NO167699B - ELECTROMECHANICAL TRANSDUCES FOR LOW-FREQUENCY VIBRATIONS. - Google Patents
ELECTROMECHANICAL TRANSDUCES FOR LOW-FREQUENCY VIBRATIONS. Download PDFInfo
- Publication number
- NO167699B NO167699B NO891976A NO891976A NO167699B NO 167699 B NO167699 B NO 167699B NO 891976 A NO891976 A NO 891976A NO 891976 A NO891976 A NO 891976A NO 167699 B NO167699 B NO 167699B
- Authority
- NO
- Norway
- Prior art keywords
- magnet
- coil
- transducer
- mainly
- transducer according
- Prior art date
Links
- 239000000725 suspension Substances 0.000 claims description 14
- 230000005291 magnetic effect Effects 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 4
- 239000004593 Epoxy Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 229910000859 α-Fe Inorganic materials 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 210000003127 knee Anatomy 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 5
- 238000010276 construction Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/04—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
- B06B1/045—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism using vibrating magnet, armature or coil system
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
- Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Description
Foreliggende oppfinnelse angår en elektromekanisk transduser for å overføre lavfrekvente vibrasjoner til et mekanisk system, eksempelvis en del av et skipsskrog. Hensikten med å overføre slike vibrasjoner, er å forhindre tilgroing av marine organismer på utsiden av skipsskroget. The present invention relates to an electromechanical transducer for transmitting low-frequency vibrations to a mechanical system, for example a part of a ship's hull. The purpose of transmitting such vibrations is to prevent the growth of marine organisms on the outside of the ship's hull.
Oppfinnelsen tar sitt utgangspunkt i norsk ålment til-gjengelig patentsøknad nr. 87.3306, med samme oppfinner som i herværende oppfinnelse. Fra NO 87.3306 er kjent en transduser av elektrodynamisk, høyttaler-lignende type hvor en senterbolt som er festet til transduserens svingspole, går gjennom et sentralt og aksialt hull i en hovedsakelig sylindrisk utformet magnet. Magnetens poler er adskilt av et sylindrisk luftgap som svingspolen befinner seg i, og magnetfeltet er hovedsakelig radialt fra den sentrale polen til den konsentrisk omgivende andre polen. Den sentrale polen er altså gjennomboret for den gj ennomgående senterbolten. The invention is based on Norwegian generally available patent application no. 87.3306, with the same inventor as in the present invention. From NO 87.3306 a transducer of an electrodynamic, speaker-like type is known where a center bolt which is attached to the transducer's voice coil passes through a central and axial hole in a mainly cylindrically designed magnet. The poles of the magnet are separated by a cylindrical air gap in which the winding coil is located, and the magnetic field is mainly radial from the central pole to the concentrically surrounding second pole. The central pole is therefore pierced for the continuous center bolt.
To opphengsfjærer eller -membraner er anbrakt for å holde magneten på plass. De to membranfjærene er i hovedsak anbrakt i flukt med de to hovedsakelig plane og parallelle overflatene av den sylindriske magneten, og svingspolen er festet med lakk på en spoleform av plast eller papp som sitter fast på senterbolten utenfor den ene opphengsmembranen. Two suspension springs or diaphragms are fitted to hold the magnet in place. The two diaphragm springs are placed substantially flush with the two substantially planar and parallel surfaces of the cylindrical magnet, and the coil is affixed with varnish to a plastic or cardboard coil form that is fixed to the center bolt outside one of the suspension diaphragms.
Det har vist seg at denne konstruksjonen kan forbedres for It has been shown that this construction can be improved for
å gi en bedre ytelse hva angår virkningsgrad og maksimal avgitt effekt. Foreliggende oppfinnelse angår nettopp et slikt forbedret transduser-element, og oppfinnelsen defineres nøyaktig i de vedføyde patentkravene. to provide a better performance in terms of efficiency and maximum emitted power. The present invention concerns precisely such an improved transducer element, and the invention is precisely defined in the appended patent claims.
En nærmere beskrivelse av oppfinnelsen skal nå gis, med detaljert omtale av et utførelseseksempel av ikke-begrensende type, og med henvisning til de vedføyde tegningene, hvor Fig. 1 viser et aksialt tverrsnitt gjennom en utførelse av en transduser ifølge oppfinnelsen, og Fig. 2 viser samme transduser sett i aksial retning rett "ovenfra". A more detailed description of the invention will now be given, with a detailed description of a non-limiting example, and with reference to the attached drawings, where Fig. 1 shows an axial cross-section through an embodiment of a transducer according to the invention, and Fig. 2 shows the same transducer viewed in the axial direction straight "from above".
Av Fig. 1 fremgår at transduseren ifølge oppfinnelsen er ment å festes f.eks. til en skrogplate på en skip for å kunne sette platen i tverrgående mekaniske vibrasjoner. Skrogplaten er utstyrt med et feste, hvori transduserens senterbolt 1 er skrudd godt fast. Selvfølgelig kan senterbolten 1 generelt festes til det mekaniske system som skal gis vibrasjoner, på andre måter enn den viste, eksempelvis ved sveising, nagling, hurtigkobling eller lignende. From Fig. 1 it appears that the transducer according to the invention is intended to be attached e.g. to a hull plate on a ship to be able to subject the plate to transverse mechanical vibrations. The hull plate is equipped with a fastener, in which the transducer's center bolt 1 is screwed firmly. Of course, the center bolt 1 can generally be attached to the mechanical system which is to be vibrated, in other ways than the one shown, for example by welding, riveting, quick coupling or the like.
Referansetall 4 angår en magnet av strontium-ferritt, som er gitt en sylindrisk utforming med konsentriske magnetpoler og ringformet luftgap 12, analogt med den tidligere kjente transduser-utførelsen. Den sentrale polen 13 har en sentral og aksial boring som senterbolten 1 går gjennom, og det magnetiske feltet mellom polene går hovedsakelig radielt ut fra den sentrale polen 13 til den omgivende polen, gjennom luftgapet 12. Reference number 4 relates to a magnet of strontium ferrite, which is given a cylindrical design with concentric magnetic poles and annular air gap 12, analogous to the previously known transducer design. The central pole 13 has a central and axial bore through which the center bolt 1 passes, and the magnetic field between the poles goes out mainly radially from the central pole 13 to the surrounding pole, through the air gap 12.
I luftgapet 12 stikker en spoleform 7 inn, på figuren ovenfra. På spoleformen 7 er viklet en spole 6. Det skal bemerkes at spoleformen 7, som har form som en kopp (på figuren stående opp/ned), ifølge oppfinnelsen er tildannet av et eneste stykke, og er av utvalset metall, fortrinnsvis aluminium. Vanligvis er en slik spoleform av papp eller plast, men den her benyttede nye spoleformen, som er et sentralt trekk ved oppfinnelsen, er i stand til å tåle langt større krefter enn de tidligere konstruksjoner, og sørger også for langt bedre bortledning av varme, slik at høyere effekter kan benyttes. Andre metaller enn aluminium kan benyttes, men de må kunne valses ut og være slik at magnetfeltet i luftgapet ikke påvirkes vesentlig, eksempelvis av svakt paramagnetisk type. In the air gap 12, a coil form 7 protrudes, in the figure from above. A coil 6 is wound on the coil form 7. It should be noted that the coil form 7, which has the shape of a cup (upside down in the figure), according to the invention is formed from a single piece, and is made of rolled metal, preferably aluminium. Usually such a coil form is made of cardboard or plastic, but the new coil form used here, which is a central feature of the invention, is able to withstand far greater forces than the previous constructions, and also ensures far better dissipation of heat, such that higher effects can be used. Metals other than aluminum can be used, but they must be able to be rolled out and be such that the magnetic field in the air gap is not significantly affected, for example of a weak paramagnetic type.
Spolen 6 er viklet på spoleformen 7 og festet på en særegen måte. Istedenfor å benytte en lakk som festemiddel, er det ifølge oppfinnelsen her benyttet en epoxy-forbindelse, og etter vikling, epoxy-påføring og innbaking, er denne typen spolevikling i stand til å tåle temperaturer på ca. 240° C, i sammenligning med tidligere øvre grense på ca. 120° C. The coil 6 is wound on the coil form 7 and fixed in a distinctive way. Instead of using a varnish as a fixing agent, according to the invention, an epoxy compound is used here, and after winding, epoxy application and baking, this type of coil winding is able to withstand temperatures of approx. 240° C, in comparison with the previous upper limit of approx. 120°C.
Spoleformen 7 er festet med sitt sentrale område (koppens bunn) til senterbolten 1, og sitter altså ikke-bevegelig i forhold til denne. Aluminiums-spoleformen 7 er stivere enn en spoleform av papp eller plast, og sørger derved også for en mer ideell oppførsel (dvs. mangel på oppførsel, egentlig mangel på bevegelser) for spolen 6 i luftgapet 12, hvilket luftgap er utformet så trangt som mulig for å gi transduseren høy virkningsgrad. The coil form 7 is attached with its central area (the bottom of the cup) to the center bolt 1, and thus sits immovably in relation to this. The aluminum coil form 7 is stiffer than a cardboard or plastic coil form, thereby also providing a more ideal behavior (ie lack of behavior, essentially lack of movement) for the coil 6 in the air gap 12, which air gap is designed as narrowly as possible to give the transducer a high efficiency.
Magneten 4 er opphengt i to opphengsfjærer eller -membraner 2 og 8. Den eksempelvise utformingen av membranene eller fjærene 2 og 8 framgår best av Fig. 2, hvor en tre-armet konfigurasjon vises. I sentrum er opphengsfjærene 2 og 8 festet til senterbolten 1. Fra sentrum utgår hovedsakelig flate armer, her tre stk., til festepunkter på magneten 4. The magnet 4 is suspended in two suspension springs or membranes 2 and 8. The exemplary design of the membranes or springs 2 and 8 is best seen in Fig. 2, where a three-arm configuration is shown. In the centre, the suspension springs 2 and 8 are attached to the center bolt 1. From the centre, mainly flat arms, here three, extend to attachment points on the magnet 4.
Siden det er vanskelig å bore i og bearbeide det aktuelle magnetiske materialet i magneten, som her fortrinnsvis er strontium-ferritt, er det pålimt ytterplater 3 og 5 på hver plan side av magneten 4. Den ene av disse platene, her platen 3, kan forøvrig gjerne også benyttes som magnetfluks-leder, dersom den er utformet av bløtt magnetisk materiale. Since it is difficult to drill into and process the relevant magnetic material in the magnet, which here is preferably strontium ferrite, outer plates 3 and 5 are glued on each flat side of the magnet 4. One of these plates, here plate 3, can moreover, it is also often used as a magnetic flux conductor, if it is made of soft magnetic material.
Et sentralt trekk ved oppfinnelsen er imidlertid anbringel-sen av avstandstykkene 11 på utsiden av platene 3 og 5, til hvilke avstandsstykker membranene eller opphengsfjærene 2 og 8 er festet. A central feature of the invention, however, is the placement of the spacers 11 on the outside of the plates 3 and 5, to which spacers the membranes or suspension springs 2 and 8 are attached.
Ved å anbringe opphengsfjærene 2 og 8 på denne måten, i avstand fra og på yttersiden av hele magnet/spolesystemet, oppnås at systemets egenresonans lettere kan anbringes i et gunstig og lavt område, og tranduseren settes i stand til å tåle kraftige akselerasjoner (høye "G-verdier"). By placing the suspension springs 2 and 8 in this way, at a distance from and on the outside of the entire magnet/coil system, it is achieved that the natural resonance of the system can be more easily placed in a favorable and low area, and the transducer is enabled to withstand strong accelerations (high " G-values").
Videre er membranfjærene 2 og 8 utstyrt med hensikts-messig anbrakte knepunkter 9 i de enkelte armene. Dette trekk innføres for å oppnå nøyaktig konstruksjonsmessig regulering av fjærstivheten for opphengsfjærene 2 og 8, og dermed nøyaktig bestemmelse av egenresonans for transduseren. Furthermore, the membrane springs 2 and 8 are equipped with appropriately placed knee points 9 in the individual arms. This feature is introduced in order to achieve precise structural regulation of the spring stiffness for the suspension springs 2 and 8, and thus accurate determination of the natural resonance of the transducer.
Opphengsfjærene 2 og 8 er fortrinnsvis av metall, eksempelvis messing, og har høy elastisitetsmodul. The suspension springs 2 and 8 are preferably made of metal, for example brass, and have a high modulus of elasticity.
Referansetall 10 betegner en brakett på spoleformen 7 med feste-ører for elektriske tilførselsledninger til svingspolen 6. Reference number 10 denotes a bracket on the coil form 7 with attachment ears for electrical supply lines to the coil 6.
Når drivstrøm tilføres svingspolen 6, induseres magnetiske, gjensidige krefter mellom spolen 6 og magneten 4, og magneten 4 settes i bevegelse relativt senterbolten 1. På grunn av magnetens masse vil imidlertid også senterbolten 1 og dens tilkoblete ytre mekaniske system, her skipsskroget, settes i tilsvarende motfase-svingninger. When drive current is supplied to the turning coil 6, mutual magnetic forces are induced between the coil 6 and the magnet 4, and the magnet 4 is set in motion relative to the center bolt 1. Due to the magnet's mass, however, the center bolt 1 and its connected external mechanical system, here the ship's hull, will also be set in corresponding anti-phase oscillations.
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO891976A NO167699C (en) | 1989-05-16 | 1989-05-16 | ELECTROMECHANICAL TRANSDUCES FOR LOW-FREQUENCY VIBRATIONS. |
AU56519/90A AU5651990A (en) | 1989-05-16 | 1990-05-16 | Electromechanical transducer for low frequency vibrations |
PCT/NO1990/000085 WO1990014169A1 (en) | 1989-05-16 | 1990-05-16 | Electromechanical transducer for low frequency vibrations |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO891976A NO167699C (en) | 1989-05-16 | 1989-05-16 | ELECTROMECHANICAL TRANSDUCES FOR LOW-FREQUENCY VIBRATIONS. |
Publications (4)
Publication Number | Publication Date |
---|---|
NO891976D0 NO891976D0 (en) | 1989-05-16 |
NO891976L NO891976L (en) | 1990-11-19 |
NO167699B true NO167699B (en) | 1991-08-19 |
NO167699C NO167699C (en) | 1991-11-27 |
Family
ID=19892024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO891976A NO167699C (en) | 1989-05-16 | 1989-05-16 | ELECTROMECHANICAL TRANSDUCES FOR LOW-FREQUENCY VIBRATIONS. |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU5651990A (en) |
NO (1) | NO167699C (en) |
WO (1) | WO1990014169A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4442262C2 (en) * | 1994-11-28 | 1999-06-24 | Kaltenbach & Voigt | Vibrating table for a laboratory, especially for a medical or dental laboratory |
US6349142B1 (en) * | 1999-10-05 | 2002-02-19 | Yi-Chuan Teng | Structure of speaker use on ship |
DE10235126C1 (en) * | 2002-08-01 | 2003-11-06 | Inst Geowissenschaftliche Geme | Oscillation generator for seismic applications has outer housing provided with coil cores on opposite sides and inner housing providing coupling between respective electrical coils |
DE102007013700B4 (en) * | 2007-03-19 | 2015-05-28 | Renfert Gmbh | Dentalgeräterüttelvorrichtung |
FR3118265B1 (en) * | 2020-12-17 | 2023-09-15 | Renault Sas | Coupling bridge for the transmission of vibrations in a solid-body acoustic device intended for a motor vehicle. |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2392143A (en) * | 1942-11-30 | 1946-01-01 | Rca Corp | Loud-speaker |
GB736631A (en) * | 1952-07-16 | 1955-09-14 | Goodmans Ind Ltd | Improvements in or relating to vibration generating motors |
GB894598A (en) * | 1957-12-30 | 1962-04-26 | Prochazka Miroslav | A device for generating mechanical vibrations |
US3366749A (en) * | 1964-04-09 | 1968-01-30 | Allen Alan A | Audio transducer |
FR1543248A (en) * | 1967-07-06 | 1968-10-25 | Ct D Etudes De Matieres Plasti | Electrodynamic vibration exciter |
BE794025A (en) * | 1972-01-21 | 1973-05-02 | Gen Electric | MAGNET SET |
FR2135998A5 (en) * | 1972-03-08 | 1972-12-22 | Commissariat Energie Atomique | |
US3935402A (en) * | 1973-07-25 | 1976-01-27 | Ohm Acoustics Corporation | Loudspeaker voice coil arrangement |
US3991286A (en) * | 1975-06-02 | 1976-11-09 | Altec Corporation | Heat dissipating device for loudspeaker voice coil |
JPS6052198A (en) * | 1983-08-31 | 1985-03-25 | Pioneer Electronic Corp | Speaker |
NO168513C (en) * | 1987-08-07 | 1992-03-04 | Infrawave Tech As | PROCEDURE AND DEVICE FOR AA PREVENTING GROWTH ON SURFACES EXPOSED BY SEA WATER IMPACT. |
-
1989
- 1989-05-16 NO NO891976A patent/NO167699C/en unknown
-
1990
- 1990-05-16 AU AU56519/90A patent/AU5651990A/en not_active Abandoned
- 1990-05-16 WO PCT/NO1990/000085 patent/WO1990014169A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO891976D0 (en) | 1989-05-16 |
WO1990014169A1 (en) | 1990-11-29 |
AU5651990A (en) | 1990-12-18 |
NO891976L (en) | 1990-11-19 |
NO167699C (en) | 1991-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7292695B2 (en) | Bone conductive speaker | |
EP3016405A1 (en) | Piezoelectric ceramic dual-frequency earphone structure | |
SE524074C2 (en) | Apparatus for damping vibration of a vibrating surface and methods for mounting such a device | |
WO2018117189A1 (en) | Vibration generation device | |
JP2009213194A (en) | Oscillatory electromagnetic generator | |
WO2022166374A1 (en) | Sound producing unit | |
CN112770237B (en) | Sound monomer | |
CN103357566B (en) | Vibrator | |
NO167699B (en) | ELECTROMECHANICAL TRANSDUCES FOR LOW-FREQUENCY VIBRATIONS. | |
WO2022166376A1 (en) | Sound producing unit | |
WO2022166375A1 (en) | Sound production unit | |
US3308423A (en) | Electroacoustic transducer | |
CN114745643A (en) | Sound production vibration device and electronic equipment | |
US11057710B2 (en) | Loudspeaker structure | |
KR100439583B1 (en) | Speaker for generating both vibration and sound | |
US5355351A (en) | Underwater low-frequency sound producer using a rare earth alloy | |
JPS6113900A (en) | Transducer | |
US4745586A (en) | Electromagnetic transducers for underwater low-frequency high-power use | |
JP2000157931A (en) | Sounding and vibrating body | |
JP2018074472A (en) | Speaker | |
US2473354A (en) | Device for transmitting and receiving compressional waves | |
JP2000166210A (en) | Sounding oscillating body | |
US2517565A (en) | Electrodynamic transceiver for transmission and reception of sound | |
US1819964A (en) | Electromechanical vibrator | |
JPS5936478B2 (en) | Electromagnetic acoustic transducer |