NO171057B - PROCEDURE FOR THE PREPARATION OF ALCOHOLS AND ALDEHYDES FROM ALKENES AND SYNTHESIC GASES - Google Patents

PROCEDURE FOR THE PREPARATION OF ALCOHOLS AND ALDEHYDES FROM ALKENES AND SYNTHESIC GASES Download PDF

Info

Publication number
NO171057B
NO171057B NO894628A NO894628A NO171057B NO 171057 B NO171057 B NO 171057B NO 894628 A NO894628 A NO 894628A NO 894628 A NO894628 A NO 894628A NO 171057 B NO171057 B NO 171057B
Authority
NO
Norway
Prior art keywords
alcohols
catalyst
bipyridine
aldehydes
hydroformylation
Prior art date
Application number
NO894628A
Other languages
Norwegian (no)
Other versions
NO894628L (en
NO894628D0 (en
NO171057C (en
Inventor
Leila Alvila
Outi Krause
Tapani Pakkanen
Tapani Venaelaeinen
Original Assignee
Neste Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FI881361A external-priority patent/FI85849C/en
Application filed by Neste Oy filed Critical Neste Oy
Publication of NO894628L publication Critical patent/NO894628L/en
Publication of NO894628D0 publication Critical patent/NO894628D0/en
Publication of NO171057B publication Critical patent/NO171057B/en
Publication of NO171057C publication Critical patent/NO171057C/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av alkoholer og aldehyder fra alkener og syntese-gasser. The present invention relates to a method for producing alcohols and aldehydes from alkenes and synthesis gases.

Oksygenholdige forbindelser slik som alkoholer og aldehyder fremstilles vanligvis ved en hydroformyleringsprosess. Katalysatorene i industrielle prosesser er typisk homogene rhodium— eller koboltkarbonyler eller —fosfiner. Heterogene katalysatorer kan fremstilles ved binding av en metall-forbindelse på en fiksert organisk eller uorganisk bærer, hvorved det oppnås visse fordeler. Den heterogene katalysatoren er lett og fordelaktig å separere fra produktene hvilket er spesielt gunstig ved anvendelse av kostbare rhodium-katalysatorer. Den heterogene katalysatoren er også mer termisk stabil enn den homogene katalysatoren, og forårsaker mindre korrosjon. I tillegg kan metallforbindelsen og bæreren ha nyttige kombinerte effekter. Fremgangsmåten med de homogene katalysatorene er imidlertid mer spesifikke og gjentagbare. Oxygenated compounds such as alcohols and aldehydes are usually produced by a hydroformylation process. The catalysts in industrial processes are typically homogeneous rhodium or cobalt carbonyls or phosphines. Heterogeneous catalysts can be produced by binding a metal compound to a fixed organic or inorganic support, whereby certain advantages are achieved. The heterogeneous catalyst is easy and advantageous to separate from the products which is particularly beneficial when using expensive rhodium catalysts. The heterogeneous catalyst is also more thermally stable than the homogeneous catalyst, causing less corrosion. In addition, the metal compound and the carrier can have useful combined effects. However, the process with the homogeneous catalysts is more specific and repeatable.

Metallklusterforbindelser har fordelaktige karakteristiske egenskaper som forløpere for katalysatorer fordi deres spesifikke strukturer som katalysatorer sørger for bedre aktiviteter og spesielt selektiviteter sammenlignet med enkle metallkomplekser. Den største vanskeligheten er imidlertid metallklusterforbindelsenes ustabilitet. Fordeler ved heterogene klusterkatalysatorer er mangel på halogenider (et halogenid kan være et katalytisk toksisk middel og forårsake aggregering og sintring) og tilveiebringelse av eksakt kombinasjon. Metal cluster compounds have advantageous characteristics as catalyst precursors because their specific structures as catalysts provide better activities and especially selectivities compared to simple metal complexes. The biggest difficulty, however, is the instability of the metal cluster compounds. Advantages of heterogeneous cluster catalysts are the lack of halides (a halide can be a catalytic toxic agent and cause aggregation and sintering) and the provision of exact combination.

I FI-patent 69.620 beskrives en katalysator for fremstilling av hydrogengass fra karbonmonoksyd og vann (vanngass-overføringsreaksjon). Katalysatoren fremstilles fra gruppe (VIII) metallkarbonyler og heterocyklisk base. Metall-karbonylet i gruppen er EU3(C0)^2» FeRu2(C0)^2» Fe2Ru(C0)i2 eller deres derivat M3(CO)i2-Lx» nvor M er Ru eller Fe, x er 1 eller 2, og L er en trlalkyl- eller trlarylfosfinforbin-delse eller —fosfittforbindelse. Som heterocyklisk base anvendes 2 ,2'-bipyridin eller 1,10-fenantrolin. Det angis at bppløsningsmiddelet inneholdende metallkarbonylforbindelsen og heterocyklisk base ble tilbakeløpskokt ved 80"C hvorved det ble fremstilt et aktivt kompleks i overføringsreaksjonen for den vandige gassen. Den heterogene katalysatoren ble fremstilt direkte på overflaten av bæreren ved oppvarming ved 100°C beskyttende gass eller vakuum av silisiumgel hvori klusterforbindelse og base var impregnert. På denne måten ble det fremstilt en mørkeblå aktiv katalysator. Fordeler ved den beskrevne katalysatoren er fremragende aktivitet og stabilitet, mens en ulempe er følsomhet overfor luft. FI patent 69,620 describes a catalyst for the production of hydrogen gas from carbon monoxide and water (water gas transfer reaction). The catalyst is prepared from group (VIII) metal carbonyls and heterocyclic base. The metal carbonyl in the group is EU3(C0)^2» FeRu2(C0)^2» Fe2Ru(C0)i2 or their derivative M3(CO)i2-Lx» where M is Ru or Fe, x is 1 or 2, and L is a trialkyl or triarylphosphine compound or -phosphite compound. The heterocyclic base used is 2,2'-bipyridine or 1,10-phenanthroline. It is stated that the solvent containing the metal carbonyl compound and heterocyclic base was refluxed at 80°C, whereby an active complex was produced in the transfer reaction for the aqueous gas. The heterogeneous catalyst was produced directly on the surface of the support by heating at 100°C protective gas or vacuum of silica gel in which cluster compound and base were impregnated. In this way a dark blue active catalyst was prepared. Advantages of the described catalyst are excellent activity and stability, while a disadvantage is sensitivity to air.

Man har nå funnet at det fra det ovenfor omtalte metall-kluster-basesystem kan syntetiseres en ny katalysator for fremstilling av alkoholer eller aldehyder fra alkener og syntesegass ved hjelp av en hydroformyleringsreaksjon. It has now been found that a new catalyst for the production of alcohols or aldehydes from alkenes and synthesis gas can be synthesized from the above-mentioned metal-cluster-base system by means of a hydroformylation reaction.

Ifølge foreliggende oppfinnelse er det således tilveiebragt en fremgangsmåte for fremstilling av alkoholer og aldehyder ved hydroformylering av fra alkener og syntesegass, og denne fremgangsmåten er kjennetegnet ved at en gassblanding som inneholder alken, hydrogen og karbonmonoksyd bringes til å reagere i nærvær av et heterogent katalysatorsystem som innbefatter fast katalysatorforbindelse fremstilt fra klusterforbindelse RU3(C0)^2°S en base som inneholder heterocyklisk nitrogen i suspensjon eller bundet på overflaten av en fast bærer, hvorved den heterocykliske basen velges fra gruppen 2,2'-bipyridin, 2,3'-bipyridin, 2,4'-bipyridin, 2,2':6,2''-terpyridin og 1,10-fenantrolin, og hvilket katalysatorsystem er aktivert ved oppvarming. According to the present invention, there is thus provided a method for the production of alcohols and aldehydes by hydroformylation of from alkenes and synthesis gas, and this method is characterized by the fact that a gas mixture containing alkene, hydrogen and carbon monoxide is caused to react in the presence of a heterogeneous catalyst system which solid catalyst compound prepared from cluster compound RU3(C0)^2°S includes a base containing heterocyclic nitrogen in suspension or bound on the surface of a solid support, whereby the heterocyclic base is selected from the group of 2,2'-bipyridine, 2,3'- bipyridine, 2,4'-bipyridine, 2,2':6,2''-terpyridine and 1,10-phenanthroline, and which catalyst system is activated by heating.

Gassblandingen inneholdende alken, hydrogen og karbonmonoksyd omsettes fortrinnsvis ved over 100°C i nærvær av det heterogene katalysatorsystemet. The gas mixture containing alkene, hydrogen and carbon monoxide is preferably reacted at over 100°C in the presence of the heterogeneous catalyst system.

I foreliggende fremgangsmåte oppnås den overraskende fordel at alkoholer dannes i hydroformyleringen ved en høy selektivitetsgrad. I visse tilfeller fremstilles det fra alkener nesten utelukkende alkoholer. Dette er en meget stor forbedring sammenlignet med konvensjonelle hydroformylerings-katalysatorer som kun gir enten aldehyder eller blandinger av aldehyder og alkoholer, og således krever en ekstra behandlingsfase for hydratisering av aldehyder til alkoholer. Med foreliggende fremgangsmåte oppnås i tillegg den ønskede direkte-kjedealkohol på en bemerkelsesverdig selektiv måte. Katalysatorens aktivitet er også betydelig i hydroformyleringen av kun alkener med endedobbeltbinding ved 373°K. In the present process, the surprising advantage is achieved that alcohols are formed in the hydroformylation at a high degree of selectivity. In certain cases, almost exclusively alcohols are produced from alkenes. This is a very large improvement compared to conventional hydroformylation catalysts which only give either aldehydes or mixtures of aldehydes and alcohols, and thus require an additional treatment phase for the hydration of aldehydes to alcohols. With the present method, the desired direct-chain alcohol is additionally obtained in a remarkably selective manner. The catalyst's activity is also significant in the hydroformylation of only alkenes with a terminal double bond at 373°K.

I katalysatorsystemet som benyttes i foreliggende fremgangsmåte velges som nevnt den heterocykliske basen fra gruppen som inneholder f.eks. 2,2'-bipyridin, 2,3'-bipyridin, 2,4'-bipyridin, 2,2': 6,2"-terpyridin og 1,10-fenantrolin. De beste resultatene oppnås når basen er en 2,2'-bipyridin hvorved omdannelsen av alkener til alkoholer blir nesten fullstendig. Også andre av nevnte baser er "nyttige selv om omdannelsesgraden da er lavere. I et slikt tilfelle kan omdannelsesgraden imidlertid forbedres ved å returnere en del av produktene tilbake til hydroformyleringsreaksjonen. In the catalyst system used in the present method, as mentioned, the heterocyclic base is selected from the group containing e.g. 2,2'-bipyridine, 2,3'-bipyridine, 2,4'-bipyridine, 2,2':6,2"-terpyridine and 1,10-phenanthroline. The best results are obtained when the base is a 2,2 '-bipyridine, whereby the conversion of alkenes into alcohols becomes almost complete. Other of the mentioned bases are also "useful, even if the degree of conversion is then lower. In such a case, however, the degree of conversion can be improved by returning part of the products back to the hydroformylation reaction.

Katalysatorsystemet som benyttes i foreliggende fremgangsmåte kan fremstilles ved blanding av rutheniumkarbonyl, Ru3(C0)^2» og en heterocyklisk base, og oppvarming av det oppnådde kom-plekse system for tilveiebringelse av en aktiv katalysator. Oppvarmingstemperaturen er ikke kritisk, og den kan derfor variere mellom 50 og 200°C. En passende temperatur har vist seg å være ca. 100°C. Oppvarmingen bør foretas enten i en beskyttende gass, f.eks. i nitrogen, eller alternativt i vakuum, fordi katalysatorkomplekset som skal fremstilles, er følsomt overfor luft. The catalyst system used in the present method can be prepared by mixing ruthenium carbonyl, Ru3(C0)^2" and a heterocyclic base, and heating the obtained complex system to provide an active catalyst. The heating temperature is not critical, and it can therefore vary between 50 and 200°C. A suitable temperature has been found to be approx. 100°C. The heating should be done either in a protective gas, e.g. in nitrogen, or alternatively in vacuum, because the catalyst complex to be prepared is sensitive to air.

I foreliggende fremgangsmåte utføres hydroformyleringen i en heterogen fase, hvilket betyr at katalysatoren ikke er opp-løselig i et oppløsningsmiddel som eventuelt benyttes i hydroformyleringen. Et aktivt katalysatorkompleks kan benyttes i en heterogen hydroformyleringsreaksjon som sådant hvorved hydroformyleringen oppnås i suspensjon eller aktive-ringen foretas når katalysatorkomplekset er absorbert i en bærer. For bæreren er det fordelaktig å benytte uorganiske silisiumforbindelser, f.eks. silisiumdioksydgel eller magnesiumsilikater, eller andre inerte, uorganiske bærere slik som aluminiumoksyd. I foreliggende fremgangsmåte kan den heterogene hydroformyleringen oppnås enten i væske- eller gassfase. I reaksjonen kan det anvendes et oppløsningsmiddel i hvilket katalysatoren som benyttes, er uoppløselig. For oppnåelse av gode resultater er det nødvendig at trykket og spesielt temperaturen er ved et tilstrekkelig høyt nivå. Et trykk som anbefales, er minst 1 MPa, og temperaturen er over 360°K. Hydroformyleringstemperaturen som anbefales, er av størrelsesorden 460°K. In the present method, the hydroformylation is carried out in a heterogeneous phase, which means that the catalyst is not soluble in a solvent that may be used in the hydroformylation. An active catalyst complex can be used in a heterogeneous hydroformylation reaction as such whereby the hydroformylation is achieved in suspension or the activation is carried out when the catalyst complex is absorbed in a carrier. For the carrier, it is advantageous to use inorganic silicon compounds, e.g. silica gel or magnesium silicates, or other inert, inorganic carriers such as alumina. In the present method, the heterogeneous hydroformylation can be achieved either in liquid or gas phase. In the reaction, a solvent can be used in which the catalyst used is insoluble. In order to achieve good results, it is necessary that the pressure and especially the temperature are at a sufficiently high level. A recommended pressure is at least 1 MPa, and the temperature is above 360°K. The recommended hydroformylation temperature is of the order of 460°K.

Dannelsesselektiviteten for forbindelser inneholdende oksygen, eller alkoholer og aldehyder, er høy i foreliggende fremgangsmåte, og ingen hydratisering av olefiner finner sted i hydroformyleringsprosessen. De ikke-reaktive olefinene kan lett separeres fra produktene ved destillasjon og sirkulering tilbake til reaktoren. Reaksjonen er meget eksoterm, og derfor er det fordelaktig å operere på lavere omdannelsesnivåer. The formation selectivity for compounds containing oxygen, or alcohols and aldehydes, is high in the present process, and no hydration of olefins takes place in the hydroformylation process. The non-reactive olefins can be easily separated from the products by distillation and circulation back to the reactor. The reaction is highly exothermic, and therefore it is advantageous to operate at lower conversion levels.

Rutheniumkonsentrasjonen og H2:CO-forholdet utøver en inn-virkning på produktfordelingen, dvs. alkoholer blir mest fremstilt når H2:CO-forholdet er av størrelsesorden 1:1. The ruthenium concentration and the H2:CO ratio exert an influence on the product distribution, i.e. alcohols are mostly produced when the H2:CO ratio is of the order of 1:1.

Oppfinnelsen beskrives mer detaljert i de følgende ut-førelseseksempler. The invention is described in more detail in the following design examples.

EKSEMPEL 1 EXAMPLE 1

Det ble fremstilt en katalysator ved blanding av 3,0 g silisiumdioksyd (silisiumdioksydkvaliteter F-22), 0,096 g Ru3(C0)12, 0.073 g 2,2'-bipyridin og 50 ml CH2C12. Opp-løsningsmiddelet ble inndampet, katalysatoren ble overført til et lufttett metallrør og spylt med nitrogen. Katalysatoren ble aktivert ved oppvarming av metallrøret ved 100 °C hvorved bæreren ble dannet som en blå aktiv forbindelse. A catalyst was prepared by mixing 3.0 g of silicon dioxide (silicon dioxide grades F-22), 0.096 g of Ru3(C0)12, 0.073 g of 2,2'-bipyridine and 50 ml of CH2C12. The solvent was evaporated, the catalyst was transferred to an airtight metal tube and flushed with nitrogen. The catalyst was activated by heating the metal tube at 100 °C whereby the support was formed as a blue active compound.

EKSEMPEL 2 EXAMPLE 2

Det ble fremstilt en katalysator som i eksempel 1 med unntagelse for at 1,0 g bærer og 0,1 g Ru3(C0)^2 ble benyttet. A catalyst was prepared as in example 1 with the exception that 1.0 g of carrier and 0.1 g of Ru3(C0)^2 were used.

EKSEMPLER 3 og 4 EXAMPLES 3 and 4

Katalysatorene ble fremstilt som i eksempel 1 med unntagelse for at i eksempel 3 så var bæreren Davison-silisiumdioksyd, og i eksempel 4 var bæreren magnesiumsilikat. The catalysts were prepared as in example 1 with the exception that in example 3 the carrier was Davison silicon dioxide, and in example 4 the carrier was magnesium silicate.

EKSEMPLER 5- 8 EXAMPLES 5-8

Katalysatorene ble fremstilt som i eksempel 1 med unntagelse for at i eksempel 5 var basen 2,3'-bipyridin (64 pl), i eksempel 6 var basen 2,4'-bipyridin (0,073g), i eksempel 7 var basen 1,10-fenantronilin (0,093 g), og i eksempel 8 var basen 2,2-:6,2"-terpyridin (0,109 g). The catalysts were prepared as in example 1 with the exception that in example 5 the base was 2,3'-bipyridine (64 µl), in example 6 the base was 2,4'-bipyridine (0.073g), in example 7 the base was 1, 10-phenanthroniline (0.093 g), and in Example 8 the base was 2,2-:6,2"-terpyridine (0.109 g).

EKSEMPEL 9 EXAMPLE 9

Katalysatoren ble fremstilt i en glassretorte ved aktivering av en blanding av Ru3(C0)^2 (0,2 g) og 2,2' -bipyridin (0,15 g) i en nitrogenatmosfære ved 100°C. Påglassoverflaten ble det dannet et aktivt, mørkeblått kompleks. The catalyst was prepared in a glass retort by activating a mixture of Ru 3 (CO) 2 (0.2 g) and 2,2'-bipyridine (0.15 g) in a nitrogen atmosphere at 100°C. An active, dark blue complex was formed on the glass surface.

EKSEMPEL 10 EXAMPLE 10

En katalysator (0,5 g), 1-heksen (1 ml) og toluen (5 ml) som i eksempel 1 ble overført i nitrogenatmosfære til en autoklav hvortil det ble tilsatt 2,5 MPa H£ og 2,5 MPaCO. Autoklaven ble holdt i 17 timer ved 423°K. Produktet ble avkjølt og analysert med IR- og NMR-spektrometere, og med kapillær-gasskromatografi. Reaksjonsproduktet inneholdt 96 % C7-alkoholer hvori forholdet for de med rettkjede og de med forgrenet kjede var 1,1. A catalyst (0.5 g), 1-hexene (1 ml) and toluene (5 ml) as in Example 1 were transferred in a nitrogen atmosphere to an autoclave to which 2.5 MPa H2 and 2.5 MPa CO were added. The autoclave was held for 17 hours at 423°K. The product was cooled and analyzed with IR and NMR spectrometers, and with capillary gas chromatography. The reaction product contained 96% C7 alcohols in which the ratio of those with a straight chain and those with a branched chain was 1.1.

EKSEMPEL 11 EXAMPLE 11

Som eksempel 10, med unntagelse for alkenforbindelsen som var traris-2-heksen. Reaksjonsproduktet inneholdt 97 % C7-alkoholer (rettkjedet/forgrenet = 0,9). As Example 10, except for the alkene compound which was traris-2-hexene. The reaction product contained 97% C7 alcohols (straight chain/branched = 0.9).

EKSEMPEL 12 EXAMPLE 12

Som eksempel 10, unntatt alkenforbindelsen som var 1-decen. Reaksjonsproduktet inneholdt 95 # C^-alkoholer. As Example 10, except the alkene compound was 1-decene. The reaction product contained 95 # C₁ alcohols.

EKSEMPEL 13 EXAMPLE 13

Som eksempel 10, unntatt at temperaturen var 373°K. Reaksjonsproduktet inneholdt 2 56 alkoholer. Eksempelet viser at når det anvendes en for lav hydroformyleringstemperatur, så er omdannelsesgraden for lav. As Example 10, except that the temperature was 373°K. The reaction product contained 2 56 alcohols. The example shows that when too low a hydroformylation temperature is used, the degree of conversion is too low.

EKSEMPEL 14 EXAMPLE 14

Som eksempel 10, men med en katalysator (0,5 g) slik som i eksempel 2, og ved en temperatur på 373°K. Reaksjonsproduktet inneholdt 50 <& Cy-alkoholer (rettkjedet/forgrenet kjede = 2,4). As example 10, but with a catalyst (0.5 g) as in example 2, and at a temperature of 373°K. The reaction product contained 50 <& Cy alcohols (straight chain/branched chain = 2.4).

EKSEMPEL 15 EXAMPLE 15

Som eksempel 10, men med katalysator (0,5 g) som eksempel 2 og ved en temperatur på 373°C. Reaksjonsproduktet inneholdt 10 1o Cy-alkoholer. As example 10, but with catalyst (0.5 g) as example 2 and at a temperature of 373°C. The reaction product contained 10 10 Cy alcohols.

EKSEMPEL 16 EXAMPLE 16

Som eksempel 10, men med katalysator (0,5 g) som i eksempel 2, ved en temperatur på 373"K, og trans-2-heksen som alken-forbindelse. Reaksjonsproduktet inneholdt 4 % Cy-alkoholer. As example 10, but with catalyst (0.5 g) as in example 2, at a temperature of 373"K, and trans-2-hexene as alkene compound. The reaction product contained 4% Cy-alcohols.

EKSEMPEL 17 EXAMPLE 17

Som eksempel 10, men med katalysator (0,5 g^ som i eksempel 3, og ved en temperatur på 373°K. Reaksjonsproduktet inneholdt 2 % C7-alkoholer. As example 10, but with catalyst (0.5 g^ as in example 3, and at a temperature of 373°K. The reaction product contained 2% C7 alcohols.

EKSEMPEL 18 EXAMPLE 18

Som eksempel 10, men med katalysator (0,5 g) som i eksempel 3, og ved en temperatur på 373"K. Reaksjonsproduktet inneholdt 26 % Cy-alkoholer (rettkjedet/forgrenet kjede = 3,5). As Example 10, but with catalyst (0.5 g) as in Example 3, and at a temperature of 373"K. The reaction product contained 26% Cy-alcohols (straight chain/branched chain = 3.5).

EKSEMPEL 19 EXAMPLE 19

Som eksempel 10, men med base som i eksempel 10 og ved en temperatur på 373°K. Reaksjonsproduktet Inneholdt 60 % C7-aldehyder. As example 10, but with base as in example 10 and at a temperature of 373°K. The reaction product contained 60% C7 aldehydes.

EKSEMPEL 20 EXAMPLE 20

Som eksempel 10, men med base som 1 eksempel 6, og ved en temperatur på 373°K. Reaksjonsproduktet inneholdt 18 % C7-aldehyder. As example 10, but with base as 1 example 6, and at a temperature of 373°K. The reaction product contained 18% C7 aldehydes.

EKSEMPEL 21 EXAMPLE 21

Som eksempel 10, men med base som i eksempel 7 og ved en temperatur på 373°K. Reaksjonsproduktet inneholdt 25 % C7-aldehyder og 9 % C7 alkoholer. As example 10, but with base as in example 7 and at a temperature of 373°K. The reaction product contained 25% C7 aldehydes and 9% C7 alcohols.

EKSEMPEL 22 EXAMPLE 22

Som eksempel 10, men med base som eksempel 8, og ved en temperatur på 373°K. Reaksjonspoduktet inneholdt 25 % C7-aldehyder og 11 # C7-alkoholer. As example 10, but with base as example 8, and at a temperature of 373°K. The reaction product contained 25% C7 aldehydes and 11% C7 alcohols.

EKSEMPEL 23 EXAMPLE 23

Som eksempel 10, men med katalysator (0,1 g) som i eksempel 9 og veden temperatur på 373°K. Reaksjonsproduktet inneholdt As example 10, but with catalyst (0.1 g) as in example 9 and the wood temperature of 373°K. The reaction product contained

40 <fr C7-aldehyder og 25 % C7-alkoholer. 40 <fr C7 aldehydes and 25% C7 alcohols.

Claims (5)

1. Fremgangmåte for fremstilling av alkoholer og aldehyder ved hydroformylering fra alkener og syntesegass, karakterisert ved at en gassblanding som inneholder alken, hydrogen og karbonmonoksyd bringes til å reagere i nærvær av et heterogent katalysatorsystem som innbefatter fast katalysatorforbindelse fremstilt fra klusterforbindelse Ru3(C0)i2 og en base som inneholder heterocyklisk nitrogen i suspensjon eller bundet på overflaten av en fast bærer, hvorved den heterocykliske basen velges fra gruppen 2,2'-bipyridin, 2,3'-bipyridin, 2,4'-bipyridin, 2,2':6,2"-terpyridin og 1,10-fenantrolin, og hvilket katalysatorsystem er aktivert ved oppvarming.1. Process for the production of alcohols and aldehydes by hydroformylation from alkenes and synthesis gas, characterized in that a gas mixture containing alkene, hydrogen and carbon monoxide is caused to react in the presence of a heterogeneous catalyst system which includes solid catalyst compound prepared from cluster compound Ru3(C0)i2 and a base containing heterocyclic nitrogen in suspension or bound on the surface of a solid support, whereby the heterocyclic base is selected from the group 2,2'-bipyridine, 2,3'-bipyridine, 2,4'-bipyridine, 2,2':6 ,2"-terpyridine and 1,10-phenanthroline, and which catalyst system is activated by heating. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at klusterforbindelsen er fremstilt ved aktivering av blandingen av klusterforbindelsen Ru3(C0)i2, den heterocykliske basen og den faste bæreren ved oppvarming ved en termperatur på 50 - 200°C.2. Method according to claim 1, characterized in that the cluster compound is produced by activating the mixture of the cluster compound Ru3(C0)i2, the heterocyclic base and the solid carrier by heating at a temperature of 50 - 200°C. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at det som bærer anvendes en silisiumholdig forbindelse.3. Method according to claim 1 or 2, characterized in that the carrier is a silicon-containing compound. 4. Fremgangsmåte ifølge et hvilket som helst av de foregående krav, karakterisert ved at det som heterocyklisk base anvendes 2,2'-bipyridin og som fast bærer en silisiumdioksydgel.4. Method according to any one of the preceding claims, characterized in that 2,2'-bipyridine is used as the heterocyclic base and which solidly supports a silicon dioxide gel. 5. Fremgangsmåte ifølge hvilket som helst av de foregående krav, karakterisert ved at hydroformyleringen utføres i et oppløsningsmiddel hvori katalysatorsystemet hovedsakelig er ikke-oppløselig.5. A method according to any one of the preceding claims, characterized in that the hydroformylation is carried out in a solvent in which the catalyst system is mainly insoluble.
NO894628A 1988-03-22 1989-11-21 PROCEDURE FOR THE PREPARATION OF ALCOHOLS AND ALDEHYDES FROM ALKENES AND SYNTHESIC GASES NO171057C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI881361A FI85849C (en) 1988-03-22 1988-03-22 FOERFARANDE FOER FRAMSTAELLNING AV ALKOHOLER OCH ALDEHYDER FRAON ALKENER OCH SYNTESGAS.
PCT/FI1989/000055 WO1989009201A1 (en) 1988-03-22 1989-03-22 Procedure for producing alcohols and aldehydes from alkenes and synthesis gases

Publications (4)

Publication Number Publication Date
NO894628L NO894628L (en) 1989-11-21
NO894628D0 NO894628D0 (en) 1989-11-21
NO171057B true NO171057B (en) 1992-10-12
NO171057C NO171057C (en) 1993-01-20

Family

ID=26158323

Family Applications (1)

Application Number Title Priority Date Filing Date
NO894628A NO171057C (en) 1988-03-22 1989-11-21 PROCEDURE FOR THE PREPARATION OF ALCOHOLS AND ALDEHYDES FROM ALKENES AND SYNTHESIC GASES

Country Status (1)

Country Link
NO (1) NO171057C (en)

Also Published As

Publication number Publication date
NO894628L (en) 1989-11-21
NO894628D0 (en) 1989-11-21
NO171057C (en) 1993-01-20

Similar Documents

Publication Publication Date Title
CN101965325B (en) Method for isomerizing olefinically unsaturated alcohols
Hosokawa et al. Oxidative cyclization of 2-allylphenols by palladium (II) acetate. Changes in product distribution
JPS6227001B2 (en)
Chatterjee et al. One-pot dual catalysis for the hydrogenation of heteroarenes and arenes
Monoi et al. Silica-supported Cr [N (SiMe3) 2] 3/isobutylalumoxane catalyst for selective ethylene trimerization
Yokota et al. Cyclotrimerization of alkynes using a multicatalytic system, Pd (II)/chlorohydroquinone/NPMOV, under dioxygen
US5041685A (en) Procedure for producing alcohols and aldehydes from alkenes and synthesis gases
CN102197016B (en) Process for preparation of benzonorbornenes
JPH0393602A (en) Selective removing of carbon monoxide
Salvini et al. Isomerization of olefins by phosphine-substituted ruthenium complexes and influence of an ‘additional gas’ on the reaction rate
Caulton et al. Metal clusters in catalysis: Hydrocarbon reactions
NO171057B (en) PROCEDURE FOR THE PREPARATION OF ALCOHOLS AND ALDEHYDES FROM ALKENES AND SYNTHESIC GASES
EP2726202B1 (en) Method for the preparation of palladium(i) tri-tert-butylphosphine bromide dimer
NO160245B (en) CATALYST AND PROCEDURE FOR THE PREPARATION OF HYDROGEN GAS FROM CARBON MONOXIDE AND WATER.
JPH04225838A (en) Solid catalyst for ethylidene diacetate and its manufacture and manufacture of ethylidene dialetate by contnuous proces utilzing the same
US4315993A (en) Preparation of ethylene glycol
CA1310021C (en) Procedure for producing alcohols and aldehydes from alkenes and synthesis gases
JPS5953269B2 (en) Method for producing 2,3-dihydro-2,2-dimethyl-7-hydroxybenzofuran
Giannoccaro et al. Phenylacetylene carbonylation catalysed by Pd (II) and Rh (III) intercalated in zirconium phosphates
Oshima et al. Synthesis and Properties of (. ETA. 3-1-Methylallyl) palladium (II) Formates as Models of Intermediates in the Palladium-Catalyzed Reductive Cleavage of Allylic Carboxylates and Carbonates with Formic Acid.
KR100731214B1 (en) A process for preparing cyclopentenones using heterogeneous carbon-supported cobalt catalyst system
US3592825A (en) P-dioxene synthesis
NO337313B1 (en) Process for the preparation of 1-octene from butadiene in the presence of titanium catalysts
US4351907A (en) Preparation of ethylene glycol
NO165956B (en) PROCEDURE FOR THE MANUFACTURE OF HYDROCARBONES AND OXYGENERATED HYDROCARBONES.