NO166535B - FLAMMABLE, CROSS-BONDED POLYOLEFIN MATERIAL, AND THE USE OF IT FOR COATING ELECTRICAL CONDUCTORS. - Google Patents

FLAMMABLE, CROSS-BONDED POLYOLEFIN MATERIAL, AND THE USE OF IT FOR COATING ELECTRICAL CONDUCTORS. Download PDF

Info

Publication number
NO166535B
NO166535B NO831451A NO831451A NO166535B NO 166535 B NO166535 B NO 166535B NO 831451 A NO831451 A NO 831451A NO 831451 A NO831451 A NO 831451A NO 166535 B NO166535 B NO 166535B
Authority
NO
Norway
Prior art keywords
propylene
oxygen
hydroperoxide
epoxidation
reaction
Prior art date
Application number
NO831451A
Other languages
Norwegian (no)
Other versions
NO831451L (en
NO166535C (en
Inventor
James W Biggs
Melvin F Maringer
Original Assignee
Nat Distillers Chem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Distillers Chem Corp filed Critical Nat Distillers Chem Corp
Publication of NO831451L publication Critical patent/NO831451L/en
Publication of NO166535B publication Critical patent/NO166535B/en
Publication of NO166535C publication Critical patent/NO166535C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Et fylt tverrbundet polymert materiale av ethylen-vinylester copolymer som i vesentlig grad oppviser flammehemmende egenskaper ved innlemmelse av et dobbelt smøremiddelsystem som innbefatter en fettsyre og et alkylen-bis-amid.Elektriske ledere belagt med nevnte polymer-blanding er også omtalt.A filled cross-linked polymeric material of ethylene-vinyl ester copolymer which exhibits flame-retardant properties to a significant extent by incorporating a double lubricant system which includes a fatty acid and an alkylene-bis-amide. Electrical conductors coated with said polymer mixture are also discussed.

Description

Fremgangsmåte for fremstilling av propylenoksyd. Process for the production of propylene oxide.

Nærværende oppfinnelse vedrorer fremstillingen av propylenoksyd hvor propylen omsettes med et organisk hydroperoksyd. The present invention relates to the production of propylene oxide where propylene is reacted with an organic hydroperoxide.

Epoksyforbindelser som propylenoksyd er meget verdifulle og viktige handelsmaterialer. Tidligere har det vært anvendt fremgangsmåte for epoksydasjon av forskjellige olefinske materialer, slik som propylen, hvor det gjores bruk av meget aktive materialer, slik som persyrer. Imidlertid var bruken av disse persyrematerialer ikke tilfredsstillende, på grunn av de store omkostninger og en noe ikke-selektiv reaksjon. Epoxy compounds such as propylene oxide are very valuable and important commercial materials. In the past, methods have been used for the epoxidation of various olefinic materials, such as propylene, where highly active materials, such as peracids, are used. However, the use of these peracid materials was not satisfactory, due to the high costs and a somewhat non-selective reaction.

I nyere tid er viktige fremskritt blitt gjort på området epoksydasjon av olefinske umettede forbindelser til de tilsvarende oksirane forbindelser. Disse viktige fremskritt har omfattet erkjennelsen av at organiske hydroperoksyder kan anvendes ved den hensiktsmessige og sterke selektive epoksydasjon av olefinske umettede forbindelser. In recent times, important progress has been made in the area of epoxidation of olefinic unsaturated compounds to the corresponding oxirane compounds. These important advances have included the recognition that organic hydroperoxides can be used in the appropriate and highly selective epoxidation of olefinic unsaturated compounds.

Ifolge den grunnleggende prosess omsettes propylen og et organisk hydroperoksyd til propylenoksyd og en alkohol tilsvarende utgangshydroperoksydet. Det er vanlig å arbeide med lave ole-finomdanninger pr. gjennomgang, f.eks. fra 10 til 20 % for å oppnå hoy selektivitet. Folgelig må store mengder propylen resirkuleres. Ved arbeider i kontinuerlig kommersiell skala resirkuleres uomsatt propylen ofte av okonomiske og andre grunner. Uansett hvilken metode som velges for å anvende det uomsatte propylen, opptrer vanskeligheter. F.eks. er det funnet urenheter som er meget vanskelige å fjerne fra propylenoksyd, f.eks. metylformiat er til stede i produktstrommen, videre at oppflamningsnivå og også detonasjonsnivået for propyl-enoksygenblandinger anses nådd eller overskrides ved visse punkter i fremgangsmåten. According to the basic process, propylene and an organic hydroperoxide are converted to propylene oxide and an alcohol corresponding to the starting hydroperoxide. It is common to work with low oleic fines per review, e.g. from 10 to 20% to achieve high selectivity. Consequently, large amounts of propylene must be recycled. In operations on a continuous commercial scale, unconverted propylene is often recycled for economic and other reasons. Whatever method is chosen to utilize the unreacted propylene, difficulties arise. For example impurities have been found which are very difficult to remove from propylene oxide, e.g. methyl formate is present in the product stream, further that the ignition level and also the detonation level for propylene-oxygen mixtures are considered to be reached or exceeded at certain points in the process.

Nærværende oppfinnelse er basert på den erkjennelse at ikke alt oksygen fra hydroperoksydet reagerer med propylenoksyd og at reaktorutlopsstrommen ved normal epoksydasjon som enten er katalysert eller ikke er katalysert, inneholder fra noen få tiendedeler til flere prosent uopplost oksygen og at oksygeninnholdet i propylen stiger kumulativt så lenge som propylen resirkuleres. Det er videre blitt funnet at uomsatt propylen ikke kan gjenanvendes ved å resirkuleres med mindre oksygeninnholdet er redusert til visse kritiske nivåer. The present invention is based on the recognition that not all oxygen from the hydroperoxide reacts with propylene oxide and that the reactor outlet stream in normal epoxidation, which is either catalyzed or not catalyzed, contains from a few tenths to several percent undissolved oxygen and that the oxygen content in propylene rises cumulatively as long as propylene is recycled. It has further been found that unreacted propylene cannot be reused by recycling unless the oxygen content is reduced to certain critical levels.

En hensiktsmessig metode for å redusere oksygeninnholdet i propylen er å fore reaktorutlopsstrommen gjennom en destilla-sjonsfraksjoneringskolonne eller flere slike kolonner, hvor de lette fraksjoner utvinnes og kondenseres, og det flytende kondensat skilles fra ikke-kondensert materiale. Det flytende kondensat som hovedsakelig består av propylen, kan resirkuleres eller anvendes for andre formål. Hovedmengden av oksygen er til stede i det ikke-kondenserte materialet, skjbnt noe fremdeles er til stede i det flytende resirkulerte propylen. A suitable method for reducing the oxygen content in propylene is to pass the reactor outlet stream through a distillation fractionation column or several such columns, where the light fractions are extracted and condensed, and the liquid condensate is separated from non-condensed material. The liquid condensate, which mainly consists of propylene, can be recycled or used for other purposes. The majority of oxygen is present in the non-condensed material, although some is still present in the liquid recycled propylene.

En alternativ metode for å anvende en destillasjonskolonne ville være å bruke en kombinert olje-absorberings og avdriv-ningsanordning. Ved en annen metode kan det ikke-reagerte propylen som utvinnes fra reaksjonsblåndingen, kjemisk behandles for å redusere oksygenet ved å utsette propylenet for oksy-dasjonsbetingelser ved å fore det over en oksydasjonskatalysa-tor for å forårsake en regulert oksydasjon av propylen til bi-produkt som lett kan fjernes uten faje for å danne brennbare blandinger eller som ville være inert ved den etterfblgende behandling av propylen. An alternative method of using a distillation column would be to use a combined oil absorption and stripping device. In another method, the unreacted propylene recovered from the reaction mixture can be chemically treated to reduce the oxygen by subjecting the propylene to oxidizing conditions by passing it over an oxidation catalyst to cause a controlled oxidation of the propylene to by-product which can be easily removed without faze to form combustible mixtures or which would be inert in the subsequent treatment of propylene.

Det er klart at oksygeninnholdet i innmatningen til an epoksydasjonsreaktor må være lav nok for å tillate arbeidet med denne epoksydasjonsbehandling i det ikke-detonerbare området. Imidlertid er det funnet ved nærværende arbeid at meget mindre oksygen er tillatelig i resirkulasjonsstrommen enn det som ville tilsvare det ikke-detonerbare eller ikke-oppflambare arbeid i epoksydasjonsanordningen, selv hvis detonerbart arbeid unngås ved å oke det totale trykk i epoksydasjonsanordningen for å holde oksygen i flytende fase, dvs. slik at der ikke ville være noen gassfase i anordningen. It is clear that the oxygen content in the feed to an epoxidation reactor must be low enough to allow the operation of this epoxidation treatment in the non-detonable region. However, it has been found in the present work that much less oxygen is permissible in the recycle stream than would correspond to the non-detonable or non-flammable work in the epoxidizer, even if detonable work is avoided by increasing the total pressure in the epoxidizer to keep oxygen in liquid phase, i.e. so that there would be no gas phase in the device.

Det funn at vesentlige mengder oksygen dannes ved epoksydasjonsreaksjonen tvinger en til å anvende en regulering av oksygeninnholdet i propylenet som trer inn i epoksydasjonsreaksjonen. Det er ved nærværende oppfinnelse funnet at det totale oksygeninnhold som foreligger i reaksjonskaret, er under 3 mol-%, hvilket oppnås ved at oksygen fjernes i det minste delvis fra uomsatt propylen for tilbakeforing til reaksjonskaret. Hvis oksygenmengden i propylen er hoyere enn den angitte, skjbnt fremdeles under nivåer for detonering eller opp-, flamning, er der mange vanskeligheter forbundet som gjor en gjennomfbrbar prosess uoppnålig. Disse vanskeligheter kan best forklares som folger: Med en normal resirkulering av propylen, som ville inneholde den kumulativ oksygentilfbrsel pr. gjennomgang, fortsetter oksygennivået å stige i epoksydasjonsanordningen. Den forste store effekt som skyldes en slik oksygenoppbygning er den som omfatter direkte angrep av molekylært oksygen på propylen i epoksydasjonsanordningen. Det er almindelig kjent på området at propylen oksyderes med molekylært oksygen i temperaturområdet som anvendes for epoksydasjonen. Denne virkning undertrykker fullstendig en fordel som er oppnålig fra reaksjonen av propylen og hydroperoksyd, nemlig dannelse av propylenoksyd med meget hbye selektiviteter uten noen dannelse av metylformiat. I dette tilfellet bygger oksygennivået seg opp i det ikke reagerte propylen, og fdigelig i epoksydasjonsreaktoren når ikke-reagert propylen resirkuleres, inntil en varig tilstand oppnås, nemlig den tilstand, ved hvilken nettomengden fritt oksygen i epoksydasjonsanordningen forbrukes ved direkte oksydasjonsangrep på propylen. Dette resulterer i meget utilfredsstillende arbeid på grunn av at uheldige biprodukter som er kjent, opptrer ved vanlig propyl-enoksydasjon med molekylært oksygen. The discovery that significant amounts of oxygen are formed in the epoxidation reaction forces one to apply a regulation of the oxygen content in the propylene that enters the epoxidation reaction. It has been found in the present invention that the total oxygen content present in the reaction vessel is below 3 mol%, which is achieved by oxygen being removed at least partially from unreacted propylene for return to the reaction vessel. If the amount of oxygen in propylene is higher than that specified, but still below levels for detonation or ignition, many difficulties are involved which make a feasible process unattainable. These difficulties can best be explained as follows: With a normal recycling of propylene, which would contain the cumulative oxygen supply per review, the oxygen level continues to rise in the epoxidizer. The first major effect caused by such an oxygen build-up is that which includes the direct attack of molecular oxygen on propylene in the epoxidation device. It is common knowledge in the field that propylene is oxidized with molecular oxygen in the temperature range used for the epoxidation. This action completely suppresses an advantage obtainable from the reaction of propylene and hydroperoxide, namely the formation of propylene oxide with very high selectivities without any formation of methyl formate. In this case, the oxygen level builds up in the unreacted propylene, and subsequently in the epoxidation reactor as unreacted propylene is recycled, until a permanent state is reached, namely the state at which the net amount of free oxygen in the epoxidation device is consumed by direct oxidation attack on the propylene. This results in very unsatisfactory work due to the fact that unfortunate by-products which are known to occur in ordinary propyl enoxidation with molecular oxygen.

Den annen vanskelighet som opptrer enten sammen med eller for den forste er det hasardlbse og ubkonomiske arbeid når oksygennivået stiger. Det er meget ubnsket å drive epoksydasjons-,anordningen med en gassfase som inneholder molekylært oksygen på grunn av eksplosjonsrisikoen. Dette kan unngås ved å anvende et tilstrekkelig hbytrykk for å holde alt oksygenet opplost i den flytende fase. Imidlertid på grunn av oksygenets store flyktighet stiger de nbdvendige trykk i anordningen sterkt når konsentrasjonen av oksygenet i den resirkulerte strbm oker. Arbeid blir upraktisk bkonomisk sett eller hbyst risikofylt på grunn av den virkning. Dessuten, hvis oksygennivået får stige, er det bkonomisk upraktisk å utfore separer-ingen av propylen og oksygen, f.eks. ved hdytrykksdestillasjon uten å ha en gassfase i fraksjoneringssonen, som er innen det brennbare og eksplosjonsfårlige området. Det er således vesentlig at oksygenet renses i en slik grad i anleggets propyl-engjennvinningsseksjoner at det kan arbeides under det eksplo-sjonsfarlige området i anleggets alle seksjoner. The second difficulty which occurs either together with or before the first is the hazardous and uneconomic work when the oxygen level rises. It is highly undesirable to operate the epoxidation device with a gas phase containing molecular oxygen due to the risk of explosion. This can be avoided by applying a sufficient high pressure to keep all the oxygen dissolved in the liquid phase. However, due to the high volatility of oxygen, the required pressures in the device rise sharply when the concentration of oxygen in the recycled stream increases. Work becomes impractical from an economic point of view or extremely risky because of that effect. Moreover, if the oxygen level is allowed to rise, it is economically impractical to carry out the separation of propylene and oxygen, e.g. by high-pressure distillation without having a gas phase in the fractionation zone, which is within the flammable and explosive area. It is therefore essential that the oxygen is purified to such an extent in the plant's propylene recovery sections that work can be carried out under the potentially explosive area in all sections of the plant.

Hydroperoksydene som anvendes ved oppfinnelsen, er de som har formel ROOH, hvor R er et substituert eller usubstituert alkyl, cykloalkyl eller aralkylradikal med fra 3 til 20 karbonatomer. R kan være et heterocyklisk radikal. The hydroperoxides used in the invention are those with the formula ROOH, where R is a substituted or unsubstituted alkyl, cycloalkyl or aralkyl radical with from 3 to 20 carbon atoms. R can be a heterocyclic radical.

Illustrerende og foretrukne hydroperoksyder er kumenhydroper-oksyd, etylbenzenhydroperoksyd, tertiært butylhydroperoksyd, cykloheksanonperoksyd, tetrahydronaftalen-hydroperoksyd, me-tyl etylketonperoksyd, metylcykloheksanhydroperoksyd. En an-vendelig organisk hydroperoksydforbindelse for anvendelse ved oppfinnelsen er peroksydproduktet som dannes ved oksydasjon av cykloheksanol i flytende fase. Illustrative and preferred hydroperoxides are cumene hydroperoxide, ethylbenzene hydroperoxide, tertiary butyl hydroperoxide, cyclohexanone peroxide, tetrahydronaphthalene hydroperoxide, methyl ethyl ketone peroxide, methyl cyclohexane hydroperoxide. A useful organic hydroperoxide compound for use in the invention is the peroxide product which is formed by oxidation of cyclohexanol in the liquid phase.

Temperaturer som kan anvendes ved nærværende oppfinnelse kan varieres ganske utstrakt i avhengighet av reaktiviteten og andre egenskaper i det spesielle system. Generelt kan temperaturer innen området -20 - 200°C, særlig 0 - 150°C, og fortrinnsvis 50 - 120°C anvendes. Reaksjonen utfores ved trykk-betingelser tilstrekkelig til å opprettholde en flytende fase. Skjbnt sub-atmosfære-trykk kan brukes, er vanligvis trykk innen området atmosfæretrykk til 70 kg/cm 2 absolutt mest onske-lig. Temperatures that can be used in the present invention can be varied quite widely depending on the reactivity and other properties of the particular system. In general, temperatures within the range -20 - 200°C, in particular 0 - 150°C, and preferably 50 - 120°C can be used. The reaction is carried out under pressure conditions sufficient to maintain a liquid phase. Although sub-atmospheric pressure can be used, usually pressures in the range of atmospheric pressure to 70 kg/cm 2 are absolutely most desirable.

Forholdet mellom propylen og organiske peroksydfbrbindelser kan variere over et utstrakt område. Generelt anvendes molfor-hold mellom propylen og hydroperoksyd innen området 0,5 : 1 til lOO : 1, særlig 1 : 1 til 20 : 1, og fortrinnsvis fra 2 : 1 til IO : 1. The ratio between propylene and organic peroxide compounds can vary over a wide range. In general, molar ratios between propylene and hydroperoxide are used within the range 0.5:1 to 100:1, in particular 1:1 to 20:1, and preferably from 2:1 to 10:1.

Konsentrasjonen av hydroperoksyder i propylenoksydasjonsreak-sjonsblåndingen ved begynnelsen av reaksjonen ville normalt være 1 % eller mer, spesielt lavere konsentrasjoner ville være effektive og kan brukes. The concentration of hydroperoxides in the propylene oxidation reaction mixture at the beginning of the reaction would normally be 1% or more, especially lower concentrations would be effective and can be used.

Propylenoksydasjonsreaksjonen kan utfores i nærvær av et opp-losningsmiddel, og i realiteten er det vanligvis bnskelig at det anvendes. Vanligvis anvendes ikke vandige opplbsningsmid-ler. Blant de egnede stoffer er hydrokarboner, som kan være alifatiske eller aromatiske, og de oksygenerte derivater av disse hydrokarboner. Fortrinnsvis har opplbsningsmidlet samme karbonskjelett som det anvendte hydroperoksyd for å redusere eller unngå problemer ved separering av opplbsningsmidlet. The propylene oxidation reaction can be carried out in the presence of a solvent, and in practice it is usually desirable that it be used. Usually, aqueous solvents are not used. Among the suitable substances are hydrocarbons, which may be aliphatic or aromatic, and the oxygenated derivatives of these hydrocarbons. Preferably, the solvent has the same carbon skeleton as the hydroperoxide used in order to reduce or avoid problems when separating the solvent.

Epoksydasjonsreaksjonen finner sted i nærvær eller fravær av metalliske epoksydasjonskatalysatorer. Hvis disse anvendes, kan katalysatorene omfatte forbindelser av V, Mo, Ti, W, Se, Mb, Te, fortrinnsvis de forste fire nevnte. The epoxidation reaction takes place in the presence or absence of metallic epoxidation catalysts. If these are used, the catalysts may comprise compounds of V, Mo, Ti, W, Se, Mb, Te, preferably the first four mentioned.

Mengden av metall i opplbsningen som anvendes som katalysator ved epoksydasjonsprosessen, kan variere sterkt, skjbnt det er bnskelig å anvende minst O,00001 mol og fortrinnsvis 0,002 mol til 0,03 mol pr. mol tilstedeværende hydroperoksyd. Mengder stbrre enn ca. 0,1 mol synes ikke å gi noen fordel overfor mindre mengder, skjbnt mengder opp til 1 mol eller mer pr. mol hydroperoksyd kan brukes. Katalysatoren forblir opplost i reaksjonsblåndingen under prosessen og kan gjenanvendes ved reaksjonen etter fjerning av reaksjonsproduktene. Molybden-forbindelsene omfatter molybden-organiske salter, oksyderer, slik som MO2O3, MoO^, molybdensyre, molybdenklorider og oksy-klorider, molybdenfluorid, fosfat, sulfid og lignende. Hetero-polysyrer som inneholder molybden kan brukes såvel som salter av disse, eksempler er fosformolybdensyre og natrium og kalsi-umsalter av denne. Lignende eller analoge forbindelser av andre metaller av nevnte kan brukes, såvel som blandinger av disse. The amount of metal in the solution used as a catalyst in the epoxidation process can vary greatly, although it is desirable to use at least 0.00001 mol and preferably 0.002 mol to 0.03 mol per moles of hydroperoxide present. Quantities larger than approx. 0.1 mol does not seem to give any advantage over smaller amounts, but amounts up to 1 mol or more per moles of hydroperoxide can be used. The catalyst remains dissolved in the reaction mixture during the process and can be reused in the reaction after removal of the reaction products. The molybdenum compounds include molybdenum organic salts, oxidizers, such as MO2O3, MoO3, molybdic acid, molybdenum chlorides and oxychlorides, molybdenum fluoride, phosphate, sulphide and the like. Heteropolyacids containing molybdenum can be used as well as salts thereof, examples are phosphormolybdic acid and sodium and calcium salts thereof. Similar or analogous compounds of other metals of the aforementioned can be used, as well as mixtures thereof.

De katalytiske komponenter kan anvendes ved epoksydasjonsreaksjonen i form av en forbindelse eller blanding som opprinnelig er opplbselig i reaksjonsmediet. Skjbnt opplbseligheten i noen grad vil avhenge av det spesielle reaksjonsmedium som brukes, vil et egnet opplbselig stoff omfattende hydrokarbon-opplbselige organometalliske forbindelser, som har en opplbselighet i metanol ved romtemperatur på minst 0,1 g pr. liter. Illustrerende opplbselige former av katalytiske materialer er naftenater, stearater, oktoater, karbonyler, og lignende. Forskjellige chelater, assosiasjonsforbindelser og enolsalter, slik som f.eks. aceto-acetonater kan også anvendes. Spesielle og foretrukne katalytiske forbindelser av denne type for anvendelse i oppfinnelsen er naftenater og karbonyler av molybden, titan, wolfram, rhenium, niobium, tantalium og selenium. Alk-oksy-forbindelser, slik som tetrabutyltitanat og lignende te-traalkyltitanater er meget anvendelige. Imidlertid er det blitt funnet at fire av de angitte katalysatorer har.spesiell anvendelighet ved epoksydasjonen av et primært olefin, slik som propylen. Disse fire katalysatorer er molybden, titan, vanadin og wolfram. Det er blitt funnet at deres aktivitet av epoksydasjon av primære olefiner er overraskende hoy, og kan fore til hoy selektivitet for propylen til propylenoksyd. Disse hoye selektiviteter oppnås ved hoye omdannelser av hydroperoksyd, 50 % eller hoyere, hvilke omdannelsesnivåer er viktige for den kommersielle anvendelse av denne arbeidsmåte. The catalytic components can be used in the epoxidation reaction in the form of a compound or mixture which is originally soluble in the reaction medium. Although the solubility will depend to some extent on the particular reaction medium used, a suitable soluble substance will comprise hydrocarbon-soluble organometallic compounds, which have a solubility in methanol at room temperature of at least 0.1 g per litres. Illustrative soluble forms of catalytic materials are naphthenates, stearates, octoates, carbonyls, and the like. Various chelates, association compounds and enol salts, such as e.g. aceto-acetonates can also be used. Special and preferred catalytic compounds of this type for use in the invention are naphthenates and carbonyls of molybdenum, titanium, tungsten, rhenium, niobium, tantalum and selenium. Alkoxy compounds, such as tetrabutyl titanate and similar tetraalkyl titanates are very useful. However, four of the listed catalysts have been found to have particular utility in the epoxidation of a primary olefin, such as propylene. These four catalysts are molybdenum, titanium, vanadium and tungsten. It has been found that their activity of epoxidation of primary olefins is surprisingly high, and can lead to high selectivity for propylene to propylene oxide. These high selectivities are achieved by high conversions of hydroperoxide, 50% or higher, which conversion levels are important for the commercial application of this method of operation.

Basiske stoffer kan brukes ved nærværende oppfinnelse. Slike basiske stoffer er alkalimetallforbindelser eller alkalijord-metallforbindelser. Særlig foretrukket er de forbindelser av natrium, kalium, litium, kalsium, magnesium, rubidium, cæsium, strontium og barium. Av de forbindelser som anvendes, er de mest foretrukket som er opploselige i reaksjonsmediet. Imidlertid kan uopploselige former brukes og er effektive når de dispergeres i reaksjonsmediet. Organiske syreforbindelser, slik som et metallacetat, naftenat, stearat, oktoat, butyrat og lignende kan brukes. Dessuten kan også uorganiske salter, slik som natriumkarbonat, magnesiumkarbonat og trinatriumfos-fat brukes. Spesielt foretrukne arter for metallsalter omfatter natriumnaftenat, kalium-stearat, magnesiumkarbonat. Hyd-roksyder og oksyder av alkali- og jordalkalimetallforbindelser kan anvendes. Eksempler er NaOH, MgO, CaO, Ca(0H)2 og KOH, alkoksyder, f.eks. natriumetylat, kaliumcumylat, natriumfenolat kan brukes. Amider slik som NaNH2 kan anvendes såvel som kvar-ternære ammoniumsalter. Generelt kan enhver forbindelse av alkali- eller jordalkalimetaller som gir en basisk reaksjon i vann brukes. Basic substances can be used in the present invention. Such basic substances are alkali metal compounds or alkaline earth metal compounds. Particularly preferred are compounds of sodium, potassium, lithium, calcium, magnesium, rubidium, cesium, strontium and barium. Of the compounds used, the most preferred are those which are soluble in the reaction medium. However, insoluble forms can be used and are effective when dispersed in the reaction medium. Organic acid compounds such as a metal acetate, naphthenate, stearate, octoate, butyrate and the like can be used. In addition, inorganic salts such as sodium carbonate, magnesium carbonate and trisodium phosphate can also be used. Particularly preferred species for metal salts include sodium naphthenate, potassium stearate, magnesium carbonate. Hydroxides and oxides of alkali and alkaline earth metal compounds can be used. Examples are NaOH, MgO, CaO, Ca(OH)2 and KOH, alkoxides, e.g. sodium ethylate, potassium cumylate, sodium phenolate can be used. Amides such as NaNH2 can be used as well as quaternary ammonium salts. In general, any compound of alkali or alkaline earth metals which gives a basic reaction in water can be used.

Den basiske forbindelse anvendes under epoksydasjonsreaksjonen i en mengde på fra 0,05 til IO mol pr. mol epoksydasjonskata-lysator, særlig 0,25 til 3,0 mol, og fortrinnsvis 0,50 til 1,50 mol. Det er blitt funnet at som et resultat av innarbei-delsen av den basiske forbindelse i reaksjonssystemet oppnås vesentlig forbedret effektivitet ved anvendelse av de organiske hydroperoksyder ved epoksydasjonen. The basic compound is used during the epoxidation reaction in an amount of from 0.05 to 10 mol per mol of epoxidation catalyst, in particular 0.25 to 3.0 mol, and preferably 0.50 to 1.50 mol. It has been found that as a result of the incorporation of the basic compound into the reaction system, significantly improved efficiency is achieved when using the organic hydroperoxides in the epoxidation.

Dvs. ved anvendelse av den basiske forbindelse er resultatet hoyere utbytte av oksiranforbindelse basert på forbrukt hydroperoksyd. Dessuten av det forbrukte hydroperoksyd reduseres en storre mengde i stedet for å omdannes til andre uonskede produkter ved oppfinnelsen. That is when using the basic compound, the result is a higher yield of oxirane compound based on hydroperoxide consumed. Moreover, of the consumed hydroperoxide, a larger amount is reduced instead of being converted into other unwanted products by the invention.

Ennvidere, ved bruken av den basiske forbindelse er det mulig å anvende lavere forhold mellom propylen og hydroperoksyd og således forbedre propylenomdannelsene, mens tilfredsstillende hoye reaksjonsselektiviteter beholdes. Furthermore, by the use of the basic compound it is possible to use lower ratios of propylene to hydroperoxide and thus improve the propylene conversions, while maintaining satisfactorily high reaction selectivities.

Under epoksydasjonen reduseres det organiske hydroperoksyd se-lektivt til den tilsvarende alkohol som hensiktsmessig utvinnes og/eller omdannes til hydroperoksyd og gjenanvendes eller omdannes til et annet produkt. During the epoxidation, the organic hydroperoxide is selectively reduced to the corresponding alcohol, which is suitably extracted and/or converted into hydroperoxide and reused or converted into another product.

I foranstående beskrivelse skal uttrykket propylen forstås som inkluderende blandinger av propylen og propan. Kommersielt tilgjengelig propylen inneholder f.eks. noe propan. In the preceding description, the term propylene is to be understood as including mixtures of propylene and propane. Commercially available propylene contains e.g. some propane.

De folgende eksempler illustrerer nærværende oppfinnelse. The following examples illustrate the present invention.

EKSEMPEL I EXAMPLE I

Til en epoksydasjonsreaktor innfores 1.000 g etylbenzenoksydat fremstilt ved luftoksydasjon av etylbenzen, og en blanding som inneholder 120 g etylbenzenhydroperoksyd, 365 g av en blanding som består av 66 mol-% propan og 4 mol-% oksygen og 1,3 g rao-lybdenoktanoatopplosning som inneholder 5 vekts-% molybden. 1,000 g of ethylbenzene oxidate produced by air oxidation of ethylbenzene, and a mixture containing 120 g of ethylbenzene hydroperoxide, 365 g of a mixture consisting of 66 mol% propane and 4 mol% oxygen and 1.3 g of raw lybdenooctanoate solution are introduced into an epoxidation reactor contains 5% by weight of molybdenum.

Epoksydasjonsreaksjonen utfores ved 135°C og 70,31 kg/cm<2>. Under disse betingelser er ingen gassfase til stede. Etter 60 minutter av reaksjonstiden er hydroperoksydomdannelsen i det vesentlige komplett. Selektiviteten til propylenoksyd, definert som mol propylenoksyd pr. mol hydroperoksyd omdannet, er 50 mol-%. The epoxidation reaction is carried out at 135°C and 70.31 kg/cm<2>. Under these conditions, no gas phase is present. After 60 minutes of the reaction time, the hydroperoxide conversion is essentially complete. The selectivity of propylene oxide, defined as moles of propylene oxide per mol of hydroperoxide converted is 50 mol%.

Den samme art urenheter iakttas i reaktoren som dannes ved direkte molekylært oksygenangrep på propylen. Disse omfatter syrer, estere og CO2. Mest skadelig for arbeidsmåteprosessen er imidlertid iakttagelsen av nærværet av metylformiat som ikke kan skilles fra propylenoksyd ved vanlig destillasjonsteknik. The same kind of impurities are observed in the reactor which are formed by direct molecular oxygen attack on propylene. These include acids, esters and CO2. Most damaging to the working process, however, is the observation of the presence of methyl formate which cannot be separated from propylene oxide by ordinary distillation techniques.

Uomsatt propylen skilles fra reaktoren ved fraksjoneringsdes-tillasjon fra materiale av hoyere kokepunkt. Unreacted propylene is separated from the reactor by fractional distillation from material with a higher boiling point.

Det viser seg at nivået av oksygen i ikke-reagert propylen It turns out that the level of oxygen in unreacted propylene

forer til nærværet av en eksplosjonsfårlig blanding av oksygen-propylen i gassfasen og i de seksjoner av systemet som propylen gjenvinnes fra. F.eks. ville et vanlig propylenresirkulerings-skjema for foranstående prosess gi opp til 50 % oksygen i en leading to the presence of an explosive mixture of oxygen-propylene in the gas phase and in the sections of the system from which propylene is recovered. E.g. would a normal propylene recycling scheme for the above process provide up to 50% oxygen in a

gassfase som inneholder propylen-propan i minst samme andel i gjenvinningssystemet. Det er ikke bkonomisk mulig å unngå denne oksygenoppbygning ved vanlig resirkuleringsarbeid. gas phase containing propylene-propane in at least the same proportion in the recycling system. It is not economically possible to avoid this oxygen build-up in normal recycling work.

EKSEMPEL II EXAMPLE II

Et forsbk lignende eksempel I ble utfort med fblgende sats: 1,00 g etylbenzenoksydat som inneholder 120 g etylbenzenhydroperoksyd, 350 g av en blanding friskt og resirkulert propylen som omfatter 69,2 mol-% propylen, 30 mol-% oktanoat som inneholder 5 vekts-% molybden. An experiment similar to Example I was carried out with the following batch: 1.00 g of ethylbenzene oxidate containing 120 g of ethylbenzene hydroperoxide, 350 g of a mixture of fresh and recycled propylene comprising 69.2 mol% propylene, 30 mol% octanoate containing 5 wt. -% molybdenum.

I dette forsbk utfores epoksydasjonen ved 135°C og 59,76 kg/cm<2 >i 60 minutter. Omdannelse av hydroperoksyd er fullstendig og selektivitet definert i eksempel T, er 60 mol-%. In this experiment, the epoxidation is carried out at 135°C and 59.76 kg/cm<2> for 60 minutes. Conversion of hydroperoxide is complete and selectivity defined in example T is 60 mol%.

Resirkulert propylen i denne reaksjon fremstilles ved fraskil-lelse fra reaktorutlbpsstrbmmen i eksempel I ved fraksjonert destillasjon. Oksygennivået for det ikke-reagerte resirkulerte propylen reduseres ved en hbytrykksfraksjonering av oksygen fra propylen for å gi en flytende propylenfase som inneholder ca. Recycled propylene in this reaction is produced by separation from the reactor outlet stream in example I by fractional distillation. The oxygen level of the unreacted recycled propylene is reduced by a high pressure fractionation of oxygen from propylene to give a liquid propylene phase containing approx.

0,08 mol-% oksygen. Denne propylenfase kombineres med en an- 0.08 mol% oxygen. This propylene phase is combined with an

del av gassfasen fra en slik fraksjon, slik at det kombinerte resirkulerte og friske propylen inneholdt 0,8 mol-% oksygen. part of the gas phase from such a fraction, so that the combined recycled and fresh propylene contained 0.8 mol% oxygen.

Reduksjonen i reaksjonen mellom propylen og oksygen iakttas. The reduction in the reaction between propylene and oxygen is observed.

Mest viktig er iakttagelsen at propylenoksyd av salgskvalitet Most important is the observation that propylene oxide of commercial quality

oppnås fra reaktorutlopsstrommen ved enkel destillasjonstek- obtained from the reactor outlet stream by a simple distillation technique

nikk. nod.

E KSEMPEL III EXAMPLE III

Det ikke-omsatte propylen som oppnås ved fremgangsmåten etter The unreacted propylene which is obtained by the following process

eksempel I behandles på folgende måte for det resirkuleres: example I is treated in the following way because it is recycled:

Propylenet i gassfase fores over en vanadium oksydasjonskataly- The propylene in gas phase is fed over a vanadium oxidation catalyst

sator. Oksydasjonsgraden reguleres for å opprettholde en ok-sygenkonsentrasjon i utlopsstrommen av oksydasjon på ca. 0,1 sator. The degree of oxidation is regulated to maintain an oxygen-oxygen concentration in the outlet stream of oxidation of approx. 0.1

mol-%. mole %.

EKSEMPEL IV EXAMPLE IV

350 g uomsatt propylen, hvis oksygeninnhold er blitt redusert etter fremgangsmåten i eksempel II, mates til en reaktor sam- 350 g of unreacted propylene, whose oxygen content has been reduced according to the procedure in example II, is fed to a reactor together

men med 1000 g etylbenzenoksydat som inneholder 120 g etylbenzen-hydroperoksyd og 1,35 g molybdenoktanoat som inneholder 5 vekts-% molybden. I dette tilfellet resirkuleres bare den flytende fase fra hoytrykkfraksjoneringssonen. but with 1000 g of ethylbenzene oxidate containing 120 g of ethylbenzene hydroperoxide and 1.35 g of molybdenum octanoate containing 5% by weight of molybdenum. In this case, only the liquid phase from the high pressure fractionation zone is recycled.

Epoksydasjonen utfores ved 135°C og 49,21 kg/cm<2> i 60 minutter. Etylbenzenhydroperoksydomdannelse er i det vesentlige komplett The epoxidation is carried out at 135°C and 49.21 kg/cm<2> for 60 minutes. Ethylbenzene hydroperoxide conversion is essentially complete

med en selektivitet til propylenoksyd på 69 %. with a selectivity to propylene oxide of 69%.

I dette tilfellet inneholder reaktorutlopsstrommen en ikke- In this case, the reactor effluent stream contains a non-

merkbar mengde metylformiat. Dessuten en enkel fraksjonering av denne utlopsstrom gir et propylenoksyd som ikke inneholder metylformi at. noticeable amount of methyl formate. Moreover, a simple fractionation of this outlet stream gives a propylene oxide which does not contain methyl formate.

Claims (1)

1. Fremgangsmåte for fremstilling av propylenoksyd hvor propylen omsettes med et organisk hydroperoksyd ved temperaturer mellom -20 og 200°C under trykk tilstrekkelig for å opprettholde en flytende fase, hvorved propylenoksyd dannes i nærvær av uomsatt propylen, karakterisert ved at oksygen fjernes i det minste delvis fra uomsatt propylen for tilbakeføring til reaksjonskaret, slik at det totale O2-innhold i reaksjonskaret er under 3 %.1. Process for the production of propylene oxide where propylene is reacted with an organic hydroperoxide at temperatures between -20 and 200°C under pressure sufficient to maintain a liquid phase, whereby propylene oxide is formed in the presence of unreacted propylene, characterized in that oxygen is removed at least partly from unreacted propylene for return to the reaction vessel, so that the total O2 content in the reaction vessel is below 3%.
NO831451A 1982-04-26 1983-04-25 FLAMMABLE, CROSS-BONDED POLYOLEFIN MATERIAL AND THE USE OF IT FOR COATING ELECTRICAL CONDUCTORS. NO166535C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37168882A 1982-04-26 1982-04-26

Publications (3)

Publication Number Publication Date
NO831451L NO831451L (en) 1983-10-27
NO166535B true NO166535B (en) 1991-04-29
NO166535C NO166535C (en) 1991-08-07

Family

ID=23465011

Family Applications (1)

Application Number Title Priority Date Filing Date
NO831451A NO166535C (en) 1982-04-26 1983-04-25 FLAMMABLE, CROSS-BONDED POLYOLEFIN MATERIAL AND THE USE OF IT FOR COATING ELECTRICAL CONDUCTORS.

Country Status (13)

Country Link
JP (1) JPS58194938A (en)
BE (1) BE896559A (en)
BR (1) BR8302100A (en)
CA (1) CA1221188A (en)
DE (1) DE3315079A1 (en)
FR (1) FR2525615B1 (en)
GB (1) GB2119387B (en)
IE (1) IE54673B1 (en)
IT (1) IT1194218B (en)
MX (1) MX162481A (en)
NL (1) NL8301474A (en)
NO (1) NO166535C (en)
SE (1) SE459006B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344588C2 (en) * 1983-12-09 1994-12-15 Kabelmetal Electro Gmbh Polymer mixture for sheathing cables and wires
JPS60130633A (en) * 1983-12-19 1985-07-12 Hitachi Cable Ltd Flame-retarding electroinsulating composition
CA1278128C (en) * 1984-02-09 1990-12-18 Nobuchika Tabata Fire retardant polyolefin composition
JPH0772240B2 (en) * 1986-04-24 1995-08-02 三菱電線工業株式会社 Abrasion resistant and flame retardant composition
DE3875781D1 (en) * 1987-04-24 1992-12-17 Bayer Ag FLAME-RESISTANT, HALOGEN-FREE THERMOPLASTIC POLYMER.
JPH07100750B2 (en) * 1987-09-05 1995-11-01 出光興産株式会社 Flame-retardant resin composition
DE10159952A1 (en) 2001-12-06 2003-06-18 Degussa Use of liquid or unsaturated organosilane / mixtures applied on carrier material for the production of moisture-crosslinked and filled cable compounds
US7504585B2 (en) * 2004-12-17 2009-03-17 Sabic Innovative Plastics Ip B.V. Thermoplastic composition, coated conductor, and methods for making and testing the same
US7776441B2 (en) 2004-12-17 2010-08-17 Sabic Innovative Plastics Ip B.V. Flexible poly(arylene ether) composition and articles thereof
JP4735340B2 (en) * 2006-03-03 2011-07-27 日立電線株式会社 Non-halogen flame retardant resin composition and electric wire / cable using the same
CN103265750B (en) * 2013-05-24 2016-03-02 安徽长园智豪电力科技有限公司 A kind of Ethylene-methyl acrylate cable sheath material and preparation method thereof
WO2016089543A1 (en) * 2014-12-03 2016-06-09 Albemarle Corporation Metal composite core composition panels and process for making same
CN112469786B (en) * 2018-06-15 2022-12-13 博里利斯股份公司 Flame retardant composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE445559C (en) * 1978-11-23 1989-04-17 Raychem Ltd FLAME HAIR, HALOGEN-FREE POLYMER COMPOSITION AND APPLICATION THEREFORE FOR THE CREATION OF A HEAT PREPARABLE
US4349605A (en) * 1980-09-09 1982-09-14 National Distillers & Chemical Corp. Flame retardant radiation curable polymeric compositions

Also Published As

Publication number Publication date
NO831451L (en) 1983-10-27
GB8311377D0 (en) 1983-06-02
FR2525615A1 (en) 1983-10-28
DE3315079A1 (en) 1983-10-27
IT1194218B (en) 1988-09-14
DE3315079C2 (en) 1992-10-01
NL8301474A (en) 1983-11-16
BE896559A (en) 1983-10-25
FR2525615B1 (en) 1991-10-25
GB2119387A (en) 1983-11-16
SE459006B (en) 1989-05-29
SE8302328D0 (en) 1983-04-25
IE830947L (en) 1983-10-26
CA1221188A (en) 1987-04-28
GB2119387B (en) 1986-07-23
BR8302100A (en) 1983-12-27
SE8302328L (en) 1983-10-27
IT8320793A0 (en) 1983-04-26
IE54673B1 (en) 1990-01-03
JPS58194938A (en) 1983-11-14
NO166535C (en) 1991-08-07
MX162481A (en) 1991-05-13

Similar Documents

Publication Publication Date Title
NO166535B (en) FLAMMABLE, CROSS-BONDED POLYOLEFIN MATERIAL, AND THE USE OF IT FOR COATING ELECTRICAL CONDUCTORS.
NO169209B (en) PROCEDURE AND SYSTEM FOR ESTABLISHING CONFERENCE CONNECTION.
US5274138A (en) Epoxidation process for manufacture of olefin oxide and alcohol
US2636898A (en) Manufacture of oxidation products from unsaturated organic compounds
US20100078391A1 (en) Residual stream upgrading in a propylene oxide-styrene monomer process
NO164945B (en) AIR RESISTANCE REDUCING GAS GENERATOR FOR PROJECTS.
US3418340A (en) Process for producing propylene oxide
DE1618625A1 (en) Process for the production of oxiranes
JP2804616B2 (en) Method for recovering tertiary butyl hydroperoxide and tertiary butyl alcohol
DE1568808A1 (en) Process for the production of ethylbenzene hydroperoxide
US4168274A (en) Production of a peracid and an oxirane
EP0084286A1 (en) Process for the preparation of epsilon-caprolactone
DE2635566C3 (en) Process for the preparation of oxirane compounds by cracking a corresponding alkylene glycol monoester
EP1472218B1 (en) Process for preparing alkylaryl hydroperoxide containing product
DE3528002C2 (en)
US3947500A (en) Process for treating reaction mixtures by chemical reduction
US4172840A (en) Epoxidation
NO121947B (en)
DE3528004C2 (en)
DE1668223C3 (en) Process for the production of alcohols
DE3528005C2 (en)
EP0056932A1 (en) Process for the preparation and isolation of n-alkyl oxiranes
GB1584355A (en) Epoxidation
US5334771A (en) Peroxidation of secondary carbon in alkanes and cycloalkanes
DE1468025C3 (en) Process for the preparation of epoxy compounds