NO170821B - PROCEDURE FOR CLOSELY JOINING A SHELF AND A UNDERWATER'S RANGE AT GREAT DEPTH - Google Patents

PROCEDURE FOR CLOSELY JOINING A SHELF AND A UNDERWATER'S RANGE AT GREAT DEPTH Download PDF

Info

Publication number
NO170821B
NO170821B NO850971A NO850971A NO170821B NO 170821 B NO170821 B NO 170821B NO 850971 A NO850971 A NO 850971A NO 850971 A NO850971 A NO 850971A NO 170821 B NO170821 B NO 170821B
Authority
NO
Norway
Prior art keywords
porous
substances
cement
pore
bodies
Prior art date
Application number
NO850971A
Other languages
Norwegian (no)
Other versions
NO850971L (en
NO170821C (en
Inventor
Gian Pietro Ferrari Aggradi
Giampaolo Bonfiglioli
Original Assignee
Nuovo Pignone Spa
Snam Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuovo Pignone Spa, Snam Spa filed Critical Nuovo Pignone Spa
Publication of NO850971L publication Critical patent/NO850971L/en
Publication of NO170821B publication Critical patent/NO170821B/en
Publication of NO170821C publication Critical patent/NO170821C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/14Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling
    • F16L13/16Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling the pipe joint consisting of overlapping extremities having mutually co-operating collars
    • F16L13/166Deformed by radially expanding an inner part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/14Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling
    • F16L13/147Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints made by plastically deforming the material of the pipe, e.g. by flanging, rolling by radially expanding the inner part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49721Repairing with disassembling
    • Y10T29/4973Replacing of defective part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/4994Radially expanding internal tube

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Earth Drilling (AREA)
  • Gasket Seals (AREA)

Abstract

Fremgangsmåte for en sammen foyning av en hylse (1) og et undervanns rar (2) på stor dybde, omfattende at det dannes en rekke spor {4) på innsiden av hylsen, at hvert spor fylles med to halvringer (6) av et material som bryter sammen under høyt trykk, med inntil 70?» volumendring,. og at hylsen anbringes på røret, og at roret ekspanderes slik at ringområder av røret rager delvis inn i sporene.Method for joining a sleeve (1) and a subsea strut (2) at great depth, comprising forming a series of grooves {4) on the inside of the sleeve, filling each groove with two half-rings (6) of a material which collapses under high pressure, by up to 70? » volume change,. and that the sleeve is placed on the pipe, and that the pipe is expanded so that annular areas of the pipe partially protrude into the grooves.

Description

Porøse formlegemer til fremstilling av Porous molded bodies for the production of

keramiske formlegemer. ceramic moldings.

Porøse legemer finner en utstrakt anvendelse i teknikken. Man adskiller legemer med lukkede porer som kreves i varme- og kjøleteknikken, og legemer med åpne porer som gjør legemene gjennomtrengelige for gass og væsker og tjener som filtere og sugelegemer. Oppfinnelsen vedrører disse sistnevnte legemer. Porous bodies find extensive use in technology. A distinction is made between bodies with closed pores, which are required in heating and cooling technology, and bodies with open pores, which make the bodies permeable to gas and liquids and serve as filters and suction bodies. The invention relates to these latter bodies.

Gjennomtrengelige legemer, altså legemer utstyrt med åpne porer, er f.eks. sintermetaller og sinterporselen. Disse egner seg allerede på grunn av vanskeligheter og omstendelighet ved deres fremstilling, bare for begrenset anvendelse. Permeable bodies, i.e. bodies equipped with open pores, are e.g. sintered metals and sintered porcelain. These are already suitable, due to the difficulty and complexity of their manufacture, only for limited use.

Oppfinnelsen vedrører altså et mekanisk og eventuelt også kjemisk motstandsdyktig porøst formlegeme til fremstilling av keramiske formlegemer, spesielt i støpefremgangsmåten, under anvendelse av hydraulisk trykk, og formlegemet er karakterisert ved at legemets åpne porer er utfylt med i og for seg porøse stoffer. The invention therefore relates to a mechanically and possibly also chemically resistant porous molded body for the production of ceramic molded bodies, especially in the casting process, using hydraulic pressure, and the molded body is characterized by the body's open pores being filled with intrinsically porous substances.

Slike i og for seg porøse stoffer forekommer, som f.eks. kiselgur, som silikat i naturen, eller man fremstiller dem på forskjellige måter fra de ønskede stoffer med de eventuelt ønskede porestørrelser og tilsvarende kornstørrelser, slik de f.eks. anvendes som såkalte K.C. tørrperler av Si02 i forbindelse med bestemte tilsetninger av AlgO^ i den kjemiske industri. Videre kan det anvendes malte, f.eks. keramiske, porøse masser. Such intrinsically porous substances occur, such as e.g. diatomaceous earth, as silicate in nature, or they are produced in different ways from the desired substances with the possibly desired pore sizes and corresponding grain sizes, as they e.g. are used as so-called K.C. dry beads of SiO2 in connection with specific additions of AlgO^ in the chemical industry. Furthermore, painted, e.g. ceramic, porous masses.

Porøsiteten av legemene som er oppbygget ifølge oppfinnelsen lar seg sterkt bestemme og beherske ved valg av det porefyllende stoff. Man går således ut fra en målbar porestørrelse i stoffet, fra valg av kornstørrelse og tildelingsforhold til bærestoff som ønskelige bestembare størrelser og tilpasser de eventuelle krav. Dette er en vesentlig fordel overfor alle kjente poredannende fremgangsmåter som ikke lar seg beherske på denne måte. The porosity of the bodies constructed according to the invention can be strongly determined and controlled by choosing the pore-filling material. One therefore starts from a measurable pore size in the material, from the choice of grain size and allocation ratio to carrier material as desirable determinable sizes and adapts to any requirements. This is a significant advantage over all known pore-forming methods which cannot be controlled in this way.

En ytterligere fordel ligger deri at man ifølge oppfinnelsen heller ikke er anvist til sinterfremgangsmåter, men mere kan gå frem ved værelsestemperatur, idet man anvender selvavbindende eller selvherdende stoffer som bærere, som eksempelvis sement, spesielt lerjordsement, eller herdede kunststoffer som duroplast, hvortil de ved egenporøsitet utstyrte porestoffer tilsettes i hver gang valgte mengder og kornstørrelser allerede ved fremstillingen. Disse korn danner selv porerommet i bæremassen, som de krever. Man kan også tilsette dem som drivmiddel og velger mengden således at det oppnås en åpen porøsitet av det legeme som skal fremstilles. Dette består således av et bærende skjelett av mekanisk og hvis nødvendig også kjemisk motstandsdyktige stoffer, som sement eller duroplast, som oppfylles med i og for seg porøse legemer. Således er såvel de mekaniske og kjemiske krav som porøsiteten selv velgbar etter ønske. A further advantage lies in the fact that, according to the invention, one is not directed to sintering methods either, but rather can proceed at room temperature, using self-binding or self-hardening substances as carriers, such as cement, especially clay cement, or hardened plastics such as duroplast, for which they Porous substances equipped with inherent porosity are added in each time selected quantities and grain sizes already during production. These grains themselves form the pore space in the carrier mass, which they require. You can also add them as a propellant and choose the quantity so that an open porosity of the body to be produced is achieved. This thus consists of a supporting skeleton of mechanically and, if necessary, also chemically resistant substances, such as cement or duroplast, which are filled with inherently porous bodies. Thus, both the mechanical and chemical requirements as well as the porosity itself can be selected as desired.

For slike legemer ifølge oppfinnelsen gis det forskjellige anvendelser, f.eks. egner de seg fordi de er motstandsdyktige og sugekraftige, fortrinnlig som våtpresseform. Keramiske press-legemer, f.eks. taksten, ble tidligere presset i gipsformer og med gipsstempel, som var fulloppsuget med vann for at man kan løsne formlegemene ubeskadiget fra formen. Gipsformer har imidlertid ingen levetid og er dyre. På jernformer kan man ikke komme så godt ut, fordi de må smøres med olje, og på grunn av oljen oppstår fol-der. Denne ulempe er unngått ved anvendelsen ifølge oppfinnelsen. Different applications are given for such bodies according to the invention, e.g. they are suitable because they are resistant and absorbent, preferably as a wet press form. Ceramic press bodies, e.g. the roof, was previously pressed in plaster molds and with a plaster stamp, which was fully soaked with water so that the molded bodies can be detached from the mold undamaged. Plaster molds, however, have no lifespan and are expensive. You can't get out so well with iron molds, because they have to be lubricated with oil, and because of the oil, folds occur. This disadvantage is avoided by the application according to the invention.

Kunststoffpressformer av kunststoff er kjent. I stedet for olje og vann må det her benyttes skyllemidler. Et formlegeme ifølge oppfinnelsen kan f.eks. bestå av porøs duroplast, og porene kan være fylt med skillemidler. Plastic press molds made of plastic are known. Instead of oil and water, rinse aid must be used here. A shaped body according to the invention can e.g. consist of porous duroplast, and the pores can be filled with separating agents.

Men også støpeformer, spesielt til støping av keramiske legemer av leireemulsjoner og som virker som filter, er fortrinnlig for anvendelse ifølge oppfinnelsen. På grunn av den store mekaniske fasthet, kan det arbeides under høyt leireemulsjonstrykk. Oppløs-ningsmidlet, i dette tilfelle vann, trer sekundhurtig gjennom porene som allerede er fylt med vann for formen, kan nu anvendes som dyppeform. Den hule form er på den ene side omgitt med leireemulsjon og på den annen side med vann. Formlegemet danner seg i trykkfallet mellom begge sider av dyppeformen 6. Er formen avsluttet, blir leireemulsjonen hevet.av det trykk som belaster den og helt ut. Fra dykkeformens vannside føres nu vann gjennom formen i motsatt retning, således at det keramiske formlegeme meget lett og hurtig løsner. But also moulds, especially for casting ceramic bodies from clay emulsions and which act as filters, are preferable for use according to the invention. Due to the great mechanical strength, it can be worked under high clay emulsion pressure. The solvent, in this case water, penetrates in seconds through the pores which are already filled with water for the mould, and can now be used as a dipping mould. The hollow form is surrounded on one side with clay emulsion and on the other side with water. The mold body is formed in the pressure drop between both sides of the dipping mold 6. When the mold is finished, the clay emulsion is raised by the pressure that loads it and completely out. From the water side of the diving mold, water is now fed through the mold in the opposite direction, so that the ceramic mold body loosens very easily and quickly.

Porøse legemer ifølge oppfinnelsen kan med sin sugeevne utnyttes i tørr tilstand og her f.eks. erstatte gips ved alle anvendelser på området keramikk med stor fordel, da gipsen i nesten alle tilfelle ikke har en tilstrekkelig hårdhet. Den Mohske hårdhet ligger ved gips ved 2, mens f.eks. et porøst legeme ifølge oppfinnelsen, av 85 vekt-% lerjordsement og 15 vekt-% kiselgur ved et fritt porerom på 4-1 f° har en hårdhet mellom 5 °g 6. Eksempelvis fremstilles et slikt legeme således at de to stoffer avveies og fuktes med vann inntil det oppstår en seig støpedyktig grøt av høy-viskositet. Denne seige grøt males i en kolloidmølle i 10 minutter. Ved denne maleprosess bringes kiselguren og lerjordsmeltesementen til en omtrent lik midlere kornstørrelse og blandes samtidig homo-gent. Etter maleprosessen helles den homogene grøt i en form og utherdes under høy luftfuktighet og stadig fukting i tre dager. Porous bodies according to the invention can, with their absorbent capacity, be used in a dry state and here e.g. replace gypsum in all applications in the area of ceramics with great advantage, as gypsum in almost all cases does not have sufficient hardness. The Mohs hardness for plaster is 2, while e.g. a porous body according to the invention, made of 85% by weight clay cement and 15% by weight diatomaceous earth with a free pore space of 4-1 f° has a hardness between 5°g 6. For example, such a body is produced so that the two substances are weighed and moistened with water until a tough, moldable slurry of high viscosity is formed. This chewy porridge is ground in a colloid mill for 10 minutes. In this grinding process, the diatomaceous earth and the clay melt cement are brought to an approximately equal average grain size and mixed homogeneously at the same time. After the grinding process, the homogeneous porridge is poured into a mold and cured under high humidity and constant wetting for three days.

Pressbare kornede kunstharpikser f.eks. på epoksydbasis eller også duroplast med spesielt høye tilblandinger av i og for seg porøse fyllstoffer fører til meget faste og i enhver porøsitet ønskede filterlegemer eller lignende. Pressable granular synthetic resins, e.g. on an epoxy basis or also duroplast with particularly high admixtures of intrinsically porous fillers leads to very firm and in any porosity desired filter bodies or the like.

På tegningen er det vist utførelseseksempler ifølge oppfinnelsen. The drawing shows embodiments according to the invention.

Fig. 1 viser i sterk forstørring et snitt gjennom massen av legemer 1. De lyse ved som punkter viste porer utstyrte stoff 3 er opptatt i den skjellettlignende forgrenede oppbygning av det mørkt viste bærestoff 4* Fig. 2 viser et snitt gjennom et porøst legeme med åpne tomme porer 2 i allerede kjent utførelse. Fig. 3 er en skjematisk gjengivelse av pressinnret-ningen for keramiske pressmasser under anvendelse av formen 6 ifølge oppfinnelsen, som består av matrise og stempel. Innretningen består av karet 5 > hvori matrisen 6 er innsatt under avstøtning på en grov sandfylling 7- Lokket av karet 5 er som vanlig innrettet til å utøve pressprosessen. Også her er stempelformen 6 underbygget med grovsand 7* Gjennom rørtilknytninger 10 sikres tilførselen til begge formdeler med vann fra beholderen 9 f°r stadig fuktigholding. Dette er nødvendig for at formlegemet 8 lett skal løsne. Fig. 1 shows, in strong magnification, a section through the mass of bodies 1. The light-colored material 3 equipped with pores shown as dots is absorbed in the skeleton-like branched structure of the carrier material 4 shown dark. Fig. 2 shows a section through a porous body with open empty pores 2 in an already known embodiment. Fig. 3 is a schematic representation of the pressing device for ceramic pressing compounds using the mold 6 according to the invention, which consists of a matrix and a stamp. The device consists of the vessel 5 > in which the matrix 6 is inserted while pushing against a coarse sand filling 7- The lid of the vessel 5 is, as usual, arranged to carry out the pressing process. Here, too, the piston mold 6 is underpinned with coarse sand 7* Through pipe connections 10, the supply to both mold parts is ensured with water from the container 9 for constant moist retention. This is necessary in order for the mold body 8 to loosen easily.

På fig. 4 er det vist en filterinnretning resp. en støpeforminnretning i snitt. Karet 5 opptar filteret 6 i seg. Hulrommet 12 tjener til ifylling av leireemulsjon eller en annen emulsjon. Kommer det bare an på filtervirkningen, så blir først karet 5 tomt og kan tømmes over en ikke vist tappehane. Vil man imidlertid i filteret 6 fra leireemulsjonen.danne et keramisk legeme ved avsetning av leire på filterveggen, så fylles karet 5 ved hjelp av forrådsbeholderen 11 over tilførsel 10 med vann, således at filterlegemet 6 virker som dyppeform. Formlegemet dannes hurtigere desto høyere trykket er som utøves på leireemulsjonen. Det kommer altså an på trykkfallet som væsken gir dyppeformens to sider. In fig. 4 shows a filter device or a mold device in section. The vessel 5 occupies the filter 6 in itself. The cavity 12 is used for filling clay emulsion or another emulsion. If it only depends on the filter effect, first the vessel 5 becomes empty and can be emptied via a tap not shown. However, if you want to form a ceramic body in the filter 6 from the clay emulsion by depositing clay on the filter wall, then the vessel 5 is filled with water using the storage container 11 above the supply 10, so that the filter body 6 acts as a dip mold. The mold is formed faster the higher the pressure exerted on the clay emulsion. It therefore depends on the pressure drop that the liquid causes on the two sides of the dip mold.

5a betegner det med grov sand eller kis fylte mellomrom mellom den ytre stålmantel 5 °g det egentlige formlegeme 6. 14 angir tetningen for overdelen som skal påsettes. 5a denotes the space filled with coarse sand or gravel between the outer steel jacket 5 and the actual mold body 6. 14 denotes the seal for the upper part to be attached.

Etter avslutning av formprosessen fjernes leireemulsjonen og vann trykkes i motsatt retning ved hjelp av statisk trykk gjennom filterformen for at formlegemet lett skal løsne. After completion of the molding process, the clay emulsion is removed and water is pressed in the opposite direction by means of static pressure through the filter mold so that the molded body will loosen easily.

Oppfinnelsen vedrører også fremstilling av former som spesielt er egnet i den keramiske industri, såvel for støpefrem-gangsmåten som for pressprosessen. The invention also relates to the production of molds which are particularly suitable in the ceramic industry, both for the casting process and for the pressing process.

Formlegemene støpes fortrinnsvis selv idet selvherdende stoffer som danner formlegemet fortrinnsvis sement, blandes med porefyllende, i og for seg porøse stoffer, fortrinnsvis kiselgur, til en støpedyktig vandig emulsjon. Jo mere komplisert formen som skal støpes er, desto mere tyntflytende må emulsjonen være, og desto større er faren for adskillelse. The moldings are preferably self-cast as the self-hardening substances that form the molding, preferably cement, are mixed with pore-filling, intrinsically porous substances, preferably diatomaceous earth, to form a castable aqueous emulsion. The more complicated the shape to be cast, the thinner the emulsion must be, and the greater the risk of separation.

I det valgte eksempel med sement og kiselgur drives sistnevnte hurtig oppad i emulsjonen på grunn av dets meget mindre spesifikke vekt, da sementens avbygningsprosess først senere blit tykkere. Denne forsinkelse er for stor til å sikre en jevn pore-dannelse over hele formen. In the chosen example with cement and diatomaceous earth, the latter is quickly driven upwards in the emulsion due to its much lower specific weight, as the cement's degradation process only later thickens. This delay is too great to ensure uniform pore formation over the entire mold.

Til grunn for oppfinnelsen ligger den oppgave å hindre denne skadelige adskillelse. The invention is based on the task of preventing this harmful separation.

Løsningen av' oppgaven består i til emulsjonen å sette slike midler som bevirker en hurtig inntykning etter støpingen når emulsjonen inneholder stoffer av meget forskjellig spesifikk vekt. The solution to the task consists in adding such agents to the emulsion which cause a rapid thickening after casting when the emulsion contains substances of very different specific weights.

Anvendes eksempelvis hertil i stedet for kiselgur et pulver av sintermetall, så vil dette, på grunn av sin høyere spesifikke vekt, tilstrebe å avsette seg på bunnen. If, for example, instead of diatomaceous earth, a powder of sintered metal is used for this purpose, then, due to its higher specific gravity, this will tend to settle on the bottom.

Minst er adskillelsesfaren når det f.eks. tilsettes stoffer av tilnærmet samme spesifikke vekt, f.eks. finkornet sinter-keramikk til sementen. The risk of separation is least when there is e.g. substances of approximately the same specific gravity are added, e.g. fine-grained sinter ceramics for the cement.

For hver spesialitet i formen som retter seg etter formen av det keramiske legeme, dets digeltykkelse, f.eks. ved elektro- eller sanitær-keramikk, lar det seg empirisk fastslå gun-stige sammensetninger og betingelser innen et vidt område. For each specialty in the mold that conforms to the shape of the ceramic body, its crucible thickness, e.g. in the case of electrical or sanitary ceramics, it is possible to determine empirically favorable compositions and conditions within a wide range.

Portland-sement f.eks. gir overfor lerjordsement den fordel å ha en meget gin og hård overflate og en hurtig avbinding. Man kan derfor alt etter kravene som hovedbestanddeler velge Portland-sement og tilføye mindre mengder, f.eks. inntil 5 % > lerjordsement eller å gå frem omvendt og å anvende lerjordsement med mindre tilsetninger av Portland-sement. Forsøk har vist at lerjordsement egner seg spesielt godt til oppnåelse av den ønskede porøsi-tet og at det kan oppnås at den hurtigere- blir tyktflytende. Begge ekstremiteter bidrar vesentlig til at blandingen med kiselgur hurtig blir tyktflytende og motvirker en adskillelse. Portland cement e.g. gives compared to clay soil cement the advantage of having a very gin and hard surface and a fast setting. Depending on the requirements, you can therefore choose Portland cement as the main component and add smaller quantities, e.g. up to 5% > clay soil cement or to proceed in reverse and to use clay soil cement with minor additions of Portland cement. Experiments have shown that clay cement is particularly suitable for achieving the desired porosity and that it can be achieved that it becomes viscous more quickly. Both extremities contribute significantly to the mixture with diatomaceous earth quickly becoming viscous and counteracting separation.

Av spesiell fordel er en mindre tilblanding av binde-midler, spesielt av tiksotrope stoffer som f.eks. alginater, spesielt når man vil arbeide ved kompliserte former meget tyntflytende, altså med meget vanntilblanding. Her er faren spesielt stor, for at den lette kiselgur anriker seg i formens øvre områder og ødelegger porøsitetens jevnhet. Of particular advantage is a minor addition of binders, especially of thixotropic substances such as e.g. alginates, especially when you want to work with complicated shapes very thin, i.e. with a lot of water added. Here the danger is particularly great, for the light diatomaceous earth to accumulate in the upper areas of the mold and destroy the evenness of the porosity.

Alginater er som bekjent tiksotrope. De sikrer en hurtig fortykning. Denne prosess er reversibel, således at man har en ytterligere fordel, f.eks. ved å oppbevare en fortykket oppløs- Alginates are known to be thixotropic. They ensure rapid thickening. This process is reversible, so that you have a further advantage, e.g. by storing a thickened soln.

ning f.eks. ved støt igjen å gjøre den tyntflytende. Ved stillstand gelerer oppløsningen igjen og hindrer adskillelse. ning e.g. by impact again to make it thinner. At standstill, the solution gels again and prevents separation.

En blanding som er spesielt egnet til fremstilling av formlegemet består av ca. " JO % Portland-sement og 3>5 f° ler jord- A mixture that is particularly suitable for the production of the shaped body consists of approx. " JO % Portland cement and 3>5 f° clay soil

sement med ca. 25 % kiselgur under tilsetning av 0,5 - 0,6 % cement with approx. 25% diatomaceous earth with the addition of 0.5 - 0.6%

natrium- eller ammonium-alginat. sodium or ammonium alginate.

Etter sementens avbinding forstyrrer ikke alginatene porøsiteten. De blir flytende under trykkinnvirkning og lar seg drive ut. After the cement has set, the alginates do not disturb the porosity. They liquefy under pressure and allow themselves to drift out.

Når det kreves flere delers former, er det fordelaktig When multiple part molds are required, it is advantageous

å utstyre begrensningskantene med et ennu hårdere materiale, fortrinnsvis med lister eller strimler av sintermetall, hvis åpne porøsitet tilsvarer det øvrige formmateriales. Slike lister eller strimler kan allerede innleires ved formdelenes fremstilling. to equip the limiting edges with an even harder material, preferably with strips or strips of sintered metal, whose open porosity corresponds to that of the other form material. Such strips or strips can already be incorporated during the production of the molded parts.

Claims (7)

1. Porøse formlegemer til fremstilling av keramiske formlegemer, spesielt i støpefremgangsmåten under anvendelse av hydraulisk trykk, karakterisert ved at legemets (1) åpne porer (2) er utfylt med i og for seg porøse stoffer (3). 1. Porous shaped bodies for the production of ceramic shaped bodies, especially in the casting process using hydraulic pressure, characterized in that the open pores (2) of the body (1) are filled with intrinsically porous substances (3). 2. Porøse legemer ifølge krav 1, karakterisert ved at det porøse legeme (1) består av stoffer (4) som gir det mekaniske og hvis nødvendig, kjemisk fasthet og at de porefyllende i og for seg porøse stoffer (3) er tilblandet i den til legemets (1) ønskede porøsitet svarende kornstørrelse, mengde og egenporøsitet ved legemets (1) formgivning. 2. Porous bodies according to claim 1, characterized in that the porous body (1) consists of substances (4) which provide mechanical and, if necessary, chemical strength and that the pore-filling in and of themselves porous substances (3) are mixed into it to the desired porosity of the body (1) corresponding to the grain size, amount and inherent porosity of the body (1)'s design. 3. Porøse legemer ifølge krav 1, karakterisert ved at det porøse legeme (1) består av selvherdende resp. avbindende stoffer (4)3 f.eks. sement, spesielt lerjordsement eller utherdende kunststoffer, spesielt duroplast, hvortil det før legemets (1) formgivning tilblandes poredannende og porefyllende i og for seg porøse stoffer (3). 3. Porous bodies according to claim 1, characterized in that the porous body (1) consists of self-hardening or binding substances (4)3 e.g. cement, especially clay cement or curing plastics, especially duroplast, to which pore-forming and pore-filling intrinsically porous substances (3) are mixed before shaping the body (1). 4. Fremgangsmåte til fremstilling av trykkfaste, åpen-porede former eller filtre for plastiske masser ifølge kravene 1-3j4. Method for the production of pressure-resistant, open-pore forms or filters for plastic masses according to claims 1-3j hvor porene er fylt med i og for seg porøse stoffer, karakterisert ved at en støpedyktig blanding av et selvherdende bærestoff, fortrinnsvis sement med i og for seg porøse stoffer, fortrinnsvis kiselgur, utstyres med tilsetning av midler som hindrer adskillelse.where the pores are filled with intrinsically porous substances, characterized in that a castable mixture of a self-hardening carrier material, preferably cement with intrinsically porous substances, preferably diatomaceous earth, is equipped with the addition of agents that prevent separation. 5. Fremgangsmåte ifølge krav 4>karakterisert ved at til den støpedyktige blanding tilblandes en liten tilsetning av tiksotrope stoffer, spesielt alginater. 5. Method according to claim 4> characterized in that a small addition of thixotropic substances, especially alginates, is mixed into the moldable mixture. 6. Fremgangsmåte ifølge krav 4j karakterisert ved at det som bærestoff anvendes Portland-sement med en tilsetning av få prosent lerjordsement. 6. Method according to claim 4j, characterized in that Portland cement is used as carrier material with an addition of a few percent clay cement. 7. Fremgangsmåte ifølge krav 4>karakterisert ved at det som bærestoff anvendes lerjordsement med en tilsetning av få prosent Portland-sement.7. Method according to claim 4> characterized in that clay soil cement is used as carrier material with an addition of a few percent Portland cement.
NO850971A 1984-03-14 1985-03-12 PROCEDURE FOR CLOSELY CONNECTION OF A SHELTER AND A UNDERWATER'S RANGE AT GREAT DEPTH NO170821C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT20046/84A IT1174062B (en) 1984-03-14 1984-03-14 IMPROVEMENTS IN THE METHOD FOR THE SEALING OF A SLEEVE TO A SUB-MARINE PIPE LAYING IN BIG DEEP

Publications (3)

Publication Number Publication Date
NO850971L NO850971L (en) 1985-09-16
NO170821B true NO170821B (en) 1992-08-31
NO170821C NO170821C (en) 1992-12-09

Family

ID=11163389

Family Applications (1)

Application Number Title Priority Date Filing Date
NO850971A NO170821C (en) 1984-03-14 1985-03-12 PROCEDURE FOR CLOSELY CONNECTION OF A SHELTER AND A UNDERWATER'S RANGE AT GREAT DEPTH

Country Status (9)

Country Link
US (1) US4593448A (en)
CA (1) CA1249618A (en)
DE (1) DE3509217C2 (en)
DK (1) DK159595C (en)
ES (1) ES8606602A1 (en)
FR (1) FR2561350B1 (en)
GB (1) GB2155830B (en)
IT (1) IT1174062B (en)
NO (1) NO170821C (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662663A (en) * 1983-12-19 1987-05-05 Cameron Iron Works, Inc. Tubular member for underwater connection having volume
US4817716A (en) * 1987-04-30 1989-04-04 Cameron Iron Works Usa, Inc. Pipe connector and method of applying same
US4867609A (en) * 1987-11-13 1989-09-19 Isaac Grosman Erection of structures on uneven foundation sites
US4887846A (en) * 1988-04-22 1989-12-19 Cameron Iron Works Usa, Inc. Subsea tubular joint
US4925220A (en) * 1988-12-16 1990-05-15 Cameron Iron Works U.S.A., Inc. Tubular joint
US5038865A (en) * 1989-12-29 1991-08-13 Cooper Industries, Inc. Method of and apparatus for protecting downhole equipment
US5129253A (en) * 1990-01-26 1992-07-14 Bell Helicopter Textron Inc. Antifretting coating for a bushing in a coldworked joint
CH682942A5 (en) * 1991-04-22 1993-12-15 Geberit Ag Press-fit pipe connection - has a plastic body and a projecting metal ring
IT1283611B1 (en) * 1996-04-18 1998-04-22 Snam Spa METHOD FOR SEALING A FLANGED SLEEVE ON A PIPE
DE19702087A1 (en) * 1997-01-22 1998-07-23 Grohe Kg Hans Process for producing a hollow body and hollow body
DE19733473C2 (en) * 1997-08-02 2000-07-06 Daimler Chrysler Ag Method and device for producing a connection of a lambda probe holder to an exhaust pipe
US6328073B1 (en) * 1998-08-07 2001-12-11 Automotive Fluid Systems, Inc. Fluid-tight conduit connection and method of making same
GB0106820D0 (en) * 2001-03-20 2001-05-09 Weatherford Lamb Tubing anchor
US6338189B1 (en) * 1999-10-07 2002-01-15 Allison Engine Company, Inc. Method and apparatus for expansion forming a workpiece using an external deformable supporting fixture
NO20041215D0 (en) * 2004-03-24 2004-03-24 Quickflange As Method of calculations for attaching coupling elements to rudder
AU2013285209B2 (en) * 2012-07-06 2017-10-12 Schlumberger B.V. A tubular connection
GB2501988B (en) * 2013-04-24 2014-05-21 Meta Downhole Ltd Pipe joint
GB2531122B (en) * 2014-08-12 2017-02-22 Meta Downhole Ltd Connector apparatus
GB2531123B (en) * 2014-08-12 2017-02-22 Meta Downhole Ltd Improvements in or relating to morphing tubulars
NO3015751T3 (en) * 2014-10-31 2018-03-10
AT518865B1 (en) * 2017-02-13 2018-02-15 Henn Gmbh & Co Kg Connector assembly for use in a vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1994210A (en) * 1932-07-05 1935-03-12 Chobert Jacques Franco Gabriel Method of connecting hollow bodies
US2468488A (en) * 1944-12-30 1949-04-26 Continental Can Co Method of mounting collar can collars
US2832503A (en) * 1954-08-16 1958-04-29 Royal Jet Inc Method and apparatus for sealingly joining fuel tank sections, and fuel tanks formed thereby
FR1357771A (en) * 1963-02-27 1964-04-10 Intertechnique Sa Improvements to ferrules for pipe fittings, and tube-ferrule assemblies made with such ferrules
FR1485671A (en) * 1966-05-10 1967-06-23 Lorba Process for assembling two tubular metal parts and resulting products
US4379575A (en) * 1973-10-09 1983-04-12 Raychem Corporation Composite coupling
DK638174A (en) * 1973-12-10 1975-08-11 Kubota Ltd
US4330144A (en) * 1974-11-27 1982-05-18 Ridenour Ralph Gaylord Tube fitting assembly with deformable seal
US4043160A (en) * 1975-12-18 1977-08-23 The Boeing Company Internal tooling for swaging apparatus
FR2389061A1 (en) * 1977-04-27 1978-11-24 Haskel Eng & Supply Co Swaged connection for high pressure hydraulic pipes - uses grooves of trapezoidal cross-section to reduce stresses in hydraulically expanded pipe
GB2028450A (en) * 1978-05-25 1980-03-05 Palmer M R Improvements in or Relating to the Connection of a Spigot into a Socket
GB2034622B (en) * 1978-10-10 1982-10-20 Vickers Ltd Explosive welding under water
IT1131143B (en) * 1980-05-06 1986-06-18 Nuovo Pignone Spa PERFECTED METHOD FOR THE SEALING OF A SLEEVE FLANGED TO A PIPE, PARTICULARLY SUITABLE FOR REPAIRING SUBMARINE PIPES INSTALLED AT LARGE DEPTHS
IT1136634B (en) * 1980-06-21 1986-09-03 Balcke Duerr Ag PROCEDURE FOR FASTENING PRESSURE SEAL OF TUPI ON AT LEAST ONE WALL
JPS5841625A (en) * 1981-06-15 1983-03-10 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン Device for expanding tube through explosion of detonator and combining it with tube plate

Also Published As

Publication number Publication date
FR2561350B1 (en) 1989-01-06
DK159595C (en) 1991-04-22
DE3509217A1 (en) 1985-09-19
DK159595B (en) 1990-11-05
GB2155830B (en) 1987-05-28
DK112985A (en) 1985-09-15
NO850971L (en) 1985-09-16
ES8606602A1 (en) 1986-03-16
ES541702A0 (en) 1986-03-16
DK112985D0 (en) 1985-03-12
GB2155830A (en) 1985-10-02
IT1174062B (en) 1987-07-01
US4593448A (en) 1986-06-10
IT8420046A0 (en) 1984-03-14
NO170821C (en) 1992-12-09
GB8506481D0 (en) 1985-04-17
CA1249618A (en) 1989-01-31
DE3509217C2 (en) 1986-04-30
FR2561350A1 (en) 1985-09-20

Similar Documents

Publication Publication Date Title
NO170821B (en) PROCEDURE FOR CLOSELY JOINING A SHELF AND A UNDERWATER'S RANGE AT GREAT DEPTH
DE102006060561A1 (en) Quartz glass molded body and method and apparatus for its production
US2091973A (en) Apparatus for making ceramic articles
US3993495A (en) Porous ceramic articles and method for making same
US4908174A (en) Molding of ceramic materials
US3431332A (en) Ceramic casting techniques
EP0278180A1 (en) Plastic foam containers for the densification of powder material
CN106501054B (en) Mould for preparing artificial square rock core and preparation method of square rock core
US3437723A (en) Method of making refractory bodies formed with a multiplicity of closely spaced long and narrow passages therethrough
US1344324A (en) Light-weight artificial cement stone for building purposes
USH48H (en) Method of making a ceramic article having open porous interior
DE435196C (en) Form made of ceramic porous mass
WO2016117688A1 (en) Cast molded body and method for producing same
NL194157C (en) Method for manufacturing a construction element based on plaster and construction element manufactured according to this method.
US1238347A (en) Pottery-mold.
US2361784A (en) Method of molding ceramic bodies
US5333670A (en) Vitreous fused silica
Norton Applications of modern clay research in ceramics
US1924028A (en) Manufacture of foundry molds
JP2829164B2 (en) Manufacturing method of hollow body
US3229338A (en) Manufacturing process for re-usable molds
DE1584476A1 (en) Porous bodies, especially for molds and filters
JP3155660B2 (en) Manufacturing method of ceramic casting mold
US1122669A (en) Method of making hollow tiles.
DK163298B (en) SHAPED ARTICLE AND COMPOSITION MATERIAL AND PROCEDURES FOR PRODUCING THEREOF