NO164697B - SURGICAL OSTEOS SYNTHESIS OR COMPONENT OF SUCH THEM, AND PROCEDURES FOR PREPARING IT. - Google Patents

SURGICAL OSTEOS SYNTHESIS OR COMPONENT OF SUCH THEM, AND PROCEDURES FOR PREPARING IT. Download PDF

Info

Publication number
NO164697B
NO164697B NO861823A NO861823A NO164697B NO 164697 B NO164697 B NO 164697B NO 861823 A NO861823 A NO 861823A NO 861823 A NO861823 A NO 861823A NO 164697 B NO164697 B NO 164697B
Authority
NO
Norway
Prior art keywords
fibers
matrix
absorbent
self
reinforcement
Prior art date
Application number
NO861823A
Other languages
Norwegian (no)
Other versions
NO861823L (en
NO164697C (en
Inventor
Pertti Toermaelae
Pentti Rokkanen
Juha Laiho
Markku Tamminmaeki
Original Assignee
Biocon Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8520792&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO164697(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Biocon Oy filed Critical Biocon Oy
Publication of NO861823L publication Critical patent/NO861823L/en
Publication of NO164697B publication Critical patent/NO164697B/en
Publication of NO164697C publication Critical patent/NO164697C/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/129Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical

Abstract

Surgical osteosynthesis composite material, which is self-reinforced i.e. it is formed about the absorbable polymer or copolymer matrix which is reinforced with the absorbable reinforcement units which have the same chemical element percentage composition as the matrix has.

Description

Denne oppfinnelse vedrører kirurgisk osteosyntesemiddel eller komponent av et osteosyntesemiddel med en komposittstruktur så som en plate, en stang, en margspiker eller lignende fremstilt av polymer eller kopolymer som er obser-berbar under vevsbetingelser. This invention relates to a surgical osteosynthesizing agent or component of an osteosynthesizing agent with a composite structure such as a plate, a rod, a marrow nail or the like made of polymer or copolymer which is observable under tissue conditions.

Fremstillingen av osteosyntesematerialer av absorberbare polymerer er kjent fra flere patenter. Fremstillingen av absorberbare strukturer og kirurgiske elementer av polyglykolid (PGA). The production of osteosynthesis materials from absorbable polymers is known from several patents. The manufacture of absorbable structures and surgical elements from polyglycolide (PGA).

er blitt beskrevet i US patent nr. 3.297.0 33 og US patent nr. 3.739.773. has been described in US Patent No. 3,297,033 and US Patent No. 3,739,773.

Suturer fremstilt av polylaktid (PLA) Sutures made from polylactide (PLA)

er beskrevet i US patent nr. 2.703.316. is described in US patent no. 2,703,316.

Suturer fremstilt av glykolid/laktid kopolymerer (PGA/PLA) Sutures made from glycolide/lactide copolymers (PGA/PLA)

(hvor n og m er heltall > 1) er beskrevet i US patent nr. 3.839.297. Suturer og osteosynteseanordninger som er fremstilt av poly-g-hydroksysmørsyre (PHB) (where n and m are integers > 1) is described in US patent no. 3,839,297. Sutures and osteosynthesis devices made from poly-g-hydroxybutyric acid (PHB)

er beskrevet i britisk patent nr. 1.034.123. is described in British Patent No. 1,034,123.

Suturer og osteosynteseanordninger som er fremstilt av polydioksanon (PDS) Sutures and osteosynthesis devices made from polydioxanone (PDS)

er beskrevet i US patent nr. 4.052.988. is described in US patent no. 4,052,988.

Absorberbare kirurgiske anordninger som er fremstilt av polyesteramider (PEA) Absorbable surgical devices made from polyester amides (PEA)

er beskrevet i US patent nr. 4.343.931. is described in US patent no. 4,343,931.

Absorberbare kirurgiske suturer og kirurgiske anordninger som er konstruert av kopolymer som inneholder enheter med strukturformelen (VII) Absorbable surgical sutures and surgical devices constructed from copolymers containing units of structural formula (VII)

som sluttsekvenser og enhetene med formel (VII) tilfeldig kombi-nert med enhetene (VIII) as end sequences and the units of formula (VII) randomly combined with the units (VIII)

som midtsekvenser er beskrevet i finsk patentsøknad 83.2405. as middle sequences are described in Finnish patent application 83.2405.

Absorberbare kirurgiske anordninger i de ovennevnte opp-finnelser er gjerne plater som er festet til ben med skruer, sylindriske medisinske nagler eller tilsvarende strukturer som er fremstilt ved å smelte absorberbar polymer og ved å støpe eller presse smeiten til den passende form. De mekaniske styr-ker av slike prøver som er fremstilt ved smeltebehandlingstek-nikker har gjerne samme størrelsesorden som slike fra' andre lignende syntetiske polymerer. Følgelig har strekkfastheten av tørre, ikke-hydrolyserte prøver fremstilt fra PBA, PLA, PHB og PGA/PLA gjerne størrelsesorden 40-80 MPa (se f.eks. Kulkarni, R.K, Moore, E.G., Hegyeli, A.F. og Fred, L., J. Biomed. Mater. Res., 1971, 5, 169, Vert, M., Chabot, F. og Leray, J., Makromol. Chem., Suppl., 1981, 5, 30, Christel, P., Chabot, F., Leray, J.L., Morin, C. og Vert, M., i Biomaterials (Eds. G.D. Winter, D.F.Gibbons og H. Plenk, Jr.), Wiley (1980), s. 271, Tune, D.C., Transactions of 9th Annual Meeting of the Society for Biomaterials, Birmingham, U.S.A., 1983, s. 47, Howells, E.R. Chem.Ind., 1982, 7.509) Absorbable surgical devices in the above-mentioned inventions are often plates that are attached to bones with screws, cylindrical medical nails or similar structures that are produced by melting absorbable polymer and by molding or pressing the melt into the appropriate shape. The mechanical strengths of such samples produced by melt processing techniques are often of the same order of magnitude as those from other similar synthetic polymers. Accordingly, the tensile strength of dry, non-hydrolyzed samples prepared from PBA, PLA, PHB and PGA/PLA is often in the order of 40-80 MPa (see, e.g., Kulkarni, R.K, Moore, E.G., Hegyeli, A.F. and Fred, L., J. Biomed. Mater. Res., 1971, 5, 169, Vert, M., Chabot, F. and Leray, J., Makromol. Chem., Suppl., 1981, 5, 30, Christel, P., Chabot , F., Leray, J.L., Morin, C. and Vert, M., in Biomaterials (Eds. G.D. Winter, D.F.Gibbons and H. Plenk, Jr.), Wiley (1980), p. 271, Tune, D.C., Transactions of 9th Annual Meeting of the Society for Biomaterials, Birmingham, U.S.A., 1983, p. 47, Howells, E.R. Chem.Ind., 1982, 7.509)

Strekkfastheten som er gitt ovenfor er moderate sammen-lignet med strekkfasthetene hos kompakt ben (ca. 80-200 MPa) . The tensile strength given above is moderate compared to the tensile strengths of compact bone (approx. 80-200 MPa).

I tillegg er smeltebehandlede homogene polymerprøver av ovennevnte polymerer i flere tilfeller sprø eller for bøyelige til å anvendes for benkirurgiformål. Derfor har den vanlige anven-delse av resorberbare polymerer i benkirurgi møtt på alvorlige vanskeligheter. In addition, melt-treated homogeneous polymer samples of the above-mentioned polymers are in several cases brittle or too flexible to be used for bone surgery purposes. Therefore, the common use of resorbable polymers in bone surgery has encountered serious difficulties.

Den mekaniske begynnelsesstyrken til kirurgiske absorberbare osteosyntesematerialer er blitt forbedret ved å anvende i absorberbare polymere matriser absorberbare fibre med høyere smeltepunkt enn selve matrisen som forsterkningsenheter (f. eks. polylaktidmatrisse forsterket med polyglykolidfibre i US patent nr. 4.279.249). Også biostabile karbonfibre har vært brukt som forsterkningsenheter. Når den kjemiske strukturen eller elementsammensetningen av forsterkningsenhetene adskiller seg fra matrisematerialets, kan materialene som regel ikke danne sterke kjemiske primære eller sekundære bindinger mellom hverandre, hvilket fører til dårlig feste mellom materialbe-standdelene. The initial mechanical strength of surgical absorbable osteosynthesis materials has been improved by using in absorbable polymeric matrices absorbable fibers with a higher melting point than the matrix itself as reinforcement units (e.g. polylactide matrix reinforced with polyglycolide fibers in US patent no. 4,279,249). Biostable carbon fibers have also been used as reinforcement units. When the chemical structure or elemental composition of the reinforcement units differs from that of the matrix material, the materials usually cannot form strong chemical primary or secondary bonds between each other, which leads to poor attachment between the material components.

Adhesjonspromotorer, såsom silaner eller titanater osv., som normalt anvendes i polymere forsterkere sammensetninger, Adhesion promoters, such as silanes or titanates, etc., which are normally used in polymeric reinforcing compositions,

kan ikke anvendes i kirurgiske materialer som er ment brukt i kirurgi på grunn av deres toksisitet. Derfor er det vanskelig å oppnå god adhesjon mellom matrise og forsterkningsenheter av forskjellig kjemisk opprinnelse. cannot be used in surgical materials intended for use in surgery due to their toxicity. Therefore, it is difficult to achieve good adhesion between matrix and reinforcement units of different chemical origin.

Oppfinnelsen er h6vedsakelig karakterisert ved at osteosyntesematerialet eller komponenten av osteosyntesematerialet har en selvforsterket struktur, d.v.s. det består i det minste av én matrise, som består av absorberende polymer eller kopolymer og har som forsterkning absorberende fibre med tilsvarende kjemisk struktur. Det skal også bemerkes at matrisen og forsterkningsenhetene som har den samme kjemiske element-prosentdel-sammensetning også kan være isomerer, hvilket betyr at matrisen og forsterkningsenhetene har konfigurasjoner som adskiller seg fra hverandre. The invention is essentially characterized in that the osteosynthesis material or the component of the osteosynthesis material has a self-reinforced structure, i.e. it consists of at least one matrix, which consists of absorbent polymer or copolymer and has as reinforcement absorbent fibers with a similar chemical structure. It should also be noted that the matrix and reinforcement units having the same chemical element-percentage composition may also be isomers, meaning that the matrix and reinforcement units have configurations that differ from each other.

Oppfinnelsen vedrører selvforsterket absorberbare polymere. The invention relates to self-reinforced absorbable polymers.

kirurgiske osteosyntesematerialer som har jevn kjemisk element-struktur og som derfor har god adhesjon mellom matrisse og forsterkningselementer. Derfor har materialet utmerket mekaniske begynnelsesstyrke-egenskaper såsom høystrekkfasthet, bøy- og skjærstyrke og seighet, og derfor kan dette materialet med hell anvendes i kirurgisk absorberbare osteosynteseanordninger eller som komponenter eller deler av slike anordninger såsom osteo-synte~seplater som er festet til ben med skruer, som festeskruer, som margnagler eller som komponenter (plater, staver eller sten-ger ) av slike osteosynteseanordninger som er beskrevet i finsk patent 61402. surgical osteosynthesis materials which have a uniform chemical element structure and which therefore have good adhesion between matrix and reinforcement elements. Therefore, the material has excellent initial mechanical strength properties such as high tensile strength, bending and shear strength and toughness, and therefore this material can be successfully used in surgically absorbable osteosynthesis devices or as components or parts of such devices such as osteosynthesis plates attached to bone with screws, as fastening screws, as core nails or as components (plates, rods or rods) of such osteosynthesis devices as are described in Finnish patent 61402.

Selvforsterkning betyr at polymermatrisen er forsterket med forsterkningsenhetene (såsom fibre) som har den samme kjemiske prosentuelle elementsammensetning som matrisen har. Ved å anvende selvforsterkningsprinsippet kan den høye strekkfasthet (gjerne 500-900 MPa) av fibre utnyttes effektivt ved fremstilling av makroskopiske prøver. Når sterkt orienterte fiberstrukturer er bundet sammen med polymermatrisen som har den samme kjemiske elementsammensetning som fibrene, oppnås den sammensatte struktur som har utmerket adhesjon mellom matrise og forsterkningsenheter og derfor også fremragende mekaniske egenskaper. Self-reinforcement means that the polymer matrix is reinforced with the reinforcing units (such as fibers) that have the same chemical percentage element composition as the matrix. By applying the self-reinforcing principle, the high tensile strength (preferably 500-900 MPa) of fibers can be used effectively in the production of macroscopic samples. When strongly oriented fiber structures are bonded together with the polymer matrix which has the same chemical element composition as the fibers, the composite structure is obtained which has excellent adhesion between matrix and reinforcement units and therefore also excellent mechanical properties.

Den vedlagte tegning viser skjematisk strukturen av materialet i denne oppfinnelse hvor den absorberbare polymere matrise er forsterket med de absorberbare fibre. The attached drawing schematically shows the structure of the material in this invention where the absorbable polymeric matrix is reinforced with the absorbable fibres.

Fremgangsmåten er hovedsakelig karakterisert ved at den del av materialet som vil danne matrisen utsettes for varme og/eller, trykk på slik måte at den fysikalske tilstand til den del av materialet som vil virke som matrisefase muliggjør ut-vikling av adhesjon mellom de nærliggende forsterkningsenheter og matrisen . The method is mainly characterized by the part of the material that will form the matrix being exposed to heat and/or pressure in such a way that the physical state of the part of the material that will act as the matrix phase enables the development of adhesion between the nearby reinforcement units and the matrix.

Det er alternative metoder som kan anvendes i fremstillingen av .selvforsterkede absorberbare osteosyntesematerialer i denne oppfinnelse. En fremgangsmåte er å blande finmalt polymerpulver med fibre, tråder eller tilsvarende forsterkningsenheter som fremstilles av det samme materialet eller av dets isomer med den samme .kjemiske prosentuelle elementsammensetning og oppvarme blandingen under slike betingelser og ved bruk av slike temperaturer at de finmalte partikler mykner eller smeltes, men forsterkningsenhetsstrukturene ikke myknes eller smeltes nevneverdig. Når en slik blanding presses til den riktige form, danner de myknede eller smeltede partikler matrisefasen som binder forsterkningsenheten sammen, og når denne struktur avkjøles, oppnås en selvforsterket blanding med fremragende adhesjon og mekaniske egenskaper. There are alternative methods that can be used in the production of self-reinforced absorbable osteosynthesis materials in this invention. One method is to mix finely ground polymer powder with fibres, threads or equivalent reinforcement units produced from the same material or from its isomer with the same chemical percentage element composition and heat the mixture under such conditions and using such temperatures that the finely ground particles soften or melt , but the reinforcement unit structures do not soften or melt significantly. When such a mixture is pressed into the correct shape, the softened or melted particles form the matrix phase that binds the reinforcement unit together, and when this structure cools, a self-reinforced mixture with excellent adhesion and mechanical properties is obtained.

Den selvforsterkede struktur i oppfinnelsen oppnås også The self-reinforced structure of the invention is also achieved

ved å kombinere smeiten av en absorberbar polymer og fibre, tråder eller tilsvarende forsterkningsenheter av det samme materialet, forme blandingen av den polymere smelte og forsterkningsenhetene til den ønskede form, og avkjøle det formede polymere sammensatte materialet så raskt at forsterkningsenheten ikke nevneverdig mister sin innvendige orienterte struktur. by combining the melt of an absorbable polymer and fibers, threads or similar reinforcement units of the same material, forming the mixture of the polymeric melt and the reinforcement units into the desired shape, and cooling the formed polymeric composite material so rapidly that the reinforcement unit does not significantly lose its internally oriented structure.

Man kan også fremstille det selvforsterkede absorberbare materialet i oppfinnelsen ved å oppvarme absorberbare fibre, tråder eller tilsvarende strukturer i en presset form under slike omstendigheter at i det minste en del av disse strukturene delvis mykner eller smeltes på overflaten. Under trykk koalise-res de myknede eller smeltede overflater av fiber, tråder eller tilsvarende strukturer sammen, og når støpen avkjøles, oppnås en selvforsterket sammensatt struktur. Ved omhyggelig kontroll av oppvarmingsbetingelsene er det mulig å behandle sammensatte prøver hvor de myknede eller smeltede overflateområder av fiber, tråder eller tilsvarende enheter er meget tynne, og derfor er andelen av orientert fiberstruktur meget høy, hvilket fører til materialer med høye strekkfasthets-, skjær-, bøy- og s 1 agbestandig-hetsverdier. One can also produce the self-reinforced absorbable material in the invention by heating absorbable fibers, threads or similar structures in a pressed form under such circumstances that at least part of these structures partially softens or melts on the surface. Under pressure, the softened or melted surfaces of fibers, threads or similar structures are coalesced together, and when the casting cools, a self-reinforced composite structure is obtained. By carefully controlling the heating conditions, it is possible to process composite samples where the softened or melted surface areas of fibers, threads or similar units are very thin, and therefore the proportion of oriented fiber structure is very high, which leads to materials with high tensile strength, shear , bending and s 1 ag resistance values.

De ovennevnte fremstillingsprinsipper kan anvendes når de selvforsterkede, absorberbare materialer fremstilles ved sats-prosesser (såsom kompresjonsstøpning og overføringsstøpning) eller ved kontinuerlige prosesser (såsom injeksjonsstøpning eller ekstrusjon eller pultrusjon). The above manufacturing principles can be used when the self-reinforced, absorbable materials are manufactured by batch processes (such as compression molding and transfer molding) or by continuous processes (such as injection molding or extrusion or pultrusion).

Typiske egenskaper for materialene i denne oppfinnelse er det høye innhold av orienterte fibre bundet sammen med tynne matrisepolymersjikt mellom fibrene, lav porøsitet, glatt og kompakt overflate, hvilke egenskaper alle oppnås som en følge av anvendelsen av trykk og eventuelt også varme under fremstillingen av materialet. Gode innvendige adhesjonsegenskaper i forbindelse med de ovenfornevnte fordelaktige strukturelle faktorer gir materialet utmerkede mekaniske styrkeegenskaper såsom høy strekkfasthet, bøystyrke, kompresjonsstyrke eller slagbestandighet. Typical properties of the materials in this invention are the high content of oriented fibers bound together with thin matrix polymer layers between the fibers, low porosity, smooth and compact surface, which properties are all achieved as a result of the application of pressure and possibly also heat during the production of the material. Good internal adhesion properties in connection with the above-mentioned advantageous structural factors give the material excellent mechanical strength properties such as high tensile strength, bending strength, compression strength or impact resistance.

Det er selvfølgelig at det selvforsterkede absorberbare kirurgiske materialet i tillegg til matrisse og forsterknings-enhetpolymer om nødvendig kan inneholde additiver såsom farver, pulverlignende fyllmidler eller andre additiver. It is of course that the self-reinforced absorbable surgical material, in addition to the matrix and reinforcing unit polymer, may if necessary contain additives such as dyes, powder-like fillers or other additives.

De selvforsterkede materialer i oppfinnelsen kan anvendes The self-reinforced materials in the invention can be used

i osteosynteseimplantasjoner såsom kirurgiske anordninger eller som deres bestanddeler i form av-plater, stifter, nagler, marg-staver, skruer eller i form av andre tredimensjonale faststoffer. Materialet kan også i det minste danne en del av en osteosyntese-implantas jon. Det er naturlig at i det minste delvis absorberbare matrise og/eller forsterkningsenheter kan inneholde slike additiver som farver, antioksydanter, plastifiseringsmidler, smøremidler, fyllmidler osv. , som er nødvendige ved behandlin-gen av materialet eller for å modifisere dets egenskaper eller egenskapene til matrisen og/eller forsterkningsenheten. in osteosynthesis implants such as surgical devices or as their components in the form of plates, pins, rivets, marrow rods, screws or in the form of other three-dimensional solids. The material can also at least form part of an osteosynthesis implant. It is natural that at least partially absorbable matrix and/or reinforcement units may contain such additives as colors, antioxidants, plasticizers, lubricants, fillers, etc., which are necessary in the treatment of the material or to modify its properties or the properties of the matrix and/or the amplification unit.

Når det selvforsterkende materialet anvendes som en del When the self-reinforcing material is used as a part

av en kirurgisk plate, stift, stav osv. kan den selvforsterkede struktur danne f.eks. kjernen i anordningen og overflaten av anordningen kan fremstilles fra andre materialer. På denne måten kan de utmerkede mekaniske egenskapene til det selvforsterkede materialet kombineres med egenskaper av andre absorberbare materialer (såsom langsom absorpsjonshastighet). of a surgical plate, pin, rod, etc., the self-reinforced structure can form e.g. the core of the device and the surface of the device can be made from other materials. In this way, the excellent mechanical properties of the self-reinforced material can be combined with properties of other absorbable materials (such as slow absorption rate).

Det selvforsterkede materialet i oppfinnelsen kan også anvendes på flere andre måter i kombinasjon med andre absorberbare eller andre biostabile materialer. F.eks. kan de mekaniske egenskapene til selvforsterket materiale modifiseres ved å innstøpe absorberbare forsterkningsenheter med andre hydrolyt-tiske egenskaper i det enn det selvforsterkede materialets. Sammensetninger med utmerkede mekaniske egenskaper oppnås også når hybride sammensetninger og selvforsterkede materialer med biostabile fibre (såsom karbonfibre) fremstilles. The self-reinforced material in the invention can also be used in several other ways in combination with other absorbable or other biostable materials. E.g. the mechanical properties of self-reinforced material can be modified by embedding absorbable reinforcement units with different hydrolytic properties than those of the self-reinforced material. Composites with excellent mechanical properties are also achieved when hybrid composites and self-reinforced materials with biostable fibers (such as carbon fibers) are produced.

De., følgende ikke-begrensende eksempler illustrerer fore-liggende oppfinnelse. De., the following non-limiting examples illustrate the present invention.

EKSEMPEL 1 EXAMPLE 1

Smeiten av glykolid/laktid (90/10) kopolymer (innvendig viskositet |n| = 1,5 i 0,1% heksafluorisopropanol-løsning (T = 25°C)) ble blandet med de kontinuerlige fibre av det samme materialet. Smeiten - fiberblandingen ble raskt formet til sylindriske prøver (diameter 4,5 mm) som raskt ble avkjølt, og hvis fiberinnhold var 30 vekt%. Strekkfastheten til disse selvforsterkede absorberbare sammensatte staver var 260 MPa. Strekkfastheten til tilsvarende ikke-forsterkede staver fremstilt fra glykolid/laktid kopolymer smelte var 50 MPa. The melt of glycolide/lactide (90/10) copolymer (intrinsic viscosity |n| = 1.5 in 0.1% hexafluoroisopropanol solution (T = 25°C)) was mixed with the continuous fibers of the same material. The melt - fiber mixture was quickly formed into cylindrical samples (diameter 4.5 mm) which were quickly cooled, and whose fiber content was 30% by weight. The tensile strength of these self-reinforced absorbable composite rods was 260 MPa. The tensile strength of corresponding non-reinforced rods made from glycolide/lactide copolymer melt was 50 MPa.

EKSEMPEL 2 EXAMPLE 2

Glykolid/laktid kopolymer suturer ("Vicryl") (størrelse Glycolide/lactide copolymer sutures ("Vicryl") (size

2 USP) ble oppvarmet i vacuum ved 185°C i 6 minutter, hvilket bevirket delvis smelting av fiberenhetrer av suturer.. Materialet ble kompresjonsstøpt til en sylindrisk form vedi trykk: på. 2000 bar, og det ble raskt avkjølt. Bøyni.ngsstyrken til disse selvforsterkede staver var 1.70:' MPa. Bøyningsstyrken til tilsvarende ikke-forsterkede staver fremstilt fra glykolid/laktid kopolymerer smelte var 9 0 MPa. 2 USP) was heated in vacuum at 185°C for 6 minutes, which caused partial melting of fiber elements of sutures. The material was compression molded into a cylindrical shape by pressure: on. 2000 bar, and it cooled quickly. The bending strength of these self-reinforced rods was 1.70 MPa. The flexural strength of corresponding unreinforced rods made from glycolide/lactide copolymers melt was 90 MPa.

EKSEMPEL 3 EXAMPLE 3

Polyglykolidsuturer ("Dexon") (størrelse 2 USP) ble oppvarmet i sylindrisk trykkform (lengde 70 mm, diameter 4,5 mm) ved 218°C i 5 minutter ved et trykk på 2000 bar. Det myknede fibermaterialet ble delvis smeltet sammen og støpen ble avkjølt raskt i romtemperatur. Strekkfastheten av disse selvforsterkede absorberbare sammensatte stavervar 380 MPa. Strekkf astheten av tilsvarende ikke-forsterkede staver fremstilt fra polyglykolid-smelte var 60 MPa. Polyglycolide sutures ("Dexon") (size 2 USP) were heated in a cylindrical pressure mold (length 70 mm, diameter 4.5 mm) at 218°C for 5 minutes at a pressure of 2000 bar. The softened fiber material was partially fused and the cast was cooled rapidly to room temperature. The tensile strength of these self-reinforced absorbable composites was 380 MPa. The tensile strength of corresponding non-reinforced rods made from polyglycolide melt was 60 MPa.

EKSEMPEL 4 EXAMPLE 4

Polyglykolidsuturer ("Dexon") (størrelse 2 USP) ble smeltet ved T = 230°C. Polymersmeiten og tilsvarende kontinuerlig suturer ("Dexon") ble raskt blandet sammen, formet til sylindriske staver (diameter 3,2 mm) og raskt avkjølt. Fiberinnholdet av selvforsterkede staver var 40 vekt%. Deres strekkfasthet var 290 MPa. Strekkfastheten til tilsvarende ikke-forsterkede staver fremstilt fra polyglykolidsmelte var 60 MPa. Polyglycolide sutures ("Dexon") (size 2 USP) were melted at T = 230°C. The polymer melt and corresponding continuous sutures ("Dexon") were quickly mixed together, formed into cylindrical rods (diameter 3.2 mm) and rapidly cooled. The fiber content of self-reinforced rods was 40% by weight. Their tensile strength was 290 MPa. The tensile strength of corresponding non-reinforced rods made from polyglycolide melt was 60 MPa.

EKSEMPEL 5 EXAMPLE 5

Isomerer som kan anvendes til å fremstille absorberbare osteosynteseanordninger er f.eks. isomerer av polylaktid såsom poly-L-laktid (PLLA) og dens DL-isomer (meso laktid). PLLA er en krystallinsk polymer med smeltepunkt 180°C og DL-isomeren er en amorf polymer. Det selvforsterkede materialet kan fremstilles av disse materialer ved å kombinere DL-isomermatrisse og PLLA-fiber, tråd eller tilsvarende forsterkningsenhetstrukturer til hverandre ved hjelp av varme og trykk. Isomers that can be used to produce absorbable osteosynthesis devices are e.g. isomers of polylactide such as poly-L-lactide (PLLA) and its DL isomer (meso lactide). PLLA is a crystalline polymer with a melting point of 180°C and the DL isomer is an amorphous polymer. The self-reinforced material can be produced from these materials by combining DL isomer matrix and PLLA fiber, wire or similar reinforcing unit structures to each other using heat and pressure.

Bunter av poly-L-laktid (PLLA) fibre (fiberdiameter 12 ym, fibermengder i en svakt tvunnet bunt = 200 pes, molekylvekt av PLLA = 100 000) og den finfordelte, pulveriserte DL-isomer (meso laktid) (molekylvekt = 100 000) ble mekanisk sammenblandet og kompresjonsstøpt ved 165°C og 2000 bar trykk i 6 minutter og raskt avkjølt. Fiberinnholdet av selvforsterkede staver var 50% og deres strekkfasthet var 300 MPa. Strekkfastheten av ikke-forsterkede staver fremstilt fra polymersmelter var: Bundles of poly-L-lactide (PLLA) fibers (fiber diameter 12 ym, fiber amounts in a loosely twisted bundle = 200 pes, molecular weight of PLLA = 100,000) and the finely divided powdered DL isomer (meso lactide) (molecular weight = 100,000 ) were mechanically mixed and compression molded at 165°C and 2000 bar pressure for 6 minutes and rapidly cooled. The fiber content of self-reinforced rods was 50% and their tensile strength was 300 MPa. The tensile strength of unreinforced rods made from polymer melts was:

PLLA 60 MPa og mesolaktid 55 MPa. PLLA 60 MPa and mesolactide 55 MPa.

EKSEMPEL 6 EXAMPLE 6

Selvforsterkede staver fra eksempel 3 ble belagt i injek-sjonsstøpeform med 0,2 mm tykt sjikt av poly-p-dioksanon smelte (J nI = 0,8 i 0,1% tetrakloretan-løsning (T = 25°C) , Trø = 110°C) hvilket gir sylindriske, overtrukne selvforsterkede staver med diameter 4,9 mm. Bøyningsstyrken til stavene var 330 MPa. Self-reinforced rods from example 3 were coated in injection molding with a 0.2 mm thick layer of poly-p-dioxanone melt (J nI = 0.8 in 0.1% tetrachloroethane solution (T = 25°C) , Trø = 110°C) which gives cylindrical, coated self-reinforced rods with a diameter of 4.9 mm. The bending strength of the rods was 330 MPa.

Etter tre ukers hydrolyse i destillert vann (T = 37°C) hadde de overtrukne selvforsterkede staver bøyningsstyrke 160 MPa, mens bøyningsstyrken til ikke-overtrukne selvforsterkede staver var 90 MPa. After three weeks of hydrolysis in distilled water (T = 37°C), the coated self-reinforced rods had a flexural strength of 160 MPa, while the flexural strength of uncoated self-reinforced rods was 90 MPa.

EKSEMPEL 7 EXAMPLE 7

Poly-L-laktid (Mw = 100 000) fibere (diameter 12 ym) ble oppvarmet i sylindrisk trykkform (lengde 70 mm, diameter 4,5 mm) ved 180°C i 7 minutter med et trykk på 2000 bar. Det myknede fibermaterialet ble delvis smeltet sammen og støpen ble avkjølt raskt til romtemperatur. Strekkfastheten til disse selvforsterkede absorberbare sammensatte staver var 270 MPa. Strekkfastheten til tilsvarende ikke-forsterkede staver fremstilt fra poly-L-laktid smelte var 50 MPa. Poly-L-lactide (Mw = 100,000) fibers (diameter 12 ym) were heated in a cylindrical press mold (length 70 mm, diameter 4.5 mm) at 180°C for 7 minutes at a pressure of 2000 bar. The softened fiber material was partially fused and the cast was cooled rapidly to room temperature. The tensile strength of these self-reinforced absorbable composite rods was 270 MPa. The tensile strength of corresponding non-reinforced rods produced from poly-L-lactide melt was 50 MPa.

EKSEMPEL 8 EXAMPLE 8

Poly-B-hydroksysmørsyre (M = 80 000) fibre (diameter 15 ym) ble oppvarmet i sylindrisk trykkform (lengde 70 mm, diameter 4,5 mm) ved 175°C i 5 minutter med et trykk på 2000 bar. Det myknede fibermaterialet ble delvis smeltet sammen og støpen ble avkjølt raskt til romtemperatur. Strekkfastheten til disse selvforsterkede absorberbare sammensatte staver var 200 MPa. Strekkfastheten av tilsvarende ikke-forsterkede staver fremstilt fra poly-B-hydroksysmørsyre-smelte var 40 MPa. Poly-B-hydroxybutyric acid (M = 80,000) fibers (diameter 15 ym) were heated in a cylindrical press mold (length 70 mm, diameter 4.5 mm) at 175°C for 5 minutes at a pressure of 2000 bar. The softened fiber material was partially fused and the cast was cooled rapidly to room temperature. The tensile strength of these self-reinforced absorbable composite rods was 200 MPa. The tensile strength of corresponding unreinforced rods made from poly-B-hydroxybutyric acid melt was 40 MPa.

EKSEMPEL 9 EXAMPLE 9

Polydioksanonsuturer (PDS av Ethicon) (størrelse 0) ble oppvarmet i sylindrisk trykkform (lengde 70 mm, diameter 4,5 mm) ved 10 3°C i 6 minutter med et trykk på 20 00 bar. Det myknede fibermaterialet ble delvis sammensmeltet og støpen ble raskt avkjølt til romtemperatur. Skjærfastheten av disse selvforsterkede absorberbare sammensatte staver var 140 MPa. Skjærhastig-heten av tilsvarende ikke-forsterkede staver som var fremstilt fra polydioksanon-smelte var 50 MPa. Polydioxanone sutures (PDS by Ethicon) (size 0) were heated in a cylindrical pressure mold (length 70 mm, diameter 4.5 mm) at 10 3°C for 6 minutes with a pressure of 20 00 bar. The softened fiber material was partially fused and the cast was rapidly cooled to room temperature. The shear strength of these self-reinforced absorbable composite rods was 140 MPa. The shear rate of corresponding unreinforced rods made from polydioxanone melt was 50 MPa.

EKSEMPEL 10 EXAMPLE 10

Polyesteramid (med den kjemiske formel VI, hvor R]_ = R2 = -(CH2)12~; Mw = 60 000) fibere (diameter 12 ym) ble oppvarmet i sylindrisk trykkform (lengde 70 mm, diameter 4,5 mm) ved 105 C i 4 minutter med et trykk på 2000 bar. Det myknede fibermaterialet ble delvis smeltet sammen og støpen ble raskt avkjølt i romtemperatur. Skjærfastheten av disse selvforsterkede absorberbare sammensatte staver var 140 MPa. Skjærfastheten av tilsvarende ikke-forsterkede staver som var fremstilt fra polyesteramid-smelte var 50 MPa. Polyesteramide (of the chemical formula VI, where R]_ = R2 = -(CH2)12~; Mw = 60,000) fibers (diameter 12 ym) were heated in a cylindrical press mold (length 70 mm, diameter 4.5 mm) at 105 C for 4 minutes with a pressure of 2000 bar. The softened fiber material was partially fused and the cast was rapidly cooled to room temperature. The shear strength of these self-reinforced absorbable composite rods was 140 MPa. The shear strength of corresponding non-reinforced rods made from polyesteramide melt was 50 MPa.

EKSEMPEL 11 EXAMPLE 11

Polyglykolidsuturer ("Dexon") (størrelse 2) blandet med 10 vekt% karbonfibre (med diameter 6 ym) ble oppvarmet i sylindrisk trykkform (lengde 70 mm, diameter 4,5 mm) ved 218°C i 5 minutter med et trykk på 2000 bar. Det myknede polyglykolid fibermaterialet ble delvis smeltet sammen, og støpen ble raskt avkjølt i romtemperatur. Strekkfastheten av dette selvforsterkede absorberbare hybridsammensatte materialet som inneholdt karbonfibre var 450 MPa. Strekkfastheten av det tilsvarende karbon- Polyglycolide ("Dexon") sutures (size 2) mixed with 10% by weight carbon fibers (6 µm in diameter) were heated in a cylindrical pressure mold (length 70 mm, diameter 4.5 mm) at 218°C for 5 minutes at a pressure of 2000 bar. The softened polyglycolide fiber material was partially fused, and the cast was rapidly cooled to room temperature. The tensile strength of this self-reinforced absorbable hybrid composite material containing carbon fibers was 450 MPa. The tensile strength of the corresponding carbon-

fiberforsterkede materialet fremstilt fra polyglykolid-smelte fiber reinforced material made from polyglycolide melt

- karbonfiberblanding var 160 MPa. - carbon fiber mixture was 160 MPa.

EKSEMPEL 12 EXAMPLE 12

Glykolid/laktid kopolymersuturer ("Vicryl") inneholdende Glycolide/lactide copolymer sutures ("Vicryl") containing

10 vekt% polyglykolidsuturer ("Dexon") (størrelse 2) ble oppvarmet i vakuum ved 185°C i 6 minutter, hvilket forårsaket delvis smelting av glykolid/laktid fiberenheter av "Vicryl"-suturene. Materialet ble kompresjonsstøpt i en sylindrisk form (lengde 70 mm, diameter 4,5 mm) med et trykk på 2000 bar og det ble raskt avkjølt. En hybridsammensatt stav som besto av selvforsterket glykolid/laktid-materiale med innstøpte polyglykolidsuturer erholdtes. Bøyningsstyrken av hybridsammehsetnings-materialet var 240 MPa. Bøyningsstyrken til tilsvarende sammen-setning fremstilt fra glykolid/laktid kopolymer-smelte forsterket med 10 vekt% polyglykolidsuturer var 150 MPa. 10% by weight polyglycolide ("Dexon") sutures (size 2) were heated in vacuum at 185°C for 6 minutes, causing partial melting of the glycolide/lactide fiber units of the "Vicryl" sutures. The material was compression molded into a cylindrical mold (length 70 mm, diameter 4.5 mm) with a pressure of 2000 bar and it was rapidly cooled. A hybrid composite rod consisting of self-reinforced glycolide/lactide material with embedded polyglycolide sutures was obtained. The flexural strength of the hybrid composite material was 240 MPa. The flexural strength of the corresponding composition prepared from glycolide/lactide copolymer melt reinforced with 10% by weight polyglycolide sutures was 150 MPa.

EKSEMPEL 13 EXAMPLE 13

Monofilamentsuturer (størrelse 0) fremstilt fra polyglykolid/trimetylenkarbonat kopolymer (Maxon fra Davis + Geck) ble fremstilt i sylindrisk trykkform (lengde 50 mm, diameter 3,2 mm) ved 180°C i 8 minutter ved et trykk på 2000 bar. Suturene ble delvis smeltet sammen og støpet ble avkjølt raskt til romtemperatur. Selvforsterkede absorberbare staver med skjærfasthet på 110 MPa erholdtes. Skjærstyrken av tilsvarende forsterkede staver fremstilt fra fullstendig smeltede Maxon suturer var 60 MPa. Monofilament sutures (size 0) made from polyglycolide/trimethylene carbonate copolymer (Maxon from Davis + Geck) were produced in a cylindrical pressure mold (length 50 mm, diameter 3.2 mm) at 180°C for 8 minutes at a pressure of 2000 bar. The sutures were partially fused and the cast was cooled rapidly to room temperature. Self-reinforced absorbable rods with a shear strength of 110 MPa were obtained. The shear strength of similarly reinforced rods made from fully fused Maxon sutures was 60 MPa.

Claims (10)

1. Kirurgisk osteosyntesemiddel eller komponent av et osteosyntesemiddel med en komposittstruktur så som en plate, en stang, en margspiker eller lignende fremstilt av polymer eller kopolymer som er absorberbar under vevsbetingelser, karakterisert ved at osteosyntesematerialet eller komponenten av osteosyntesematerialet har en selvforsterket struktur, d.v.s. det består i det minste av én matrise, som består av absorberende polymer eller kopolymer og har som forsterkning absorberende fibre med tilsvarende kjemisk struktur.1. Surgical osteosynthesizing agent or component of an osteosynthesizing agent with a composite structure such as a plate, a rod, a marrow nail or the like made of polymer or copolymer that is absorbable under tissue conditions, characterized in that the osteosynthesizing material or the component of the osteosynthesizing material has a self-reinforced structure, i.e. it consists of at least one matrix, which consists of absorbent polymer or copolymer and has as reinforcement absorbent fibers with a similar chemical structure. 2. Osteosyntesemateriale ifølge krav 1, karakterisert ved at forsterkningsenheten foreligger i form av fibre, tråder, spiraler, snorer, bånd, vevde stoffer eller lignende.2. Osteosynthesis material according to claim 1, characterized in that the reinforcement unit is in the form of fibres, threads, spirals, cords, ribbons, woven fabrics or the like. 3. Osteosyntesemateriale ifølge krav 1, karakterisert ved at den absorberende matrise og forsterkningsenhetene fremstilles av polyglykolid.3. Osteosynthesis material according to claim 1, characterized in that the absorbent matrix and the reinforcement units are produced from polyglycolide. 4. Osteosyntesemateriale ifølge krav 1 og 2, karakterisert ved at den absorberende matrise og forsterkningsenhetene er fremstilt av polyaktid.4. Osteosynthesis material according to claims 1 and 2, characterized in that the absorbent matrix and the reinforcement units are made of polyactide. 5. Osteosyntesemateriale ifølge krav 1 og 2, karakterisert ved at den absorberende matrise og forsterkningsenhetene er fremstilt av glykolid/laktid-kopolymer.5. Osteosynthesis material according to claims 1 and 2, characterized in that the absorbent matrix and the reinforcement units are made of glycolide/lactide copolymer. 6. Osteosyntesemateriale ifølge krav 1 og 2, karakterisert ved at den absorberende matrise og forsterkningsenhetene er fremstilt av poly-P-hydroksysmørsyre.6. Osteosynthesis material according to claims 1 and 2, characterized in that the absorbent matrix and the reinforcement units are made of poly-P-hydroxybutyric acid. 7. Osteosyntesemateriale ifølge krav 1 og 2, karakterisert ved at den absorberende matrise og forsterkningsenhetene er fremstilt av polydioksanon.7. Osteosynthesis material according to claims 1 and 2, characterized in that the absorbent matrix and the reinforcement units are made of polydioxanone. 8. Osteosyntesemateriale ifølge krav 1 og 2, karakterisert ved at den absorberende, matrise og forsterkningsenhetene er fremstilt av polyesteramid.8. Osteosynthesis material according to claims 1 and 2, characterized in that the absorbent, matrix and reinforcement units are made of polyesteramide. 9. Fremgangsmåte ved fremstilling av et osteosyntesemateriale eller en komponent ifølge hvert av de foregående krav, karakterisert ved at den selvforsterkede strukturen tilveiebringes ved å mate inn i en smelte av den absorberende polymeren forsterkningsfibre fremstilt av tilsvarende materialer, ved å forme den derved erholdte blanding av polymersmelte og fibre til en ønsket form og ved å nedkjøle den formede blandingen av polymersmelten og fibrene så raskt at fibrene ikke vesentlig rekker å smelte.9. Method for the production of an osteosynthesis material or a component according to each of the preceding claims, characterized in that the self-reinforced structure is provided by feeding into a melt of the absorbent polymer reinforcement fibers produced from corresponding materials, by shaping the resulting mixture of polymer melt and fibers into a desired shape and by cooling the shaped mixture of the polymer melt and the fibers so quickly that the fibers do not have time to melt significantly. 10. Fremgangsmåte ved fremstilling av et osteosyntesemateriale eller en komponent ifølge hvert av de foregående krav 1-8, karakterisert ved at den selvforsterkede strukturen tilveiebringes ved å oppvarme det absorberende fibermaterialet slik at fibermaterialet delvis smelter, hvorved det smeltede materiale fukter resterende fibre, ved å forme blandingen av fibrene og smeiten, f.eks. i en form eller et munnstykke, samt ved å nedkjøle den således erholdte kompositt-strukturen til et produkt eller et halvfabrikat.10. Method for producing an osteosynthesis material or a component according to each of the preceding claims 1-8, characterized in that the self-reinforced structure is provided by heating the absorbent fiber material so that the fiber material partially melts, whereby the melted material moistens remaining fibers, by shape the mixture of the fibers and the forge, e.g. in a mold or a nozzle, as well as by cooling the thus obtained composite structure into a product or semi-finished product.
NO861823A 1985-05-08 1986-05-07 SURGICAL OSTEOS SYNTHESIS OR COMPONENT OF SUCH THEM, AND PROCEDURES FOR PREPARING IT. NO164697C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FI851828A FI75493C (en) 1985-05-08 1985-05-08 SJAELVARMERAT ABSORBERBART PURCHASING SYNTHESIS.

Publications (3)

Publication Number Publication Date
NO861823L NO861823L (en) 1986-11-10
NO164697B true NO164697B (en) 1990-07-30
NO164697C NO164697C (en) 1990-11-07

Family

ID=8520792

Family Applications (1)

Application Number Title Priority Date Filing Date
NO861823A NO164697C (en) 1985-05-08 1986-05-07 SURGICAL OSTEOS SYNTHESIS OR COMPONENT OF SUCH THEM, AND PROCEDURES FOR PREPARING IT.

Country Status (11)

Country Link
US (1) US4743257C1 (en)
EP (1) EP0204931B2 (en)
JP (1) JPH0763504B2 (en)
AT (1) ATE45095T1 (en)
AU (1) AU590270B2 (en)
CA (1) CA1255451A (en)
DE (1) DE3664720D1 (en)
DK (1) DK160602C (en)
FI (1) FI75493C (en)
NO (1) NO164697C (en)
SU (1) SU1496624A3 (en)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3588058T3 (en) * 1984-07-16 2005-04-07 Celtrix Pharmaceuticals, Inc., Palo Alto Cartilage-inducing polypeptide factors from bone
US4741337A (en) * 1985-07-17 1988-05-03 Ethicon, Inc. Surgical fastener made from glycolide-rich polymer blends
FI80605C (en) * 1986-11-03 1990-07-10 Biocon Oy Bone surgical biocomposite material
DE3644588C1 (en) * 1986-12-27 1988-03-10 Ethicon Gmbh Implant and process for its manufacture
FI81498C (en) * 1987-01-13 1990-11-12 Biocon Oy SURGICAL MATERIAL OCH INSTRUMENT.
FR2612392A1 (en) * 1987-03-19 1988-09-23 Audion Michel Interrupted biodegradable composites of variable strength
SE8802414D0 (en) * 1988-06-27 1988-06-28 Astra Meditec Ab NEW SURGICAL MATERIAL
FI83477C (en) * 1987-07-10 1991-07-25 Biocon Oy Absorbent material for fixing tissues
JPS6456056A (en) * 1987-08-26 1989-03-02 Dental Chem Co Ltd Hydroxyapatite bone filling material
NL8702563A (en) * 1987-10-28 1989-05-16 Cca Biochem B V POLYMER LACTIDE, METHOD FOR PREPARING SUCH A POLYMER LACTIDE, AND A COMPOSITION CONTAINING SUCH POLYMER LACTIDE.
FR2623402B1 (en) * 1987-11-19 1994-04-29 Solvay ARTICLE OF LACTIC ACID POLYMER FOR USE IN PARTICULAR AS A BIODEGRADABLE PROSTHESIS AND METHOD FOR THE PRODUCTION THEREOF
JP2587664B2 (en) * 1987-12-28 1997-03-05 タキロン株式会社 Biodegradable and absorbable surgical materials
FI84137C (en) * 1988-07-05 1991-10-25 Biocon Oy BIODEGRADERBAR OCH / ELLER LOESLIG POLYMERMEMBRAN.
DE3831657A1 (en) * 1988-09-17 1990-03-22 Boehringer Ingelheim Kg DEVICE FOR THE OSTEOSYNTHESIS AND METHOD FOR THE PRODUCTION THEREOF
US6171338B1 (en) * 1988-11-10 2001-01-09 Biocon, Oy Biodegradable surgical implants and devices
FI88111C (en) * 1989-04-26 1993-04-13 Biocon Oy Self-reinforcing surgical materials and agents
JP2787375B2 (en) * 1989-06-22 1998-08-13 グンゼ株式会社 Modification method of lactic acid polymer medical material
DE69002295T2 (en) 1989-09-25 1993-11-04 Schneider Usa Inc MULTILAYER EXTRUSION AS A METHOD FOR PRODUCING BALLOONS FOR VESSEL PLASTICS.
DE4030998C2 (en) * 1989-10-04 1995-11-23 Ernst Peter Prof Dr M Strecker Percutaneous vascular filter
US5026589A (en) * 1989-12-28 1991-06-25 The Procter & Gamble Company Disposable sanitary articles
US5080665A (en) * 1990-07-06 1992-01-14 American Cyanamid Company Deformable, absorbable surgical device
NL9001641A (en) * 1990-07-19 1992-02-17 Stamicarbon METHOD FOR MAKING POLYMERIC PRODUCTS FROM CYCLIC ESTERS.
ATE139126T1 (en) * 1990-09-10 1996-06-15 Synthes Ag MEMBRANE FOR BONE REGENERATION
US5201738A (en) * 1990-12-10 1993-04-13 Johnson & Johnson Orthopaedics, Inc. Biodegradable biocompatible anti-displacement device for prosthetic bone joints
CA2060635A1 (en) * 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5195969A (en) 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
US5269783A (en) 1991-05-13 1993-12-14 United States Surgical Corporation Device and method for repairing torn tissue
US5348026A (en) * 1992-09-29 1994-09-20 Smith & Nephew Richards Inc. Osteoinductive bone screw
US5263991A (en) * 1992-10-21 1993-11-23 Biomet, Inc. Method for heating biocompatible implants in a thermal packaging line
US5397816A (en) * 1992-11-17 1995-03-14 Ethicon, Inc. Reinforced absorbable polymers
US5312435A (en) * 1993-05-17 1994-05-17 Kensey Nash Corporation Fail predictable, reinforced anchor for hemostatic puncture closure
GB2282328B (en) * 1993-09-29 1997-10-08 Johnson & Johnson Medical Absorbable structures for ligament and tendon repair
WO1995009667A1 (en) 1993-10-01 1995-04-13 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
US6896842B1 (en) 1993-10-01 2005-05-24 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
CA2117967A1 (en) * 1993-10-27 1995-04-28 Thomas W. Sander Tissue repair device and apparatus and method for fabricating same
US5626611A (en) * 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
US6315788B1 (en) 1994-02-10 2001-11-13 United States Surgical Corporation Composite materials and surgical articles made therefrom
US5507814A (en) * 1994-03-30 1996-04-16 Northwestern University Orthopedic implant with self-reinforced mantle
AU3635095A (en) * 1994-09-20 1996-04-09 Smith & Nephew Richards Inc. Composite threaded component and method of manufacture
FR2725732B1 (en) * 1994-10-12 1996-12-13 Fiberweb Sodoca Sarl COMPOSITE STRUCTURE FORMED FROM LACTIC ACID DERIVATIVES AND PROCESS FOR PRODUCING THE SAME
US5702656A (en) * 1995-06-07 1997-12-30 United States Surgical Corporation Process for making polymeric articles
FI98136C (en) 1995-09-27 1997-04-25 Biocon Oy A tissue-soluble material and process for its manufacture
DE19613730C2 (en) * 1996-03-26 2002-08-14 Ethicon Gmbh Flat implant for strengthening or closing body tissue
FI105159B (en) 1996-10-25 2000-06-30 Biocon Ltd Surgical implant, agent or part thereof
US6648890B2 (en) 1996-11-12 2003-11-18 Triage Medical, Inc. Bone fixation system with radially extendable anchor
US20050143734A1 (en) * 1996-11-12 2005-06-30 Cachia Victor V. Bone fixation system with radially extendable anchor
US6632224B2 (en) 1996-11-12 2003-10-14 Triage Medical, Inc. Bone fixation system
US5893850A (en) 1996-11-12 1999-04-13 Cachia; Victor V. Bone fixation device
CA2274004A1 (en) 1996-12-03 1998-06-11 Osteobiologics, Inc. Biodegradable polymeric film
JP4132089B2 (en) 1997-05-30 2008-08-13 オステオバイオロジックス,インコーポレイテッド Fiber reinforced porous biodegradable implantation device
US7524335B2 (en) * 1997-05-30 2009-04-28 Smith & Nephew, Inc. Fiber-reinforced, porous, biodegradable implant device
US6113640A (en) 1997-06-11 2000-09-05 Bionx Implants Oy Reconstructive bioabsorbable joint prosthesis
US6692499B2 (en) 1997-07-02 2004-02-17 Linvatec Biomaterials Oy Surgical fastener for tissue treatment
US6241771B1 (en) * 1997-08-13 2001-06-05 Cambridge Scientific, Inc. Resorbable interbody spinal fusion devices
US7541049B1 (en) * 1997-09-02 2009-06-02 Linvatec Biomaterials Oy Bioactive and biodegradable composites of polymers and ceramics or glasses and method to manufacture such composites
US6015410A (en) * 1997-12-23 2000-01-18 Bionx Implants Oy Bioabsorbable surgical implants for endoscopic soft tissue suspension procedure
WO1999049792A1 (en) 1998-04-01 1999-10-07 Bionx Implants Oy Bioabsorbable surgical fastener for tissue treatment
US6296641B2 (en) * 1998-04-03 2001-10-02 Bionx Implants Oy Anatomical fixation implant
US6406498B1 (en) 1998-09-04 2002-06-18 Bionx Implants Oy Bioactive, bioabsorbable surgical composite material
US6517564B1 (en) 1999-02-02 2003-02-11 Arthrex, Inc. Bioabsorbable tissue tack with oval-shaped head and method of tissue fixation using same
US7211088B2 (en) * 1999-02-02 2007-05-01 Arthrex, Inc. Bioabsorbable tissue tack with oval-shaped head and method of tissue fixation using the same
US6206883B1 (en) 1999-03-05 2001-03-27 Stryker Technologies Corporation Bioabsorbable materials and medical devices made therefrom
DE60036863T2 (en) * 1999-03-25 2008-07-31 Metabolix, Inc., Cambridge Medical devices and uses of polyhydroxyalkanoate polymers
US6368346B1 (en) 1999-06-03 2002-04-09 American Medical Systems, Inc. Bioresorbable stent
US6379385B1 (en) 2000-01-06 2002-04-30 Tutogen Medical Gmbh Implant of bone matter
AU2001259154A1 (en) 2000-04-26 2001-11-07 Anchor Medical Technologies, Inc. Bone fixation system
JP2004529676A (en) 2000-11-13 2004-09-30 ダブリュ アイ ティー アイ ピー コーポレーション Treatment catheter with insulated area
GB2370777B (en) * 2001-01-06 2002-12-31 Roozbeh Shirandami Biodegradable tissue scafold and bone template
US6887243B2 (en) * 2001-03-30 2005-05-03 Triage Medical, Inc. Method and apparatus for bone fixation with secondary compression
US6511481B2 (en) 2001-03-30 2003-01-28 Triage Medical, Inc. Method and apparatus for fixation of proximal femoral fractures
US6796960B2 (en) * 2001-05-04 2004-09-28 Wit Ip Corporation Low thermal resistance elastic sleeves for medical device balloons
US20020188342A1 (en) * 2001-06-01 2002-12-12 Rykhus Robert L. Short-term bioresorbable stents
US20030069629A1 (en) * 2001-06-01 2003-04-10 Jadhav Balkrishna S. Bioresorbable medical devices
US6747121B2 (en) 2001-09-05 2004-06-08 Synthes (Usa) Poly(L-lactide-co-glycolide) copolymers, methods for making and using same, and devices containing same
US6685706B2 (en) 2001-11-19 2004-02-03 Triage Medical, Inc. Proximal anchors for bone fixation system
US20030097180A1 (en) 2001-11-20 2003-05-22 Pertti Tormala Joint prosthesis
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
US7824429B2 (en) 2002-07-19 2010-11-02 Interventional Spine, Inc. Method and apparatus for spinal fixation
EP1539038A2 (en) * 2002-09-13 2005-06-15 Linvatec Corporation Drawn expanded stent
US7309361B2 (en) * 2002-10-23 2007-12-18 Wasielewski Ray C Biologic modular tibial and femoral component augments for use with total knee arthroplasty
US20040138683A1 (en) 2003-01-09 2004-07-15 Walter Shelton Suture arrow device and method of using
US7070601B2 (en) * 2003-01-16 2006-07-04 Triage Medical, Inc. Locking plate for bone anchors
WO2004098453A2 (en) * 2003-05-06 2004-11-18 Triage Medical, Inc. Proximal anchors for bone fixation system
CA2525132C (en) 2003-05-08 2011-06-28 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US20040267309A1 (en) * 2003-06-27 2004-12-30 Garvin Dennis D. Device for sutureless wound closure
EP1651273B1 (en) * 2003-07-08 2012-08-29 Tepha, Inc. Poly-4-hydroxybutyrate matrices for sustained drug delivery
FI20045223A (en) * 2004-06-15 2005-12-16 Bioretec Oy A multifunctional biodegradable composite and a surgical implant comprising said composite
US20050015148A1 (en) * 2003-07-18 2005-01-20 Jansen Lex P. Biocompatible wires and methods of using same to fill bone void
US7699879B2 (en) * 2003-10-21 2010-04-20 Warsaw Orthopedic, Inc. Apparatus and method for providing dynamizable translations to orthopedic implants
US20050085814A1 (en) * 2003-10-21 2005-04-21 Sherman Michael C. Dynamizable orthopedic implants and their use in treating bone defects
JP4618997B2 (en) * 2003-12-09 2011-01-26 テルモ株式会社 Stent and manufacturing method thereof
US20050136764A1 (en) * 2003-12-18 2005-06-23 Sherman Michael C. Designed composite degradation for spinal implants
GB0329654D0 (en) 2003-12-23 2004-01-28 Smith & Nephew Tunable segmented polyacetal
US7378144B2 (en) * 2004-02-17 2008-05-27 Kensey Nash Corporation Oriented polymer implantable device and process for making same
US20100191292A1 (en) * 2004-02-17 2010-07-29 Demeo Joseph Oriented polymer implantable device and process for making same
US7353879B2 (en) * 2004-03-18 2008-04-08 Halliburton Energy Services, Inc. Biodegradable downhole tools
US7093664B2 (en) * 2004-03-18 2006-08-22 Halliburton Energy Services, Inc. One-time use composite tool formed of fibers and a biodegradable resin
US7942913B2 (en) 2004-04-08 2011-05-17 Ebi, Llc Bone fixation device
US20060089647A1 (en) * 2004-08-20 2006-04-27 Culbert Brad S Method and apparatus for delivering an agent
US9463012B2 (en) * 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US9173647B2 (en) 2004-10-26 2015-11-03 P Tech, Llc Tissue fixation system
US9271766B2 (en) 2004-10-26 2016-03-01 P Tech, Llc Devices and methods for stabilizing tissue and implants
US7419681B2 (en) * 2004-12-02 2008-09-02 Bioretec, Ltd. Method to enhance drug release from a drug-releasing material
US7527640B2 (en) * 2004-12-22 2009-05-05 Ebi, Llc Bone fixation system
CH698152B1 (en) * 2005-02-23 2009-05-29 Gabriel Dr Caduff Biodegradables osteosynthesis system for use in carrying skeleton portion of the human body as well as manufacturing processes.
US20060241759A1 (en) * 2005-04-25 2006-10-26 Sdgi Holdings, Inc. Oriented polymeric spinal implants
US7955364B2 (en) * 2005-09-21 2011-06-07 Ebi, Llc Variable angle bone fixation assembly
US20080215076A1 (en) * 2005-11-14 2008-09-04 Sentinel Group, Llc Gastro-intestinal therapeutic device and method
US20070270970A1 (en) * 2006-03-14 2007-11-22 Sdgi Holdings, Inc. Spinal implants with improved wear resistance
US20070270971A1 (en) * 2006-03-14 2007-11-22 Sdgi Holdings, Inc. Intervertebral prosthetic disc with improved wear resistance
US20070233246A1 (en) * 2006-03-31 2007-10-04 Sdgi Holdings, Inc. Spinal implants with improved mechanical response
EP2010104B1 (en) * 2006-04-25 2018-09-05 Teleflex Medical Incorporated Calcium phosphate polymer composite and method
WO2007131019A2 (en) * 2006-05-04 2007-11-15 Ethicon, Inc. Tissue holding devices and methods for making the same
US8486135B2 (en) * 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US20080257549A1 (en) * 2006-06-08 2008-10-23 Halliburton Energy Services, Inc. Consumable Downhole Tools
US20070284097A1 (en) * 2006-06-08 2007-12-13 Halliburton Energy Services, Inc. Consumable downhole tools
US7591318B2 (en) * 2006-07-20 2009-09-22 Halliburton Energy Services, Inc. Method for removing a sealing plug from a well
US20080021462A1 (en) * 2006-07-24 2008-01-24 Warsaw Orthopedic Inc. Spinal stabilization implants
US20080021557A1 (en) * 2006-07-24 2008-01-24 Warsaw Orthopedic, Inc. Spinal motion-preserving implants
US8637064B2 (en) * 2006-09-20 2014-01-28 Warsaw Orthopedic, Inc. Compression molding method for making biomaterial composites
FI120963B (en) * 2006-09-20 2010-05-31 Bioretec Oy Bioabsorbable elongated organ
US20080177330A1 (en) * 2006-10-24 2008-07-24 Ralph James D Self-locking screws for medical implants
US9011439B2 (en) * 2006-11-20 2015-04-21 Poly-Med, Inc. Selectively absorbable/biodegradable, fibrous composite constructs and applications thereof
CA2679365C (en) 2006-11-30 2016-05-03 Smith & Nephew, Inc. Fiber reinforced composite material
US7943683B2 (en) * 2006-12-01 2011-05-17 Tepha, Inc. Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US8617185B2 (en) 2007-02-13 2013-12-31 P Tech, Llc. Fixation device
US20080202764A1 (en) 2007-02-22 2008-08-28 Halliburton Energy Services, Inc. Consumable downhole tools
US8262723B2 (en) * 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
WO2008129245A1 (en) 2007-04-18 2008-10-30 Smith & Nephew Plc Expansion moulding of shape memory polymers
AU2008243035B2 (en) 2007-04-19 2013-09-12 Smith & Nephew, Inc. Graft fixation
WO2008131197A1 (en) 2007-04-19 2008-10-30 Smith & Nephew, Inc. Multi-modal shape memory polymers
US7998176B2 (en) * 2007-06-08 2011-08-16 Interventional Spine, Inc. Method and apparatus for spinal stabilization
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US8562644B2 (en) 2007-08-06 2013-10-22 Ethicon, Inc. Barbed suture with non-symmetric barbs
US20090112236A1 (en) * 2007-10-29 2009-04-30 Tyco Healthcare Group Lp Filament-Reinforced Composite Fiber
US9056150B2 (en) * 2007-12-04 2015-06-16 Warsaw Orthopedic, Inc. Compositions for treating bone defects
EP2237748B1 (en) 2008-01-17 2012-09-05 Synthes GmbH An expandable intervertebral implant
US8235102B1 (en) 2008-03-26 2012-08-07 Robertson Intellectual Properties, LLC Consumable downhole tool
US8327926B2 (en) 2008-03-26 2012-12-11 Robertson Intellectual Properties, LLC Method for removing a consumable downhole tool
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US20100331891A1 (en) * 2009-06-24 2010-12-30 Interventional Spine, Inc. System and method for spinal fixation
US8888828B2 (en) * 2009-07-16 2014-11-18 Covidien Lp Composite fixation device
FI20096285A (en) * 2009-12-04 2011-06-05 Conmed Linvatec Biomaterials Oy Ltd Thermoforming process and products obtained by this process
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US10154867B2 (en) * 2010-06-07 2018-12-18 Carbofix In Orthopedics Llc Multi-layer composite material bone screw
WO2011154891A2 (en) 2010-06-07 2011-12-15 Carbofix Orthopedics Ltd. Composite material bone implant and methods
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9907560B2 (en) 2010-06-24 2018-03-06 DePuy Synthes Products, Inc. Flexible vertebral body shavers
AU2011271465B2 (en) 2010-06-29 2015-03-19 Synthes Gmbh Distractible intervertebral implant
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
SM201100002B (en) 2011-01-10 2013-09-06 Hit Medica Spa Osteosynthesis device and procedure for its realization
GB201102468D0 (en) * 2011-02-11 2011-03-30 Univ Manchester Biocompatible composite materials
US8940052B2 (en) 2012-07-26 2015-01-27 DePuy Synthes Products, LLC Expandable implant
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US10076377B2 (en) 2013-01-05 2018-09-18 P Tech, Llc Fixation systems and methods
CN103203881B (en) * 2013-02-26 2015-08-05 广州医学院 A kind of self-reinforcing biomimetic material and manufacture method thereof
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9522028B2 (en) 2013-07-03 2016-12-20 Interventional Spine, Inc. Method and apparatus for sacroiliac joint fixation
US10500303B2 (en) 2014-08-15 2019-12-10 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US10626521B2 (en) 2014-12-11 2020-04-21 Tepha, Inc. Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof
WO2016094669A1 (en) 2014-12-11 2016-06-16 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
FR3030219B1 (en) * 2014-12-19 2017-02-10 Biotech Ortho COATING PLATE COMPRISING A METAL WAVE AND A POLYMER OVERMOLDING
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US10617458B2 (en) 2015-12-23 2020-04-14 Carbofix In Orthopedics Llc Multi-layer composite material bone screw
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
EP3474783B1 (en) 2016-06-28 2023-05-03 Eit Emerging Implant Technologies GmbH Expandable, angularly adjustable intervertebral cages
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
CN109453437A (en) * 2017-11-20 2019-03-12 山东省药学科学院 A kind of enhanced absorbable stent of nanofiber and preparation method thereof
CN109137135B (en) * 2018-07-10 2021-04-02 中国纺织科学研究院有限公司 Poly (glycolide-lactide-poly (p-dioxanone) composite fiber, preparation method and application thereof and surgical suture
RU2691326C1 (en) * 2018-07-12 2019-06-11 Олег Васильевич Сажников Absorbable intramedullary nail for fixing fractures of long tubular bones
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US20210146016A1 (en) 2019-11-15 2021-05-20 Evonik Operations Gmbh Fiber reinforced compositions and methods of manufacture for medical device applications
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703316A (en) 1951-06-05 1955-03-01 Du Pont Polymers of high melting lactide
US3225766A (en) 1962-03-26 1965-12-28 Grace W R & Co Method of making absorbable surgical sutures from poly beta hydroxy acids
US3297033A (en) * 1963-10-31 1967-01-10 American Cyanamid Co Surgical sutures
US3739773A (en) 1963-10-31 1973-06-19 American Cyanamid Co Polyglycolic acid prosthetic devices
FR1394248A (en) 1964-02-20 1965-04-02 Manual tracer instrument, in particular pencil or pen, with vibrating point
US3839297A (en) * 1971-11-22 1974-10-01 Ethicon Inc Use of stannous octoate catalyst in the manufacture of l(-)lactide-glycolide copolymer sutures
US4052988A (en) * 1976-01-12 1977-10-11 Ethicon, Inc. Synthetic absorbable surgical devices of poly-dioxanone
FR2439003A1 (en) 1978-10-20 1980-05-16 Anvar NEW OSTEOSYNTHESIS PARTS, THEIR PREPARATION AND THEIR APPLICATION
DE2917446A1 (en) * 1979-04-28 1980-11-06 Merck Patent Gmbh SURGICAL MATERIAL
US4263185A (en) 1979-10-01 1981-04-21 Belykh Sergei I Biodestructive material for bone fixation elements
DE2947985A1 (en) * 1979-11-28 1981-09-17 Vsesojuznyj naučno-issledovatel'skij i ispytatel'nyj institut medicinskoj techniki, Moskva Matrix material for fixing bone fractures - consisting of a copolymer of hydrophilic and hydrophobic monomers reinforced with resorbable non-non-toxic fibres
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
US4556678A (en) * 1982-06-24 1985-12-03 Key Pharmaceuticals, Inc. Sustained release propranolol tablet
US4429080A (en) * 1982-07-01 1984-01-31 American Cyanamid Company Synthetic copolymer surgical articles and method of manufacturing the same
DE3245633A1 (en) * 1982-12-09 1984-06-14 Serag-Wiessner Catgutfabriken GmbH, 8674 Naila Absorbable thread material for surgical wound management, especially for surgical suturing purposes
DE3477876D1 (en) * 1983-02-02 1989-06-01 Minnesota Mining & Mfg Absorbable nerve repair device and method
US4655777A (en) * 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
US4669474A (en) * 1984-01-12 1987-06-02 Minnesota Mining And Manufacturing Company Absorbable nerve repair device and method
US4665777A (en) * 1984-09-08 1987-05-19 Mazda Motor Corporation Control for shifting between gears of a vehicle automatic transmission
US4595713A (en) * 1985-01-22 1986-06-17 Hexcel Corporation Medical putty for tissue augmentation
FI78238C (en) * 1985-07-09 1989-07-10 Biocon Oy SURGICAL PURPOSE SYNTHESIS.

Also Published As

Publication number Publication date
EP0204931B1 (en) 1989-08-02
AU5688686A (en) 1986-11-13
DK160602C (en) 1991-09-02
DK210186D0 (en) 1986-05-07
US4743257A (en) 1988-05-10
DK160602B (en) 1991-04-02
FI75493C (en) 1988-07-11
AU590270B2 (en) 1989-11-02
SU1496624A3 (en) 1989-07-23
NO861823L (en) 1986-11-10
ATE45095T1 (en) 1989-08-15
DE3664720D1 (en) 1989-09-07
JPH0763504B2 (en) 1995-07-12
JPS61259674A (en) 1986-11-17
FI75493B (en) 1988-03-31
DK210186A (en) 1986-11-09
CA1255451A (en) 1989-06-13
FI851828L (en) 1986-11-09
EP0204931B2 (en) 2001-03-14
EP0204931A1 (en) 1986-12-17
FI851828A0 (en) 1985-05-08
US4743257C1 (en) 2002-05-28
NO164697C (en) 1990-11-07

Similar Documents

Publication Publication Date Title
NO164697B (en) SURGICAL OSTEOS SYNTHESIS OR COMPONENT OF SUCH THEM, AND PROCEDURES FOR PREPARING IT.
US5981619A (en) Material for osteosynthesis and composite implant material, and production processes thereof
FI81498C (en) SURGICAL MATERIAL OCH INSTRUMENT.
JP2718428B2 (en) Absorbable material for tissue fixation
US4279249A (en) New prosthesis parts, their preparation and their application
CA2756373C (en) Biocompatible composite and its use
US4512038A (en) Bio-absorbable composite tissue scaffold
US4411027A (en) Bio-absorbable composite tissue scaffold
US6398814B1 (en) Bioabsorbable two-dimensional multi-layer composite device and a method of manufacturing same
JP2019518568A (en) Fiber-reinforced biocomposite medical implant with high mineral content
EP1874366A2 (en) A bioabsorbable and bioactive composite material and a method for manufacturing the composite
FI3782657T3 (en) Composite material, implant comprising thereof, use of the composite material and method for preparing a medical device
AU2012360738B2 (en) Composite containing polymer and additive as well as its use
Huttunen et al. Fiber-reinforced bioactive and bioabsorbable hybrid composites
Hovis et al. Biochemical and biomechanical properties of bioabsorbable implants used in fracture fixation
Kellomäki et al. Pliable polylactide plates for guided bone regeneration: manufacturing and in vitro
Steckel Physio-mechanical properties of absorbable composites: CSM short fiber reinforced PDS and PGA
Deng et al. 8 New Approaches to Improved Polymer Implant Toughness and Modulus