NO171780B - PROCEDURE FOR MANUFACTURING BUILDING MATERIALS - Google Patents

PROCEDURE FOR MANUFACTURING BUILDING MATERIALS Download PDF

Info

Publication number
NO171780B
NO171780B NO872459A NO872459A NO171780B NO 171780 B NO171780 B NO 171780B NO 872459 A NO872459 A NO 872459A NO 872459 A NO872459 A NO 872459A NO 171780 B NO171780 B NO 171780B
Authority
NO
Norway
Prior art keywords
concrete
slag
weight
combination
silicon
Prior art date
Application number
NO872459A
Other languages
Norwegian (no)
Other versions
NO171780C (en
NO872459D0 (en
NO872459L (en
Inventor
Fredrik W A Kurz
Original Assignee
Fredrik W A Kurz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE8504754A external-priority patent/SE8504754D0/en
Application filed by Fredrik W A Kurz filed Critical Fredrik W A Kurz
Publication of NO872459D0 publication Critical patent/NO872459D0/en
Publication of NO872459L publication Critical patent/NO872459L/en
Publication of NO171780B publication Critical patent/NO171780B/en
Publication of NO171780C publication Critical patent/NO171780C/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Vending Machines For Individual Products (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte ved fremstilling av et byggemateriale gjennom aktivering av latent hydraulisk, finmalt, granulert, amorft, basisk masovnslagg til et direkte-virkende hydraulisk bindemiddel. The present invention relates to a method for the production of a building material through the activation of latent hydraulic, finely ground, granulated, amorphous, basic blast furnace slag into a direct-acting hydraulic binder.

Portlandsement anses generelt som det beste hydrauliske bindemiddel, som bare ved tilsetning av vann herder til et stenlignende materiale (betong) i løpet av noen få timer til det får den endelige styrke i løpet av omtrent en måned. Virkningen beror hovedsakelig på kjemiske reaksjoner mellom basisk kalk og kiselsyre. Portlandsementens analyse viser ca. 64 % CaO, 20 % Si02, 2,5 % MgO, 6 % A1203, 3,5 % Fe203 + FeO, 2 % K20 + Na20, 1,5 % S03. En ulempe med sement er at ikke all kalk bindes i betongen, og at et stadig forekommende overskudd på ubestandig kalkhydrat, som danner seg mot slutten av herdingsprosessen, relativt lett utleskes ved innvirkning av vann og luftens karbondioksyd med fare for skadelig karbonatisering. Dessuten er den kjemiske bestandigheten mot sure og basiske angrep meget begrenset. Portland cement is generally considered the best hydraulic binder, which just by adding water hardens to a stone-like material (concrete) within a few hours until it reaches its final strength in about a month. The effect is mainly due to chemical reactions between basic lime and silicic acid. Portland cement's analysis shows approx. 64% CaO, 20% SiO2, 2.5% MgO, 6% Al2O3, 3.5% Fe2O3 + FeO, 2% K2O + Na2O, 1.5% SO3. A disadvantage of cement is that not all lime is bound in the concrete, and that a constantly occurring excess of unstable lime hydrate, which forms towards the end of the hardening process, is relatively easily leached out by the influence of water and the carbon dioxide in the air, with the risk of harmful carbonation. In addition, the chemical resistance to acid and alkaline attacks is very limited.

Eksempel: Ødeleggelse av betongbelegg på veier med veisalt eller av betongbroer med havvann. Risiko for rustangrep på stålarmering og store vanskeligheter med glassfiberarmering. Example: Destruction of concrete pavements on roads with road salt or of concrete bridges with seawater. Risk of rust attack on steel reinforcement and major difficulties with fiberglass reinforcement.

For å unngå Portlandsementens iblant forstyrrende svak-heter, har man i lang tid søkt etter materialer med lignende sammensetning, men med en forsterkning av de komponenter som øker både den kjemiske og mekaniske bestandigheten. Det lå derfor nær at man gjorde forsøk med finmalt, granulert, basisk masovnslagg, ettersom det nettopp inneholder en større prosent-del av meget resistente forbindelser. Analysen er følgende avhengig av kilden: ca. 30-40 % CaO, 35-40 % Si02, 7-10 % MgO, 10-2 0 % A1203, 0, 5-2 % Fe203 + FeO, 1-2 % K20 + Na20, 0,5-3 % S03. I forhold til Portlandsement er kalkinnholdet bare ca. halv-parten, men Si02- og Al203-innholdene omtrent dobbelt så store, og MgO nesten 4 ganger så stort. Nettopp disse forbindelsene gir imidlertid silikater den høyeste mekaniske og kjemiske bestandighet, det vil si øket trykk- og strekkfastighet og bestandighet mot kjemisk påvirkning. In order to avoid Portland cement's sometimes disturbing weaknesses, for a long time people have searched for materials with a similar composition, but with a reinforcement of the components that increase both the chemical and mechanical resistance. It was therefore close to experimenting with finely ground, granulated, basic blast furnace slag, as it precisely contains a larger percentage of highly resistant compounds. The analysis is as follows depending on the source: approx. 30-40% CaO, 35-40% SiO2, 7-10% MgO, 10-2 0% A12O3, 0.5-2% Fe2O3 + FeO, 1-2% K20 + Na20, 0.5-3% S03 . Compared to Portland cement, the lime content is only approx. half, but the SiO2 and Al203 contents about twice as large, and MgO almost 4 times as large. Precisely these compounds, however, give silicates the highest mechanical and chemical resistance, that is, increased compressive and tensile strength and resistance to chemical influences.

Masovnslagg dannes for en stor del som uanvendelig restprodukt ved jern- og ståltilvirkning og foreligger inter-nasjonalt i 100-talls millioner tonn. "Granulert" betyr i allminnelighet "finfordelt", men i forbindelse med slagg menes normalt at slagget i ennå glødende tilstand har vært utsatt for en rask avkjøling med vann eller en kombinasjon av kaldt vann og kald luft, hvorigjennom slagget blir glassaktig og amorft. Til tross for den gunstige kjemiske sammensetningen er det finmalte, granulerte masovnslagget bare "latent" hydraulisk, dvs. binder ikke direkte etter blanding med vann. Grunnen er at det danner seg en kiselsyrerik, tett gel som omslutter slaggkornene og hindrer hydratiseringen. Forutsetningen for at en aktivering kan komme i gang, er at denne gelen brytes opp. Aktivatoren har således en dobbel oppgave, den må først bryte opp gelen og siden reagere med selve slagget. Geldannelsen har imidlertid også en positiv virkning, ettersom gelporene er jevnt fordelt, hvorigjennom man får bedre frostbestandighet enn med kapillarporer i betong av Portlandsement. Blast furnace slag is formed to a large extent as an unusable residual product from iron and steel production and is available internationally in the hundreds of millions of tonnes. "Granulated" generally means "finely divided", but in connection with slag it is normally understood that the slag, while still glowing, has been subjected to rapid cooling with water or a combination of cold water and cold air, through which the slag becomes glassy and amorphous. Despite its favorable chemical composition, the finely ground, granulated blast furnace slag is only "latently" hydraulic, i.e. does not bind directly after mixing with water. The reason is that a silicic acid-rich, dense gel forms which surrounds the slag grains and prevents hydration. The prerequisite for an activation to start is that this gel is broken up. The activator thus has a double task, it must first break up the gel and then react with the slag itself. However, the gel formation also has a positive effect, as the gel pores are evenly distributed, which results in better frost resistance than with capillary pores in Portland cement concrete.

Allerede på slutten av 1800-tallet forsøkte man å aktivere masovnslagg. Det eldste patentet stammer fra 1892 (Passow), hvori en blanding av slagg med Portlandsement anbefales, og hvorved kalken som var dannet på sluttrinnet av hydratiseringen i form av Ca(OH)2 fungerer som aktivator. Derved skjer reaksjonen med slagget sent, og gir anledning til en langsom holdfasthetsutvikling. Dessuten er faren for krymping ved avkjølingen ganske stor. Det er bakgrunnen for at den såkalte slaggsement knapt lenger anvendes. Already at the end of the 19th century, attempts were made to activate blast furnace slag. The oldest patent dates from 1892 (Passow), in which a mixture of slag with Portland cement is recommended, whereby the lime formed at the final stage of the hydration in the form of Ca(OH)2 acts as an activator. As a result, the reaction with the slag takes place late, giving rise to a slow development of holding strength. In addition, the risk of shrinkage during cooling is quite high. This is the reason why the so-called slag cement is hardly used anymore.

Foruten kalk er de allerede lenge kjente aktivatorene (Se H. Kuhl, Zement-Chemie, Berlin 1951) alkali og sulfater. Hittil anså man at alkaliaktivering gir de høyeste holdfasthetene, men den medfører en hel del ulemper. Langtidsholdfasthetene er ikke tilfredsstillende, dessuten foreligger stor risiko for krymping, saltutfelling og karbonatisering. Binding skjer altfor fort, mellom 10 og 3 0 minutter, og støping på byggeplassen er derfor ikke mulig. Anvendelsen begrenser seg til tilvirkning av prefabrikerte betongelementer. Alkali-aktivering har også ulempen med dannelse av sterkt etsende NaOH. Kalk- og sulfat-aktivering har ulempen med mindre god korttidsholdfasthet og risiko for svelling. For alle disse kjente metoder er det også vanskelig å regulere bindingshastigheten, som enten er for rask eller for langsom. Besides lime, the already long-known activators (See H. Kuhl, Zement-Chemie, Berlin 1951) are alkali and sulphates. Until now, it was considered that alkali activation gives the highest holding strengths, but it entails a lot of disadvantages. The long-term holding strengths are not satisfactory, and there is also a high risk of shrinkage, salt precipitation and carbonation. Bonding takes place far too quickly, between 10 and 30 minutes, and casting on the building site is therefore not possible. The application is limited to the production of prefabricated concrete elements. Alkali activation also has the disadvantage of forming highly corrosive NaOH. Lime and sulphate activation has the disadvantage of less good short-term retention and the risk of swelling. For all these known methods, it is also difficult to regulate the binding speed, which is either too fast or too slow.

Hos de allerede kjente aktivator-pulvere har det vist seg at deres blanding med slaggpulver under lengre lagring, men også under transport, ofte fører til en viss bindingsvirkning. Det er viktig å unngå denne svakhet i et nytt aktiveringssystem. With the already known activator powders, it has been shown that their mixture with slag powder during longer storage, but also during transport, often leads to a certain binding effect. It is important to avoid this weakness in a new activation system.

En meget sikrere form for aktivering får man ifølge opp-finnelsen ved at slagget blandes foruten med vann, sand og ballastmateriale, med en kombinasjon av sure og basiske bestanddeler, hvorved de sure bestanddelene utgjøres av fosfater, eventuelt i kombinasjon med kraftigvirkende sulfater, og de basiske bestanddelene er magnesiumoksyd, eventuelt i kombinasjon med oksyder av jordartsmetaller og/eller eventuelt i kombinasjon med sink, hvorved det selv uten oppvarming, dannes en betong med lavt kalkinnhold og med stor mekanisk styrke og med høy kjemisk bestandighet. According to the invention, a much safer form of activation is obtained by mixing the slag with water, sand and ballast material, with a combination of acidic and basic components, whereby the acidic components are made up of phosphates, possibly in combination with powerful sulphates, and the the basic ingredients are magnesium oxide, optionally in combination with oxides of earth metals and/or optionally in combination with zinc, whereby even without heating, a concrete with a low lime content and with great mechanical strength and with high chemical resistance is formed.

Jordartsmetaller er foruten magnesium - kalsium, strontium, barium, aluminium, beryllium, gallium, indium, tallium, titan og zirkonium, samt de såkalte sjeldne jordmetallene. Mest virksomt er magnesiumoksyd som har den beste forbedringsvirkning på silikater, ettersom den øker trykk- og strekkfastheten samt elastisiteten, reduserer krympingen og gir et ikke-hygroskopisk produkt. Normalt kan MgO innbygges i silikater bare ved inn-smelting ved høy temperatur. Sammen med fosfater, eventuelt i kombinasjon med sulfater, får man en hydraulisk-virkende reaksjon av finmalt, granulert, basisk masovnslagg. Den beste virkning har man med kalsinert magnesiumoksyd (dødbrent ved 1750°C) , hvorved alt vann og karbondioksyd er drevet ut. Mindre egnet er MgO-holdige materialer, f.eks. dolomit, som virker mer som fyllmiddel. Jordmetallforbindelsene anvendes hensiktsmessig i en mengde på 0,3-3 vekt% beregnet på den tørre betongen (dvs. slagg + sand + ballastmateriale) eller 2-20 vekt% beregnet på slagget. Earth metals are besides magnesium - calcium, strontium, barium, aluminium, beryllium, gallium, indium, thallium, titanium and zirconium, as well as the so-called rare earth metals. Most effective is magnesium oxide, which has the best improving effect on silicates, as it increases compressive and tensile strength as well as elasticity, reduces shrinkage and gives a non-hygroscopic product. Normally, MgO can be incorporated into silicates only by fusion at high temperature. Together with phosphates, possibly in combination with sulphates, you get a hydraulic-acting reaction of finely ground, granulated, basic blast furnace slag. The best effect is achieved with calcined magnesium oxide (burnt to death at 1750°C), whereby all water and carbon dioxide have been expelled. Less suitable are MgO-containing materials, e.g. dolomite, which acts more as a filler. The earth metal compounds are suitably used in an amount of 0.3-3% by weight calculated on the dry concrete (ie slag + sand + ballast material) or 2-20% by weight calculated on the slag.

De sure komponentene inngår hensiktsmessig i en mengde på 0,3-6 vekt% beregnet på den tørre betongen, eller 2-40 vekt% beregnet på slagget. The acidic components are suitably included in an amount of 0.3-6% by weight calculated on the dry concrete, or 2-40% by weight calculated on the slag.

Videre har det vist seg at reaksjonen ble meget mer aktiv hvis man også tilsetter et tensid eller nitrat som reduserer overflatespenningen, dispergerer og forhindrer klumpdannelse. Samme virkning får man hvis man tar et fosfat med tensid-virkning, f.eks. Na-tripolyfosfat. MgO og fosfat for seg reagerer ikke med slagg og vann, men bare i kombinasjon. Furthermore, it has been shown that the reaction becomes much more active if you also add a surfactant or nitrate that reduces the surface tension, disperses and prevents lump formation. You get the same effect if you take a phosphate with a surfactant effect, e.g. Sodium tripolyphosphate. MgO and phosphate alone do not react with slag and water, but only in combination.

Iblant er det fordelaktig med et samvirke av MgO med andre jordmetallforbindelser. A1203 har lignende positive virkninger som MgO, øker slaggets reaksjonsevne og bestandigheten mot klorider. Titanoksyd gir bestandighet mot sure påvirkninger, f.eks. i forurenset luft (svovelnedfall) og danner resistente krystaller med silikagel. Zr02 gir pålitelig sikkerhet mot alkaliangrep. Sometimes it is advantageous to have MgO interact with other earth metal compounds. A1203 has similar positive effects as MgO, increasing the slag's reactivity and resistance to chlorides. Titanium oxide provides resistance to acidic influences, e.g. in polluted air (sulphur precipitation) and forms resistant crystals with silica gel. Zr02 provides reliable safety against alkali attack.

Som eksempel på et kraftig virkende sulfat kan nevnes natriumbisulfat NaHS04, som på grunn av sin sterkt sure reaksjon ofte anvendes teknisk i stedet for svovelsyre. As an example of a strong-acting sulphate, sodium bisulphate NaHS04 can be mentioned, which, due to its strongly acidic reaction, is often used technically instead of sulfuric acid.

De hittil kjente aktivatorene binder for det meste raskt (i tilfellet Portlandsement for langsomt) uten at en passende regulering kunne bevirkes. Det er likevel mulig med den nye metoden, delvis gjennom tilsetning av overflatespennings-reduserende midler eller med flyte-(plastifiserings-)midler, f.eks. lignosulfonat, melamin naftalen-formaldehyd, natrium-glykonat o.l. eller ved gips henholdsvis anhydrit (ca. 3 %), eller ved blanding av forskjellige fosfattyper som har for-skjellig reaksjonstid. Således kan man få et bindemiddel som herder i løpet av en halvtime for fabrikerte betongelementer, hvorigjennom flere støpinger muliggjøres per døgn, - eller man kan forlenge bindingstiden til ca. 2,5 timer, som trengs for støping på byggeplasser. The previously known activators mostly bind quickly (in the case of Portland cement too slowly) without a suitable regulation being able to be effected. It is nevertheless possible with the new method, partly through the addition of surface tension-reducing agents or with flow (plasticizing) agents, e.g. lignosulfonate, melamine naphthalene-formaldehyde, sodium gluconate etc. or in the case of gypsum or anhydrite (approx. 3%), or in the case of a mixture of different phosphate types that have different reaction times. Thus, you can get a binder that hardens within half an hour for fabricated concrete elements, which enables several castings per day, - or you can extend the bonding time to approx. 2.5 hours, which are needed for casting on construction sites.

Ved tilsetning av amorf kiselsyre, f.eks. i form av den filtrerte restproduksjon fra elektrometallurgiske prosesser (så som silisium-, ferrosilisium- eller kromsilisiumtilvirkning) med Si02-innhold mellom 75 og nær 100 %, og spesifikk overflate på vanligvis minst 20 m<2>/g, såkalt silisiumtuft eller silika, kan trykkfastigheten og tettheten økes ytterligere. Her gjerne i kombinasjon med plastifiseringsmiddel. By adding amorphous silicic acid, e.g. in the form of the filtered residual production from electrometallurgical processes (such as silicon, ferrosilicon or chromium silicon production) with a SiO2 content between 75 and close to 100%, and a specific surface area of usually at least 20 m<2>/g, so-called silicon tuft or silica, the compressive strength and density can be further increased. Here preferably in combination with a plasticizer.

Den amorfe kiselsyren anvendes hensiktsmessig i en mengde på 0,6-2 vekt% beregnet på den tørre betongen, eller 4-15 vekt% beregnet på slagget. The amorphous silicic acid is suitably used in an amount of 0.6-2% by weight calculated on the dry concrete, or 4-15% by weight calculated on the slag.

Det nye materialet er tettere enn betong og Portlandsement, lysere i fargen og lettere i vekt. Den nye betongen kan også anvendes som puss eller lettbetong henholdsvis lettvektsbetong hvis man tilsetter noe poredannende middel eller lettvekts-aggregat: av typen perlit eller vermikulit. Eventuelt kan man innblande betongballast, stål-, glass-, mineral- eller plastfibre eller flygeaske. Kombinasjon med bitumen (asfalt) er mulig. The new material is denser than concrete and Portland cement, lighter in color and lighter in weight. The new concrete can also be used as plaster or lightweight concrete or lightweight concrete if you add some pore-forming agent or lightweight aggregate: of the type perlite or vermiculite. Optionally, concrete ballast, steel, glass, mineral or plastic fibers or fly ash can be mixed in. Combination with bitumen (asphalt) is possible.

Fordelen med den forbedrede slaggbetongen ifølge foreliggende oppfinnelse i forhold til vanlig betong av Portlandsement, er fremfor alt høyere trykk- og strekkfasthet, slik det fremgår av nedenstående tabell. Det gjelder både høyere korttidsholdfasthet som muliggjør formrivning på bygget for veggformer etter ca. 10 timer, og for hvelvformer etter ca. 16 timer, hvilket fører til store besparelser - og dessuten stigende holdfasthet også gjennom flere måneder, mens vanlig betong oppnår maksimalverdier etter ca. 28 døgn. The advantage of the improved slag concrete according to the present invention compared to ordinary Portland cement concrete is, above all, higher compressive and tensile strength, as can be seen from the table below. This applies to both higher short-term holding strength, which enables form demolition on the building for wall forms after approx. 10 hours, and for vaulted forms after approx. 16 hours, which leads to great savings - and also increasing holding strength even over several months, while normal concrete achieves maximum values after approx. 28 days.

Saltbestandigheten ble prøvet på Chalmers Tekniska Hogskola i Goteborg i 4 måneder i en 30 % kalsiumkloridløsning. Ingen nedbrytning eller sprekker kunne iakttas, hvilket inntreffer i vanlig betong etter noen få uker i sterkt konsentrert kalsium-kloridløsning. The salt resistance was tested at Chalmers Tekniska Hogskola in Gothenburg for 4 months in a 30% calcium chloride solution. No degradation or cracking could be observed, which occurs in ordinary concrete after a few weeks in a highly concentrated calcium chloride solution.

Beskyttelse mot rustangrep skyldes i vanlig betong derimot at den på slutten av hydratiseringen dannede frie kalk i form av Ca(0H)2 legger seg på stålflatene, og gjenom høy pH beskytter stålet mot oksydering gjennom inntrengning av vann, oksygen henholdsvis C02 fra luften. Kalsiumhydroksyd er imidlertid en ubestandig forbindelse som oppløses av vann og forvandles av C02 (karbonatisering). I den nye betongen danner MgO med høyere pH enn kalk rustbeskyttelsen. Dødbrent MgO er bestandig mot vann, syre og C02, og således mye sikrere enn kalk. Dertil kommer at den nye betongen er meget tettere (mindre porøs) og gir derfor mer motstand mot inntrengende vann, oksygen og C02, hvilket også fører til bedre hefte av stålarmeringen. Bestandigheten av den høye pH-verdien i den nye betongen ble også kontrollert på Chalmers Tekniska Hogskola ved et bad i fenolftalein som er indikator for pH. Vedvarende høy pH vises av uforandret rødfarging, hvilket ikke er tilfellet ved Portlandsementbetong. Protection against rust attack in ordinary concrete, on the other hand, is due to the fact that the free lime formed at the end of hydration in the form of Ca(0H)2 settles on the steel surfaces, and thanks to the high pH, the steel protects against oxidation through the penetration of water, oxygen or C02 from the air. However, calcium hydroxide is an unstable compound that is dissolved by water and transformed by C02 (carbonation). In the new concrete, MgO with a higher pH than lime forms the rust protection. Burnt MgO is resistant to water, acid and C02, and thus much safer than lime. In addition, the new concrete is much denser (less porous) and therefore provides more resistance to penetrating water, oxygen and C02, which also leads to better adhesion of the steel reinforcement. The stability of the high pH value in the new concrete was also checked at Chalmers Tekniska Hogskola by a bath in phenolphthalein, which is an indicator of pH. Persistently high pH is indicated by unchanged red colouring, which is not the case with Portland cement concrete.

Kombinasjonen MgO:fosfat er hittil mest kjent fra tilvirkning av ildfast keramikk, men gir også øket brannsikkerhet for det aktiverte masovnslagget. Vanlig betong tåler derimot ikke høyere"temperatur enn ca. 500°C. The combination MgO:phosphate is so far best known from the production of refractory ceramics, but also provides increased fire safety for the activated blast furnace slag. Ordinary concrete, on the other hand, cannot withstand temperatures higher than approx. 500°C.

Årsaken til Portlandsementens ømfintlighet mot høy varme er hovedsakelig det kjemisk bundne vann. Det fysikalsk bundne vannet (kapillarvann) går vekk ved ca. 105°C uten noen skade-virkninger. Det kjemisk bundne vannet løsgjøres først senere, men under sprekkdannelse, som senere leder til oppløsning. Den ubestandige, frie kalken Ca(OH)2 går over til CaO og H20. Samtidig angriper det frigjorte vannet også det under hydratiseringen dannede tri- og dikalsiumsilikat, ■ som blir ubestandig kalsiumsilikathydrat. Dertil kommer at den i betongen forekommende a-fasen av kvarts (Si02) omvandles til en annen krystallform under volumøkning, hvilket også bidrar til sprekkdannelse (se R. K. Iler "Chemistry of Silicates"). I The reason for Portland cement's sensitivity to high heat is mainly the chemically bound water. The physically bound water (capillary water) goes away at approx. 105°C without any damaging effects. The chemically bound water is only released later, but during cracking, which later leads to dissolution. The unstable, free lime Ca(OH)2 changes to CaO and H20. At the same time, the released water also attacks the tri- and dicalcium silicate formed during hydration, ■ which becomes unstable calcium silicate hydrate. In addition, the a-phase of quartz (SiO2) present in the concrete is converted into another crystal form during volume increase, which also contributes to cracking (see R. K. Iler "Chemistry of Silicates"). IN

kombinasjonen masovnslagg - fosfat/MgO finnes ingen fri kalk og Si02 i granulert slagg er amorf, og disse risikoer finnes derfor ikke. Ved anvendelser hvor temperaturer over 1000°C kan oppstå, er det eventuelt sikrest å erstatte stenmaterialet i ballaster som kan utvides i altfor høy varme med ildfast, keramisk materiale, hvilket imidlertid bare kreves i unntakstilfeller. the combination blast furnace slag - phosphate/MgO contains no free lime and SiO2 in granulated slag is amorphous, and these risks therefore do not exist. In applications where temperatures above 1000°C can occur, it is possibly safest to replace the stone material in ballasts, which can expand in excessively high heat, with refractory ceramic material, which is, however, only required in exceptional cases.

Den nye betongen kan også kombineres med bitumen (asfalt) ved veibelegning. The new concrete can also be combined with bitumen (asphalt) when paving roads.

Som eksempel på virkning av de nye kombinasjoner av aktivatorer med hensyn til trykk- og strekkfastheten kan nevnes følgende prøvningsresultat med en blanding av 100 enheter slagg, 10 enheter Na-tripolyfosfat, 7,5 enheter MgO, 353 enheter sand og 4 0 enheter vann. As an example of the effect of the new combinations of activators with regard to the compressive and tensile strength, the following test result can be mentioned with a mixture of 100 units of slag, 10 units of Na-tripolyphosphate, 7.5 units of MgO, 353 units of sand and 40 units of water.

Allerede disse verdier er betydelig fordelaktigere enn tilsvarende hos Portlandsement (etter 28 døgn 49,0 henholdsvis 7,3 MPa). Ved tilsetningene som er nevnt i teksten ovenfor, kan Already these values are significantly more advantageous than the equivalent for Portland cement (after 28 days 49.0 and 7.3 MPa respectively). With the additions mentioned in the text above, can

tabellens verdier forbedres ytterligere. the table's values are further improved.

I forhold til betong av Portlandsement gir den nye betongen bl.a. følgende fordeler: 1. Større mekanisk bestandighet, dvs. høyere trykk- og strekkfasthet. Compared to concrete made from Portland cement, the new concrete provides, among other things, the following advantages: 1. Greater mechanical resistance, i.e. higher compressive and tensile strength.

2. Større kjemisk bestandighet. 2. Greater chemical resistance.

3. Ingen karbonatisering, dvs. utfelling av ubundet kalk, som kan føre til at betongen faller fra hverandre. 4. Ingen saltangrep. Veibelegget blir ikke skadet ved veisalt. Lengre levetid for betongbroer. Mulighet for 3. No carbonation, i.e. precipitation of unbound lime, which can cause the concrete to fall apart. 4. No salt attack. The road surface is not damaged by road salt. Longer service life for concrete bridges. Possibility of

resistente betongbåter. resistant concrete boats.

5. Ikke alkalisk tross pH 12. Ingen ubundet kalk. Derfor glassfiberarmering mulig. (Eventuelt kan en spesialtype 5. Not alkaline despite pH 12. No unbound lime. Therefore fiberglass reinforcement possible. (Possibly a special type

med Zr02 tilvirkes.) with Zr02 is produced.)

6. Lettere en Portlandsement-betong, konstruksjonen kan gjøres tynnere. 7. Mulighet for tynnere skikt henholdsvis tykkelse gjør konstruksjonen billigere, bortsett fra at slagg er 6. Lighter than Portland cement concrete, the construction can be made thinner. 7. The possibility of thinner layers or thickness makes the construction cheaper, except that slag is

billigere enn Portlandsement. cheaper than Portland cement.

8. Meget tettere. 8. Much closer.

9. Derved bedre hefte av stålarmering og beskyttelse mot rustangrep på stålarmeringen. 9. As a result, better adhesion of the steel reinforcement and protection against rust attack on the steel reinforcement.

10. Høyere ildfasthet, (brannsikkerhet). 10. Higher fire resistance, (fire safety).

11. Frostbestandighet. 11. Frost resistance.

12. Lettere støping ved kalde værforhold. 12. Easier casting in cold weather conditions.

13. Egenskapene muliggjør også anvendelse som flytesparkel. 13. The properties also enable use as a floating trowel.

14. Bedre materiale enn sementbruk ved pussing. 14. Better material than using cement when plastering.

15. Lavere krav til fuktighetsherding av nystøpt betong. 15. Lower requirements for moisture curing of newly cast concrete.

16. I likhet med vanlig betong kan også det nye materialet gjøres porøst for å få en lettbetong som har store fordeler sammenlignet med tradisjonell lettbetong henholdsvis lettvektsbetong ettersom cellestrukturen blir mekanisk sterkere 16. Like normal concrete, the new material can also be made porous to obtain a lightweight concrete that has major advantages compared to traditional lightweight concrete or lightweight concrete as the cell structure becomes mechanically stronger

og at det nye materialet ikke er hygroskopisk. and that the new material is not hygroscopic.

17. Lysere farge. 17. Lighter color.

Claims (7)

1. Fremgangsmåte ved fremstilling av et byggemateriale gjennom aktivering av latent hydraulisk, finmalt, granulert amorft, basisk masovnslagg til et direkte-virkende hydraulisk bindemiddel , karakterisert ved at slagget blandes foruten med vann, sand og ballastmateriale, med en kombinasjon av sure og basiske bestanddeler, hvorved de sure bestanddelene utgjøres av fosfater, eventuelt i kombinasjon med kraftigvirkende sulfater, og de basiske bestanddelene er magnesiumoksyd, eventuelt i kombinasjon med oksyder av jordartsmetaller og/eller eventuelt i kombinasjon med sink, hvorved det selv uten oppvarming, dannes en betong med lavt kalkinnhold og med stor mekanisk styrke og med høy kjemisk bestandighet.1. Procedure for the production of a building material through the activation of latent hydraulic, finely ground, granulated amorphous, basic blast furnace slag for a direct-acting hydraulic binder, characterized by the fact that the slag is mixed with water, sand and ballast material, with a combination of acidic and basic components, whereby the acidic components are made up of phosphates, possibly in combination with powerful sulphates, and the basic components are magnesium oxide, optionally in combination with oxides of earth metals and/or optionally in combination with zinc, whereby even without heating, a concrete with a low lime content and with great mechanical strength and with high chemical resistance is formed. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at man tilsetter overflate-spenningsnedsettende midler.2. Method according to claim 1, characterized by the addition of surface tension-reducing agents. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at de basiske bestanddelene består av MgO, eventuelt i kombinasjon med A1203, Ti02, Zr02, BaO og/eller ZnO, i en mengde på 0,3 - 3 vekt% av den tørre betong eller 2-20 vekt% av slagget.3. Method according to claim 1 or 2, characterized in that the basic components consist of MgO, optionally in combination with Al2O3, Ti02, Zr02, BaO and/or ZnO, in an amount of 0.3 - 3% by weight of the dry concrete or 2-20% by weight of the slag. 4. Fremgangsmåte ifølge hvert av kravene 1-3, karakterisert ved at de sure bestanddelene utgjøres av magnesiumtripolyfosfat, eventuelt i blanding med andre fosfater eller med et kraftigvirkende sulfat så som NaHSOA, i en mengde på 0,3 - 6 vekt% av den tørre betong eller 2-40 vekt% av slagget.4. Method according to each of claims 1-3, characterized in that the acidic components are made up of magnesium tripolyphosphate, possibly in a mixture with other phosphates or with a strong sulfate such as NaHSOA, in an amount of 0.3 - 6% by weight of the dry concrete or 2-40% by weight of the slag. 5. Fremgangsmåte ifølge hvert av kravene 1-4, kar a~k terisert ved at man tilsetter forbindelser som regulerer bindetiden så som gips eller anhydrit, og/eller plastiseringsmidler.5. Method according to each of claims 1-4, kar a~k terized by adding compounds that regulate the setting time such as gypsum or anhydrite, and/or plasticizers. 6. Fremgangsmåte ifølge hvert av kravene 1-5, karakterisert ved at man også tilsetter amorf kiselsyre, f.eks. i form av de filtrerte amorfe restprodukter fra elektrometallurgiske prosesser, så som etter kisel-, kiseljern- eller kiselkromtilvirkning, med Si02-innhold mellom 75 og nær 100%, og en spesifikk overflate på normalt minst 20 m<2>/g, såkalt kiselrøk eller silisiumdioksyd, i en mengde på 0,6 - 2 vekt% av den tørre betong eller 4-15 vekt% av slagget.6. Method according to each of claims 1-5, characterized in that amorphous silicic acid is also added, e.g. in the form of the filtered amorphous residual products from electrometallurgical processes, such as after silicon, silicon iron or silicon chromium production, with a SiO2 content between 75 and close to 100%, and a specific surface of normally at least 20 m<2>/g, so-called silica fume or silicon dioxide, in an amount of 0.6 - 2% by weight of the dry concrete or 4-15% by weight of the slag. 7. Fremgangsmåte ifølge hvert av kravene 1-6, karakterisert ved at man innblander armerings-materiale av stål-, glass-, mineral- eller plastfibre eller poredannende midler eller lettvektballast i betongen.7. Method according to each of claims 1-6, characterized in that reinforcement material of steel, glass, mineral or plastic fibers or pore-forming agents or lightweight ballast is mixed into the concrete.
NO872459A 1985-10-14 1987-06-12 PROCEDURE FOR MANUFACTURING BUILDING MATERIALS NO171780C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8504754A SE8504754D0 (en) 1985-10-14 1985-10-14 PROCEDURE FOR MANUFACTURING BUILDING MATERIAL
PCT/SE1986/000473 WO1987002354A1 (en) 1985-10-14 1986-10-14 Method of preparing building materials

Publications (4)

Publication Number Publication Date
NO872459D0 NO872459D0 (en) 1987-06-12
NO872459L NO872459L (en) 1987-08-12
NO171780B true NO171780B (en) 1993-01-25
NO171780C NO171780C (en) 1993-05-05

Family

ID=26659112

Family Applications (1)

Application Number Title Priority Date Filing Date
NO872459A NO171780C (en) 1985-10-14 1987-06-12 PROCEDURE FOR MANUFACTURING BUILDING MATERIALS

Country Status (2)

Country Link
DE (1) DE3677519D1 (en)
NO (1) NO171780C (en)

Also Published As

Publication number Publication date
NO171780C (en) 1993-05-05
DE3677519D1 (en) 1991-03-14
NO872459D0 (en) 1987-06-12
NO872459L (en) 1987-08-12

Similar Documents

Publication Publication Date Title
EP0272267B1 (en) Method of preparing building materials
RU2513572C2 (en) Hydraulic binding agent based on sulfo-aluminous clinker and portland cement clinker
Lawrence The production of low-energy cements
US5082501A (en) Method of preparing building materials
US5888292A (en) Bonded aggregate composition and binders for the same
US4066471A (en) Constructional cement
Talling et al. Blast furnace slag-the ultimate binder
Massazza Properties and applications of natural pozzolanas
US6447596B1 (en) Bonded aggregate composition and binders for the same
Rasol Effect of silica fume on concrete properties and advantages for Kurdistan region, Iraq
WO2022044890A1 (en) Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition
US9034099B2 (en) Cement that is resistant to internal sulfate reactions and to external sulfate attacks
CZ126193A3 (en) Process for improving activation of latently hydraulic basic blast furnace slag in the production of building material
Kahlouche et al. Mechanical performance and durability of mortar based on slag cement and NaOH-activated slag
JP3150164B2 (en) Cement admixture and cement composition
NO171780B (en) PROCEDURE FOR MANUFACTURING BUILDING MATERIALS
CA2277188C (en) Bonded aggregate composition and binders for the same
JPH05330875A (en) Cement admixture and cement composition
CA1279663C (en) Method of preparing building materials
KR101111635B1 (en) Low alkali concrete composition with tannin and block unit comprising the same
US3897258A (en) Refractory siliceous cements and their method of production
KR101111634B1 (en) Low alkali concrete composition with green tea and block unit comprising the same
KR20020082320A (en) Cement Admixture for high strength, shrinkage-reducing and cold-construction, and cement composite incorporating the admixture
CZ20022505A3 (en) Binding agent based on cement clinker and with controllable start of setting
KR100515090B1 (en) Cement-Expansive Composite using Abandoned Refractory Materials comprising magnesia from an Iron Mill