NO171418B - POROES GAS ELECTRODE - Google Patents
POROES GAS ELECTRODE Download PDFInfo
- Publication number
- NO171418B NO171418B NO881420A NO881420A NO171418B NO 171418 B NO171418 B NO 171418B NO 881420 A NO881420 A NO 881420A NO 881420 A NO881420 A NO 881420A NO 171418 B NO171418 B NO 171418B
- Authority
- NO
- Norway
- Prior art keywords
- gas electrode
- electrode
- grid
- support structure
- porous gas
- Prior art date
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000007868 Raney catalyst Substances 0.000 claims abstract description 4
- 229910000564 Raney nickel Inorganic materials 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract description 4
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 description 15
- 239000012528 membrane Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- CLDVQCMGOSGNIW-UHFFFAOYSA-N nickel tin Chemical compound [Ni].[Sn] CLDVQCMGOSGNIW-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inert Electrodes (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Materials For Medical Uses (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Glass Compositions (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Gas-Filled Discharge Tubes (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
Oppfinnelsens gjenstand er en porøs gasselektrode med elektrokatalytisk virksom del, bestående av et nikkeltrådnett som minst på en side er dekket av en blanding av Raney-nikkel og polytetrafluoretylen. The object of the invention is a porous gas electrode with an electrocatalytically active part, consisting of a nickel wire mesh which is covered on at least one side by a mixture of Raney nickel and polytetrafluoroethylene.
Den i DE-OS 3 342 969 omtalte porøse gasselektrode for hydrogenutvikling i alkalisk medium, utmerker seg ved spesielt fordelaktige egenskaper: Den er meget prisgunstig å fremstille, og den har under betingelsen av den tekniske elektrolyse - strømtetthet: 3 kA/m<2>; elektrolyttkonsentra-sjon: 35 vekt-# natriumhydroksyd, temperatur 85 "C - en høy levetid som hydrogenutviklende katode, dvs. elektropotensia-let endrer seg ikke ved driftstid over 3 år i rammen av målenøyaktigheten. På grunn av elektrodens spesielle folieaktige struktur, må det elektrokjemiske cellesystem (brennstoffcelle eller elektrolysecelle), hvori denne elektrode skal anvendes, nøyaktig være tilpasset denne spesielle struktur, for å kunne drive elektroden prinsipielt og under optimale betingelser. Tidligere er det imidlertid ikke mulig å fremstille slike elektrodestrukturer i området på 1 m og bredere, mens det er problemløst å fremstille bånd inntil ca. 200 mm brede i ønskelig lengde. Da elektrodene ikke er formstabile, lykkes det ikke å fastgjøre elektrode-båndene på rammen av cellen, fordi det ikke kan sikres en jevn optimal avstand til membranen som begrenser elektrode-rommet. The porous gas electrode for hydrogen evolution in an alkaline medium mentioned in DE-OS 3 342 969 is distinguished by particularly advantageous properties: It is very inexpensive to manufacture, and it has, under the condition of the technical electrolysis - current density: 3 kA/m<2> ; electrolyte concentration: 35 wt-# sodium hydroxide, temperature 85 "C - a long lifetime as a hydrogen-evolving cathode, i.e. the electropotential does not change during operation over 3 years within the framework of the measurement accuracy. Due to the special foil-like structure of the electrode, it must electrochemical cell system (fuel cell or electrolysis cell), in which this electrode is to be used, must be precisely adapted to this special structure, in order to be able to operate the electrode in principle and under optimal conditions. Previously, however, it has not been possible to produce such electrode structures in the range of 1 m and wider, while it is problem-free to manufacture bands up to approx. 200 mm wide in the desired length. As the electrodes are not dimensionally stable, it is not possible to fix the electrode bands on the frame of the cell, because a uniform optimal distance to the membrane that limits the electrode cannot be ensured - the room.
Dessuten er egenledningsevnen av disse elektroder så liten at ved de krevede tekniske strømtettheter og ved den vide avstand til rammene som er strømførende, blir spenningsfallet innen elektroden fra midten til kanten utålelig høyt. Oppfinnelsens oppgave er å tilveiebringe for disse folieaktige elektrodebånd en elektrodekonstruksjon som muliggjør å anvende disse elektroder som katoder i membranceller, slik det idag er vanlig i den industrielle teknikk, i tydelige fordeler overfor de idag anvendte katoder. Moreover, the intrinsic conductivity of these electrodes is so small that at the required technical current densities and at the wide distance to the current-carrying frames, the voltage drop within the electrode from the center to the edge becomes unbearably high. The task of the invention is to provide for these foil-like electrode bands an electrode construction which makes it possible to use these electrodes as cathodes in membrane cells, as is common today in industrial technology, with clear advantages over the cathodes used today.
Oppgaven løses ved en porøs gasselektrode med elektrokatalytisk virksom del, bestående av et nikkel-trådnett som minst på en side er dekket av en blanding av Raney-nikkel og polytetrafluoretylen, kjennetegnet ved at den elektrokatalytiske virksomme delen består av bånd som er anordnet parallelt og i avstand fra hverandre på en elektrisk strømledende støttestruktur, støttestrukturen består av en ramme, som begrenser et gitter, og gitteret består av parallelt anordnede strevere hvis avstand fra hverandre høyst utgjør 200 mm, fortrinnsvis 100 til 150 mm. The task is solved by a porous gas electrode with an electrocatalytically active part, consisting of a nickel wire mesh that is covered on at least one side by a mixture of Raney nickel and polytetrafluoroethylene, characterized by the fact that the electrocatalytically active part consists of bands arranged in parallel and in distance from each other on an electrically conductive support structure, the support structure consists of a frame, which limits a grid, and the grid consists of parallel arranged struts whose distance from each other is at most 200 mm, preferably 100 to 150 mm.
Den porøse gasselektroden er videre kjennetegnet ved at gitteret består av strekkmetall med minst 60$ åpen flate. The porous gas electrode is further characterized by the fact that the grid consists of stretched metal with at least 60% open surface.
Den porøse gasselektroden er videre kjennetegnet ved at båndet med en bredde på inntil 200 mm i avstander på 5-10 mm fra hverandre er elektrisk ledende forbundet med støttestruk-turen. The porous gas electrode is further characterized in that the band with a width of up to 200 mm at distances of 5-10 mm from each other is electrically conductively connected to the support structure.
Fordelene ved denne porøse gasselektrode består i at den elektrokatalytisk virksomme del kan fikseres og samtidig forbindes med strukturkonstruksjonen med elektrisk ledende, således at innen gasselektroden opptrer ingen målbare spenningsfall. Den porøse gasselektrode har videre den fordel at det frie avtrekk av gassbobler fra rommet mellom membranen og elektrode befordres. The advantages of this porous gas electrode consist in the fact that the electrocatalytically active part can be fixed and at the same time connected to the structural construction with electrical conductors, so that no measurable voltage drops occur within the gas electrode. The porous gas electrode also has the advantage that the free extraction of gas bubbles from the space between the membrane and electrode is promoted.
Oppfinnelsen forklares i det følgende ved hjelp av tegninger som viser bare en utførelsesmåte, og eksempler. Fig. 1 viser et utsnitt av en porøs gasselektrode, hvor gitteret består av staver. Fig. 2 viser et utsnitt av en porøs gasselektrode, hvor gitteret består av flatevalset strekkmetall. Fig. 3 viser spenningen som funksjon av strømtettheten ved forskjellig bredde av båndet. The invention is explained in the following with the help of drawings showing only one embodiment, and examples. Fig. 1 shows a section of a porous gas electrode, where the grid consists of rods. Fig. 2 shows a section of a porous gas electrode, where the grid consists of flat-rolled expanded metal. Fig. 3 shows the voltage as a function of the current density at different widths of the tape.
Den elektrokatalytiske virksomme del av båndene 1 av den porøse gasselektrode er ved hjelp av sveiseforbindelser elektrisk ledende forbundet med en elektrisk strømførende støttestruktur. Støttestrukturen består av en ramme 2, og en av denne begrenset gitter. Gitteret kan bestå av tre staver, hvis bredde d kan utgjøre 5-20 mm og som er anordnet parallelt til hverandre i avstand c på 50-200 mm, fortrinnsvis 100-150 mm. Alternativt kan gitteret bestå av valset strekkmetall 4, hvis åpne flate minst skal utgjøre 6056. Den elektrokatalytisk virksomme del er ved 5 sammensveiset ved gitteret og ved 6 med rammen. Avstanden a mellom de parallelt til hverandre anordnede bånd 1 kan utgjøre 5-10 mm, ved dets bredde b 10-200 mm. The electrocatalytic active part of the bands 1 of the porous gas electrode is electrically conductively connected to an electrically current-carrying support structure by means of welding connections. The support structure consists of a frame 2, and one of these limited lattice. The grid can consist of three rods, whose width d can be 5-20 mm and which are arranged parallel to each other at a distance c of 50-200 mm, preferably 100-150 mm. Alternatively, the grid can consist of rolled expanded metal 4, the open surface of which must be at least 6056. The electrocatalytically active part is welded together at 5 to the grid and at 6 to the frame. The distance a between the bands 1 arranged parallel to each other can amount to 5-10 mm, at its width b 10-200 mm.
Eksempel Example
Det ble målt cellespenning og energiforbruk ved konstant strømtetthet og forskjellige båndbredder av den elektrokatalytisk virksomme del i en forsøkscelle. Støttestrukturen bestå av et 1,3 mm tykt nikkelblikk med dimensjonene 560 mm x 210 mm, som har en uttagning på 500 mm x 78 mm. Båndene til den folielignende gasselektrode var anordnet parallelt til smalsidene av støttestrukturen, og elektrisk ledende sammensveiset med dens lengdesider. Denne gasselektrode ble anordnet som katode i en vertikalt drevet membran elektrolysecelle således at deres lengdesider stod vertikalt, og deres bånd var vendt mot membranen. Avstanden mellom båndene og membranen av typen "Nafion" NX 90902 fra firma DuPont utgjorde 3 mm, anoden lå direkte an mot baksiden av membranen. Cellen ble drevet med 3356-ig natronlut i ompumpning i katoderommet, og med mettet, renset NaCl-oppløsning og en analytkonsentrasjon på 200 g NaCl/1 i utløpet ved 90°C og en strømtetthet på 3 kA/m<2>, referert til den i nikkelblikket uttatte flate på 390 cm<2>. I permanent drift og ved respektivt flere dager, ble det for elektrodene med forskjellig brede bånd hvis avstand til hverandre utgjorde respektivt 5 mm, oppnådd følgende cellespenninger og energiforbruk: Cell voltage and energy consumption were measured at constant current density and different bandwidths of the electrocatalytically active part in an experimental cell. The support structure consists of a 1.3 mm thick nickel sheet with dimensions 560 mm x 210 mm, which has a recess of 500 mm x 78 mm. The bands of the foil-like gas electrode were arranged parallel to the narrow sides of the support structure, and electrically conductively welded to its longitudinal sides. This gas electrode was arranged as the cathode in a vertically driven membrane electrolysis cell so that their longitudinal sides were vertical, and their bands were facing the membrane. The distance between the bands and the membrane of the type "Nafion" NX 90902 from the company DuPont was 3 mm, the anode was directly against the back of the membrane. The cell was operated with 3356 ig caustic soda in repumping in the cathode compartment, and with saturated, purified NaCl solution and an analyte concentration of 200 g NaCl/1 in the outlet at 90°C and a current density of 3 kA/m<2>, referred to the surface taken out in the nickel tin of 390 cm<2>. In permanent operation and for respectively several days, the following cell voltages and energy consumption were achieved for the electrodes with different width bands whose distance to each other was respectively 5 mm:
Til bestemmelse av karakteristikken av de tre forskjellige elektroder ble det bestemt cellespenning i avhengighet av strømtettheten i området på 0,5-4 kA/m<2>. Resultatene er vist grafisk på fig. 3, og viser at disse gasselektroder også arbeider ved 4 kA/m<2>ennå i det lineære området. To determine the characteristics of the three different electrodes, the cell voltage was determined as a function of the current density in the range of 0.5-4 kA/m<2>. The results are shown graphically in fig. 3, and shows that these gas electrodes also work at 4 kA/m<2> still in the linear range.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873710855 DE3710855A1 (en) | 1987-04-01 | 1987-04-01 | POROESE GAS ELECTRODE |
Publications (4)
Publication Number | Publication Date |
---|---|
NO881420D0 NO881420D0 (en) | 1988-03-30 |
NO881420L NO881420L (en) | 1988-10-03 |
NO171418B true NO171418B (en) | 1992-11-30 |
NO171418C NO171418C (en) | 1993-03-10 |
Family
ID=6324563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO881420A NO171418C (en) | 1987-04-01 | 1988-03-30 | POROES GAS ELECTRODE |
Country Status (12)
Country | Link |
---|---|
EP (1) | EP0285019B1 (en) |
JP (1) | JPS63262490A (en) |
AT (1) | ATE62716T1 (en) |
AU (1) | AU601562B2 (en) |
BR (1) | BR8801512A (en) |
DE (2) | DE3710855A1 (en) |
ES (1) | ES2022502B3 (en) |
FI (1) | FI85603C (en) |
IN (1) | IN170695B (en) |
MX (1) | MX174277B (en) |
NO (1) | NO171418C (en) |
ZA (1) | ZA882314B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6696696B2 (en) | 2017-03-21 | 2020-05-20 | 株式会社東芝 | Electrochemical reactor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6017833B2 (en) * | 1980-07-11 | 1985-05-07 | 旭硝子株式会社 | electrode |
EP0156795A1 (en) * | 1983-08-31 | 1985-10-09 | SUTTER, Robert C. | Compartmentalized cathode cell |
DE3342969A1 (en) * | 1983-11-28 | 1985-06-05 | Varta Batterie Ag, 3000 Hannover | POROESE GAS ELECTRODE |
-
1987
- 1987-04-01 DE DE19873710855 patent/DE3710855A1/en not_active Withdrawn
-
1988
- 1988-03-08 IN IN147/MAS/88A patent/IN170695B/en unknown
- 1988-03-25 AT AT88104816T patent/ATE62716T1/en not_active IP Right Cessation
- 1988-03-25 ES ES88104816T patent/ES2022502B3/en not_active Expired - Lifetime
- 1988-03-25 DE DE8888104816T patent/DE3862416D1/en not_active Expired - Fee Related
- 1988-03-25 EP EP88104816A patent/EP0285019B1/en not_active Expired - Lifetime
- 1988-03-30 NO NO881420A patent/NO171418C/en unknown
- 1988-03-30 BR BR8801512A patent/BR8801512A/en not_active Application Discontinuation
- 1988-03-30 MX MX010962A patent/MX174277B/en unknown
- 1988-03-30 FI FI881499A patent/FI85603C/en not_active IP Right Cessation
- 1988-03-31 JP JP63076640A patent/JPS63262490A/en active Pending
- 1988-03-31 AU AU14045/88A patent/AU601562B2/en not_active Ceased
- 1988-03-31 ZA ZA882314A patent/ZA882314B/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO171418C (en) | 1993-03-10 |
AU1404588A (en) | 1988-10-06 |
EP0285019A1 (en) | 1988-10-05 |
DE3862416D1 (en) | 1991-05-23 |
AU601562B2 (en) | 1990-09-13 |
FI85603B (en) | 1992-01-31 |
BR8801512A (en) | 1988-11-08 |
ZA882314B (en) | 1988-09-26 |
FI85603C (en) | 1992-05-11 |
FI881499A (en) | 1988-10-02 |
ES2022502B3 (en) | 1991-12-01 |
EP0285019B1 (en) | 1991-04-17 |
DE3710855A1 (en) | 1988-10-20 |
ATE62716T1 (en) | 1991-05-15 |
NO881420L (en) | 1988-10-03 |
NO881420D0 (en) | 1988-03-30 |
JPS63262490A (en) | 1988-10-28 |
MX174277B (en) | 1994-05-02 |
FI881499A0 (en) | 1988-03-30 |
IN170695B (en) | 1992-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4722773A (en) | Electrochemical cell having gas pressurized contact between laminar, gas diffusion electrode and current collector | |
KR890000709B1 (en) | Electrode structure for use in electrolytic | |
ES2678268T3 (en) | Alkaline solution electrolysis cell | |
US4639303A (en) | Electrolysis apparatus with horizontally disposed electrodes | |
RU93058574A (en) | ELECTROLIZER AND METHOD FOR PRODUCING SALT | |
KR880001067A (en) | Battery electrode assembly, frame and electrolytic cell | |
CA2111689A1 (en) | Electrolytic cell and capillary gap electrode for gas-developing or gas-consuming electrolytic reactions and electrolysis process therefor | |
US5660698A (en) | Electrode configuration for gas-forming electrolytic processes in membrane cells or diapragm cells | |
FI79145B (en) | BIPOLAER ELEKTROLYSANORDNING MED GASDIFFUSIONSKATOD. | |
CA1189022A (en) | Electrode with support member and elongated members parallel thereto | |
US4152225A (en) | Electrolytic cell having membrane enclosed anodes | |
GB1039411A (en) | Electrolytic technique for hydrogen recovery | |
GB1139615A (en) | Improved electrolytic cell | |
FI82488B (en) | ELEKTRODKONSTRUKTION FOER GASBILDANDE MONOPOLAERA ELEKTROLYSOERER. | |
US3297561A (en) | Anode and supporting structure therefor | |
JPS5943885A (en) | Electrode device for gas generation electrolytic cell and vertical plate electrode therefor | |
US4623440A (en) | Electrode for use in electrolytic cell | |
US4233147A (en) | Membrane cell with an electrode for the production of a gas | |
NO171418B (en) | POROES GAS ELECTRODE | |
US4174259A (en) | Electrolytic cell structure and method of assembly | |
GB1158736A (en) | Improvements in "Hybrid Gas-Depolarized Electrical Power Unit" | |
ATE35700T1 (en) | ELECTROLYTIC CELL AND PROCESS FOR THE PRODUCTION OF HALOGENS. | |
JPH05320970A (en) | Ion exchange membrane electrolyzer | |
JP3069370B2 (en) | Electrolytic cell | |
US4628596A (en) | Electrolytic cell with reduced inter-electrode gap |