsmåten ga følgende resultater på prosentvis basis av hele gass-komponenten: H27,0; CH48,0; C2H44,5; C2H67,6; Analysis of a typical gaseous by-product from the process gave the following results on a percentage basis of the entire gas component: H27.0; CH48.0; C2H44.5; C2H67.6;

C3H85,6; C3H619,9; i-C4<E>10 1,1; C3H85.6; C3H619.9; i -C4<E>10 1.1;

n_c4H109'851_C4H824»551_C5<H>12 °»5; n_c4H109'851_C4H824»551_C5<H>12 °»5;

n-C5H1211,5. n-C5H1211.5.

Typiske materialbalanser var som følger: Typical material balances were as follows:

EKSEMPEL 2 EXAMPLE 2

Fremgangsmåten fra det foregående eksemplet ble gjentatt med to separate råstoffer, ett bestående av partikkelformig polyetylen, og det andre bestående av en partikkelformig blanding av 90 vekt-# polyetylen og 10 vekt-# polystyren. Resultatene som ble oppnådd er sammenfattet som følger: The procedure from the previous example was repeated with two separate feedstocks, one consisting of particulate polyethylene, and the other consisting of a particulate mixture of 90 wt # polyethylene and 10 wt # polystyrene. The results obtained are summarized as follows:

Claims (9)

1. Fremgangsmåte for fremstilling av et flytende hydrokarbonprodukt innbefattende C5-C22"hycirokarboner, omfattende termisk spaltning av et plastmateriale i smeltet, flytende fase i nærvær av et uorganisk, porøst partikkelformig materiale og katalytisk omdannelse av det dampformige produktet som derved genereres ved kontakt med en zeolitt,karakterisert vedat den katalytiske omdannelsen utføres ved en temperatur i området mellom 200 og 350°C, og at det anvendes en zeolitt som har en begrensningsindeks i området mellom 1 og 12.1. Process for the production of a liquid hydrocarbon product comprising C5-C22"hydrocarbons, comprising the thermal decomposition of a plastic material in the molten, liquid phase in the presence of an inorganic, porous particulate material and catalytic conversion of the vaporous product thereby generated by contact with a zeolite, characterized in that the catalytic conversion is carried out at a temperature in the range between 200 and 350°C, and that a zeolite is used which has a restriction index in the range between 1 and 12. 2. Fremgangsmåte ifølge krav 1,karakterisertved at den katalytiske omdannelsen av dampfasen bevirkes ved en temperatur i området mellom 250 og 340°C.2. Method according to claim 1, characterized in that the catalytic conversion of the vapor phase is effected at a temperature in the range between 250 and 340°C. 3. Fremgangsmåte ifølge krav 1,karakterisertved at det anvendes et uorganisk, porøst partikkelformig materiale som har katalytisk spaltningsaktivitet.3. Method according to claim 1, characterized in that an inorganic, porous particulate material is used which has catalytic cleavage activity. 4. Fremgangsmåte ifølge krav 3,karakterisertved at det som uorganisk, porøst partikkelformig materiale anvendes en naturlig forekommende zeolitt.4. Method according to claim 3, characterized in that a naturally occurring zeolite is used as inorganic, porous particulate material. 5. Fremgangsmåte ifølge et hvilket som helst av de foregående krav,karakterisert vedat den termiske spaltningen av den flytende fasen bevirkes ved en temperatur i området mellom 390 og 500°C.5. Method according to any one of the preceding claims, characterized in that the thermal splitting of the liquid phase is effected at a temperature in the range between 390 and 500°C. 6. Fremgangsmåte ifølge et hvilket som helst av de foregående krav,karakterisert vedat zeolitten som benyttes i det katalytiske omvandlingstrinnet er ZSM-5.6. Method according to any one of the preceding claims, characterized in that the zeolite used in the catalytic conversion step is ZSM-5. 7. Fremgangsmåte ifølge et hvilket som helst av de foregående krav,karakterisert vedat det som plastmateriale anvendes et polyolefinisk plastmateriale.7. Method according to any one of the preceding claims, characterized in that a polyolefinic plastic material is used as plastic material. 8. Fremgangsmåte ifølge krav 7,karakterisertved at det som polyolefinisk plastmateriale anvendes en homo- eller kopolymer av etylen, propylen eller buten.8. Method according to claim 7, characterized in that a homo- or copolymer of ethylene, propylene or butene is used as polyolefinic plastic material. 9. Fremgangsmåte ifølge et hvilket som helst av de foregående krav,karakterisert vedat det flytende produktet av den katalytiske omvandlingen av dampfasen i det vesentlige består av hydrokarboner som har karbonantall som ikke overskrider 22.9. Method according to any one of the preceding claims, characterized in that the liquid product of the catalytic conversion of the vapor phase consists essentially of hydrocarbons having a carbon number not exceeding 22.
NO880170A 1987-01-20 1988-01-15 PROCEDURE FOR MANUFACTURING NORMALLY LIQUID HYDROCARBON PRODUCTS FROM PLASTIC MATERIAL NO171921C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009160A JPS63178195A (en) 1987-01-20 1987-01-20 Production of low boiling point hydrocarbon oil from polyolefinic plastic

Publications (4)

Publication Number Publication Date
NO880170D0 NO880170D0 (en) 1988-01-15
NO880170L NO880170L (en) 1988-07-21
NO171921B true NO171921B (en) 1993-02-08
NO171921C NO171921C (en) 1993-05-19

Family

ID=11712863

Family Applications (1)

Application Number Title Priority Date Filing Date
NO880170A NO171921C (en) 1987-01-20 1988-01-15 PROCEDURE FOR MANUFACTURING NORMALLY LIQUID HYDROCARBON PRODUCTS FROM PLASTIC MATERIAL

Country Status (5)

Country Link
EP (1) EP0276081B1 (en)
JP (1) JPS63178195A (en)
KR (1) KR930007888B1 (en)
DE (1) DE3865852D1 (en)
NO (1) NO171921C (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743752A1 (en) * 1987-12-23 1989-07-13 Asea Brown Boveri METHOD FOR PROCESSING WASTE MATERIAL
US5079385A (en) * 1989-08-17 1992-01-07 Mobil Oil Corp. Conversion of plastics
JPH0717914B2 (en) * 1989-08-28 1995-03-01 モービル オイル コーポレーション Method for producing low boiling hydrocarbon oil
JPH0386791A (en) * 1989-08-31 1991-04-11 Mobil Oil Corp Manufacture of low boiling-point hydrocarbon oil
GB2242687B (en) * 1990-03-31 1994-08-31 Uss Kk Apparatus for converting synthetic resin into oil
JPH07100795B2 (en) * 1990-11-14 1995-11-01 フジリサイクル株式会社 Method for producing aromatic hydrocarbon oil from pyrolytic polyolefin plastic
SG43674A1 (en) * 1991-03-05 1997-11-14 Bp Chem Int Ltd Polymer cracking
BE1005319A4 (en) * 1991-08-27 1993-06-29 Petrofina Sa Polymer conversion method.
DE4243063C2 (en) * 1991-12-20 1996-01-11 Toshiba Kawasaki Kk Method and device for the pyrolytic decomposition of plastic, in particular plastic waste
US5368723A (en) * 1992-02-10 1994-11-29 Mazda Motor Corporation Method of and apparatus of producing low boiling point hydrocarbon oil from waste plastics or waste rubbers
US5288934A (en) * 1992-08-27 1994-02-22 Petrofina, S.A. Process for the conversion of polymers
JP3438276B2 (en) * 1993-01-22 2003-08-18 マツダ株式会社 Method for obtaining hydrocarbon oil from waste plastic or rubber material and apparatus used for carrying out the method
JPH07166173A (en) * 1993-12-16 1995-06-27 Sanwa Kako Co Ltd Production of fuel oil in steam atmosphere using thermal cracking oil of polyolefin resin
DE19517096A1 (en) * 1995-05-10 1996-11-14 Daniel Engelhardt Pyrolysis process for plastics operating at relatively low temps.
DE19641743B4 (en) * 1996-10-10 2004-04-01 Cet-Umwelttechnik-Entwicklungsgesellchaft Mbh Process for the recovery of liquid fuels from polyolefin waste
CN2408118Y (en) * 1999-07-16 2000-11-29 周继福 Equipment for producing gasoline and diesel oil by using waste plaste and/or heavy oil
DE19941497B4 (en) * 1999-09-01 2009-01-29 Alphakat Gmbh Process and apparatus for the production of liquid fuels from re-chargeable substances
JP4210222B2 (en) 2004-01-15 2009-01-14 乕 吉村 Waste plastic oil reduction equipment
KR100857247B1 (en) * 2007-06-05 2008-09-05 서울시립대학교 산학협력단 Manufacturing method for bio oil by catalytic pyrolysis
PL211917B1 (en) * 2008-10-31 2012-07-31 Bl Lab Społka Z Ograniczoną Odpowiedzialnością System for conducting thermolysis of waste plastic material and the method of continuous conducting of the thermolysis
US10987661B2 (en) 2011-02-17 2021-04-27 AMG Chemistry and Catalysis Consulting, LLC Alloyed zeolite catalyst component, method for making and catalytic application thereof
US9404045B2 (en) 2011-02-17 2016-08-02 AMG Chemistry and Catalysis Consulting, LLC Alloyed zeolite catalyst component, method for making and catalytic application thereof
DE102013205996A1 (en) * 2013-04-04 2014-10-09 Achim Methling Josef Ranftl GbR (vertretungsberechtigte Gesellschafter: Achim Methling, A-1110 Wien, Josef Ranftl, 82256 Fürstenfeldbruck) Process for the degradation of synthetic polymers and an apparatus for carrying it out
KR101896538B1 (en) * 2016-04-08 2018-09-07 (주) 효천 By-product using Apparatus of Waste Plastic Pyrolysis Reactor
CN110358562A (en) * 2018-04-10 2019-10-22 杭州润泰新能源设备有限公司 A kind of reactor for waste plastics conversion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416765A (en) * 1981-09-14 1983-11-22 Mobil Oil Corporation Catalytic cracking
US4423265A (en) * 1982-12-01 1983-12-27 Mobil Oil Corporation Process for snygas conversions to liquid hydrocarbon products
US4584421A (en) * 1983-03-25 1986-04-22 Agency Of Industrial Science And Technology Method for thermal decomposition of plastic scraps and apparatus for disposal of plastic scraps

Also Published As

Publication number Publication date
NO880170D0 (en) 1988-01-15
EP0276081A2 (en) 1988-07-27
NO171921C (en) 1993-05-19
DE3865852D1 (en) 1991-12-05
KR880009112A (en) 1988-09-14
EP0276081A3 (en) 1989-04-26
KR930007888B1 (en) 1993-08-21
JPS63178195A (en) 1988-07-22
EP0276081B1 (en) 1991-10-30
NO880170L (en) 1988-07-21

Similar Documents

Publication Publication Date Title
NO171921B (en) PROCEDURE FOR MANUFACTURING NORMALLY LIQUID HYDROCARBON PRODUCTS FROM PLASTIC MATERIAL
US4851601A (en) Processing for producing hydrocarbon oils from plastic waste
Donaj et al. Pyrolysis of polyolefins for increasing the yield of monomers’ recovery
EP0567292B1 (en) Polymer cracking
CN101903419B (en) Fast activating catalyst
US10494572B2 (en) Method for the degrading of synthetic polymers and device for carrying out said method
CN113348228A (en) Method for producing polymers from waste plastic raw materials
US11118114B2 (en) Process, apparatus, controller and system for producing petroleum products
Nishino et al. Catalytic degradation of plastic waste into petrochemicals using Ga-ZSM-5
AU725055B2 (en) Process for decomposing a polymer to its monomer or monomers
CN103080141A (en) System and method for catalyst activation
JP3875494B2 (en) Method for converting polyolefin waste to hydrocarbon and plant for performing the same
KR102650762B1 (en) Plastic depolymerization using halloysite
EP4032963A1 (en) Process for hydrodepolymerization of polymeric waste material
GB2228493A (en) A method for recovering styrene monomer from discarded polystyrene scrap through pyrolytic reduction
PL186310B1 (en) Method of obtaining fluid fuels from polyolefine wastes
EP3634616B1 (en) Method of preparation of hydrocarbon fuels from polyolefin waste materials
JPH0386790A (en) Manufacture of low boiling-point hydrocarbon oil
JPH0386791A (en) Manufacture of low boiling-point hydrocarbon oil
CN103030727B (en) Apparatus and method for production of ethylene polypropylene random copolymers by batch liquid-phase bulk technique
CN102464752B (en) Device for producing ethylene random copolymerization polypropylene by intermittent liquid phase bulk polymerization method and method
WO2021006226A1 (en) Method for determining origin of carbon source of chemical substance
WO2024132595A1 (en) Carbon-efficient recycling process for production of polymers from waste materials
WO2024057098A1 (en) Method to produce an oil from olefin-based resins by pyrolysis
CN102464749B (en) Equipment for producing alpha-olefin propylene random copolymer by using batch liquid bulk