NO164576B - PROCEDURE FOR ENSILING PLANTS. - Google Patents
PROCEDURE FOR ENSILING PLANTS. Download PDFInfo
- Publication number
- NO164576B NO164576B NO881867A NO881867A NO164576B NO 164576 B NO164576 B NO 164576B NO 881867 A NO881867 A NO 881867A NO 881867 A NO881867 A NO 881867A NO 164576 B NO164576 B NO 164576B
- Authority
- NO
- Norway
- Prior art keywords
- lactic acid
- species
- ensiling
- bacteria
- acid bacteria
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 64
- 239000004310 lactic acid Substances 0.000 claims description 32
- 235000014655 lactic acid Nutrition 0.000 claims description 32
- 241000894006 Bacteria Species 0.000 claims description 30
- 241000894007 species Species 0.000 claims description 30
- 230000012010 growth Effects 0.000 claims description 11
- 241000186660 Lactobacillus Species 0.000 claims description 4
- 229940039696 lactobacillus Drugs 0.000 claims description 4
- 240000006024 Lactobacillus plantarum Species 0.000 claims description 3
- 241000192001 Pediococcus Species 0.000 claims description 3
- 238000011081 inoculation Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 235000013965 Lactobacillus plantarum Nutrition 0.000 claims description 2
- 229940072205 lactobacillus plantarum Drugs 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 230000032823 cell division Effects 0.000 claims 1
- 230000004060 metabolic process Effects 0.000 claims 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 28
- 230000001580 bacterial effect Effects 0.000 description 22
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 14
- 235000019253 formic acid Nutrition 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 14
- 244000025254 Cannabis sativa Species 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000004460 silage Substances 0.000 description 8
- 238000000855 fermentation Methods 0.000 description 7
- 230000004151 fermentation Effects 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004459 forage Substances 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000234645 Festuca pratensis Species 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002577 cryoprotective agent Substances 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- XJRPTMORGOIMMI-UHFFFAOYSA-N ethyl 2-amino-4-(trifluoromethyl)-1,3-thiazole-5-carboxylate Chemical compound CCOC(=O)C=1SC(N)=NC=1C(F)(F)F XJRPTMORGOIMMI-UHFFFAOYSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000009972 noncorrosive effect Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 235000015724 Trifolium pratense Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 239000006872 mrs medium Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 235000013526 red clover Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K30/00—Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs
- A23K30/10—Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder
- A23K30/15—Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder using chemicals or microorganisms for ensilaging
- A23K30/18—Processes specially adapted for preservation of materials in order to produce animal feeding-stuffs of green fodder using chemicals or microorganisms for ensilaging using microorganisms or enzymes
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Polymers & Plastics (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Jellies, Jams, And Syrups (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Plant Substances (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Fodder In General (AREA)
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte ved ensilering av forplanter, slik som angitt i krav l's ingress. Det har i lang tid vært kjent og benyttet forskjellige konserveringsmetoder for for som ved pH-senkning hindrer vekst av smørsyrebakterier, forråtnelses-bakterier og sopp. For dette formål har det f.eks. vært anvendt mineralsyrer, maursyre eller midler som stimulerer en naturlig melkesyregjæring. The present invention relates to a method for ensiling propagules, as stated in claim 1's preamble. Various conservation methods have been known and used for a long time for wood which, by lowering the pH, prevents the growth of butyric acid bacteria, decay bacteria and fungi. For this purpose, it has e.g. mineral acids, formic acid or agents that stimulate a natural lactic acid fermentation have been used.
Melkesyregjæring anses som en ideell konserveringsform, da den forårsaker lavt stofftap i form av karbondioksyd og de produserte syrer har en høy næringsverdi. Lactic acid fermentation is considered an ideal form of preservation, as it causes low material loss in the form of carbon dioxide and the acids produced have a high nutritional value.
Melkesyrebakterier forekommer i lave antall på friskt gress, og det har ofte vært betraktet som viktigste årsak til en mislykket ensilering. I tillegg har melkesyrebakterier en relativt lang generasjonstid i forhold til de aerobe og fakultativt anaerobe bakterier de konkurrerer med under første fase av ensileringen, dvs. mens oksygentilgangen er god. For å stimulere melkesyregjæringen har det derfor vært forsøkt Lactic acid bacteria occur in low numbers on fresh grass, and this has often been considered the most important cause of unsuccessful ensiling. In addition, lactic acid bacteria have a relatively long generation time compared to the aerobic and facultatively anaerobic bacteria they compete with during the first phase of ensiling, i.e. while the oxygen supply is good. Attempts have therefore been made to stimulate lactic acid fermentation
a) tilsetning av spesielle bakterietyper, fortrinnsvis homofermentative melkesyrebakterier, som a) addition of special types of bacteria, preferably homofermentative lactic acid bacteria, which
beskrevet i norsk patent 74571, US patent 3.147.121, sveitsisk patent 460503 og det svenske patentskrift 396275. Inokulering med en enkelt bakterieart har gitt varierende resultater, og det er idag en tendens til å velge en kombinasjon av to eller flere bakteriearter. En 1:1 blanding av Str. faecalis og L. plantarum er f.eks. bedre i stand til å opprett-holde en kontinuerlig melkesyregjæring enn bakteriene hver for seg. Grunnen til dette er at førstnevnte bakterieart vokser hurtig under aerobe betingelser, described in Norwegian patent 74571, US patent 3,147,121, Swiss patent 460503 and Swedish patent document 396275. Inoculation with a single bacterial species has given varying results, and there is today a tendency to choose a combination of two or more bacterial species. A 1:1 mixture of Str. faecalis and L. plantarum are e.g. better able to maintain a continuous lactic acid fermentation than the bacteria individually. The reason for this is that the former bacterial species grows rapidly under aerobic conditions,
og mens den ikke er spesielt melkesyretolerant, and while it is not particularly lactic acid tolerant,
vil den raskt redusere pH til et nivå der den lang-sommere voksende andre art er favorisert. it will quickly reduce the pH to a level where the longer-summer growing other species is favored.
b) tilsetning av store mengder frysetørkede/tørkede melkesyrebakterier til formassen før eller under b) addition of large quantities of freeze-dried/dried lactic acid bacteria to the forage mass before or during
nedlegging i silo, decommissioning in a silo,
c) tilsetning av bakterier sammen med et næringssub-strat umiddelbart før eller under nedlegging i silo, d) anvendelse av spesielt syretolerante arter av Str. faecalis. isolert ved spesielle seleksjonsteknik-ker, som beskrevet i svensk patent 411829. c) addition of bacteria together with a nutrient substrate immediately before or during storage in a silo, d) use of particularly acid-tolerant species of Str. faecalis. isolated by special selection techniques, as described in Swedish patent 411829.
Tilsetning av melasse, glukose, cellulase eller av komplekse næringsløsninger sammen med melkesyrebakteriene har også vist seg å gi en rask fermentering og et stabilt slutt-produkt . The addition of molasses, glucose, cellulase or complex nutrient solutions together with the lactic acid bacteria has also been shown to give a fast fermentation and a stable end product.
De kommersielt tilgjengelige bakteriepreparater fremstilles vanligvis som frysetørrede produkter, ofte tilsatt et kryoprotektivt agens, en bæresubstans og/eller en nærings-blanding. Bakteriepreparatene tilsettes foret enten i tørr form eller i vandig oppslemming som dusjes på gresset under innhøsting eller ved nedlegging i silo. The commercially available bacterial preparations are usually produced as freeze-dried products, often with the addition of a cryoprotective agent, a carrier substance and/or a nutrient mixture. The bacterial preparations are added to the fodder either in dry form or in an aqueous slurry that is showered on the grass during harvesting or when laying it down in a silo.
I henhold til foreliggende oppfinnelse frembringes en fremgangsmåte for ensilering basert på forkultivering av utvalgte melkesyrebakteriearter, som er isolert fra surfor. De følgende kriterier er lagt til grunn for utvelgelsen av artene: According to the present invention, a method for ensiling is produced based on the pre-cultivation of selected lactic acid bacteria species, which are isolated from surfor. The following criteria are used as a basis for the selection of the species:
- homofermentativt gjæringsmønster, - homofermentative fermentation pattern,
- høy veksthastighet og rask pH-senkning, - high growth rate and rapid pH lowering,
- evne til å utnytte flere sukkerarter som forekommer i engvekster (glukose, fruktose, sukrose etc.) - ability to utilize several sugars that occur in meadow plants (glucose, fructose, sucrose etc.)
- høy osmotisk toleranse - high osmotic tolerance
- høy pH-toleranse - high pH tolerance
- mangel på proteolytisk aktivitet - lack of proteolytic activity
- minst én art viser god vekst ved ICC - at least one species shows good growth at ICC
- minst én art viser evne til å bryte ned stivelse. - at least one species shows the ability to break down starch.
Under forsøkene ble det anvendt en kombinasjon av arter tilhørende slektene Pediococcus og Lactobacillus. Overras-kende ble det ved anvendelsen av 6-8 utvalgte arter funnet at dannelse av silovæske reduseres betraktelig. Dette kan sannsynligvis tilskrives vannbindende polymerdannelse hos minst én av de anvendte arter, f.eks. Lactobacillus <p>lantarum. Det har vist seg at denne art er særlig vel-egnet, fordi den utnytter plantenes polysakkarid effektivt. During the experiments, a combination of species belonging to the genera Pediococcus and Lactobacillus was used. Surprisingly, when using 6-8 selected species, it was found that the formation of silage liquid is considerably reduced. This can probably be attributed to water-binding polymer formation in at least one of the species used, e.g. Lactobacillus <p>lantarum. It has been shown that this species is particularly well-suited, because it utilizes the plant's polysaccharide effectively.
Vanligvis dannes det ved ensilering varierende mengder silovæske avhengig av silomassens tørrstoffinnhold, pakningsgrad, grad av oppkapping eller knusing, samt anvendelse av forbindelser som fremmer lysis (f.eks. syrer). Pressvæskedannelsen har vært et betydelig problem både fordi det innebærer et betydelig tap av verdifulle næringskompo-nenter og fordi det representerer et stort forurensnings-og miljøproblem. Foreliggende oppfinnelse gir følgelig ved reduksjonen av den dannede silovæske en vesentlig fordel i forhold til teknikkens stand. Usually, during ensiling, varying amounts of silage liquid are formed depending on the dry matter content of the silage mass, degree of packing, degree of cutting or crushing, as well as the use of compounds that promote lysis (e.g. acids). The formation of pressed liquid has been a significant problem both because it involves a significant loss of valuable nutritional components and because it represents a major pollution and environmental problem. The present invention consequently provides a significant advantage in relation to the state of the art by reducing the silo liquid formed.
Det har tidligere heller ikke vært lagt vekt på å anvende bakteriearter som viser god vekst ved 10'C, til tross for at dette gir en vesentlig fordel. De klimatiske forhold i Europa medfører at temperaturen i silomassen vil variere betraktelig. Umiddelbart etter høsting og nedlegging i silo vil oksydasjon av massen settes i gang under forbruk av det innesluttede oksygenet. Det dannes derved en radiell temperaturgradient, hvor temperaturen på en kald høstdag kan variere fra 40'C i sentrum til 10'C i periferien av siloen. En slik markant temperaturgradient vil være et temporært fenomen, og temperaturen vil jevnes ut når alt oksygenet er oppbrukt. Ved å anvende minst én bakterieart med god vekst ved 10°C i henhold til foreliggende oppfinnelse, kan det oppnås en maksimal melkesyregjæring i In the past, there has also been no emphasis on using bacterial species that show good growth at 10'C, despite the fact that this provides a significant advantage. The climatic conditions in Europe mean that the temperature in the silage mass will vary considerably. Immediately after harvesting and placing in a silo, oxidation of the mass will be initiated while consuming the contained oxygen. A radial temperature gradient is thereby formed, where the temperature on a cold autumn day can vary from 40'C in the center to 10'C at the periphery of the silo. Such a marked temperature gradient will be a temporary phenomenon, and the temperature will even out when all the oxygen has been used up. By using at least one bacterial species with good growth at 10°C according to the present invention, a maximum lactic acid fermentation can be achieved in
hele silomassen. the entire silage mass.
Tilgang på vannløselige mono- og disakkarider i forplanter vil i mange tilfeller sette begrensninger for melkesyre-dannelsen. Av denne grunn er det under utvelgelsen av bakteriearter lagt vekt på at minst én av melkesyrebakteriene skal kunne benytte polysakkarider som karbon- og energikilde. En av de anvendte bakteriearter, Lactobacillus plantarum. er vist å kunne bryte ned stivelse, og dette medfører følgelig en økning i total mengde forgjærbare karbohydrater i formassen. Access to water-soluble mono- and disaccharides in propagules will in many cases limit lactic acid formation. For this reason, during the selection of bacterial species, emphasis has been placed on at least one of the lactic acid bacteria being able to use polysaccharides as a carbon and energy source. One of the bacterial species used, Lactobacillus plantarum. has been shown to be able to break down starch, and this consequently leads to an increase in the total amount of fermentable carbohydrates in the fore mass.
I henhold til foreliggende oppfinnelse skapes det selektive vekstforhold for de anvendte melkesyrebakterier, hvor de kan formere seg og komme inn i en aktiv vekstfase i fravær av konkurrerende mikroorganismer før de tilsettes formassen. Dette oppnås ved at de frysetørkede bakterier inokuleres i et egnet sterilt, flytende vekstmedium, f.eks. modifisert MRS, som er dispensert i en tett lukkbar beholder, f.eks. en plastflaske. Beholderen inkuberes deretter ved romtemperatur og i løpet av 24 timer inneholder den en tett bak-teriekultur i aktiv vekst. Bakteriekulturen, som er lagringsstabil i 1-2 uker ved 4'C, blandes med vann og påsprøytes deretter formassen under innhøsting, f.eks. ved bruk av forhøster. According to the present invention, the selective growth conditions are created for the lactic acid bacteria used, where they can multiply and enter an active growth phase in the absence of competing microorganisms before they are added to the forage. This is achieved by inoculating the freeze-dried bacteria in a suitable sterile, liquid growth medium, e.g. modified MRS, which is dispensed in a tightly closable container, e.g. a plastic bottle. The container is then incubated at room temperature and within 24 hours it contains a dense bacterial culture in active growth. The bacterial culture, which is storage-stable for 1-2 weeks at 4'C, is mixed with water and then sprayed on the forage during harvesting, e.g. when using a pre-harvester.
Fremgangsmåten er særpreget ved det som er angitt i krav 1's karakteriserende del. Ytterligere trekk fremgår av krav 2 og 3. The method is characterized by what is stated in claim 1's characterizing part. Further features appear in requirements 2 and 3.
Ved foreliggende oppfinnelse oppnås de følgende klare fordeler: a) Bakteriekulturen formeres til høy tetthet før bruk, dvs. at formassen tilføres et høyt antall aktive With the present invention, the following clear advantages are achieved: a) The bacterial culture is propagated to a high density before use, i.e. that the precursor mass is supplied with a high number of active
bakterier. bacteria.
b) Bakteriene overføres fra en hvilende (frysetørret) form til aktivt metaboliserende og melkesyreproduse-rende celler i fravær av interfererende mikroorganismer, og tilføres formassen i aktiv form. b) The bacteria are transferred from a dormant (freeze-dried) form to actively metabolizing and lactic acid-producing cells in the absence of interfering microorganisms, and are added to the fore-mass in active form.
Resultatet av a) og b) er at det skjer en rask produksjon av melkesyre i silomassen med tilhørende rask pH-senkning. Dette fører til at vekst av aerobe og fakultativt anaerobe, coliforme bakterier hemmes i sin vekst. Dette fører til et redusert oksydasjons-tap i form av karbondioksyddannelse og redusert produksjon av bakterielle metabolitter med lav næringsverdi. The result of a) and b) is that there is a rapid production of lactic acid in the silage mass with an associated rapid pH lowering. This leads to the growth of aerobic and facultatively anaerobic coliform bacteria being inhibited in their growth. This leads to a reduced oxidation loss in the form of carbon dioxide formation and reduced production of bacterial metabolites with low nutritional value.
Bakteriene formeres under betingelser som er selektive for melkesyrebakterier (fravær av luft, The bacteria multiply under conditions that are selective for lactic acid bacteria (absence of air,
ca. 20°C, spesielt tilpasset vekstmedium), noe som gir rask vekst og bruksklar bakteriesuspensjon alle-rede etter 12 - 24 timer. Samtidig er bakteriesus-pens jonen lagringsstabil i 1-2 uker (4°C), noe som gir stor fleksibilitet for brukeren. about. 20°C, specially adapted growth medium), which gives rapid growth and a ready-to-use bacterial suspension already after 12 - 24 hours. At the same time, the bacterial suspension is storage-stable for 1-2 weeks (4°C), which gives the user great flexibility.
Antall bakterier i det frysetørrede preparat kan teoretisk reduseres til noen fåtall individer av hver art, så lenge cellene er levedyktige og har evne til å formere seg. Dette kan gi en betydelig kostnadsbesparende effekt ved fremstilling av preparatet i forhold til konvensjonelle melkesyrebak-terieprodukter for ensilering som krever store bak-teriemengder, noe som medfører høyere produksjons-kostnader og følgelig høyere pris. The number of bacteria in the freeze-dried preparation can theoretically be reduced to a few individuals of each species, as long as the cells are viable and have the ability to multiply. This can provide a significant cost-saving effect when producing the preparation compared to conventional lactic acid bacteria products for ensiling which require large amounts of bacteria, which entails higher production costs and consequently a higher price.
Et ensilerings-sett består av et hetteglass med frysetørrede melkesyrebakterier (ca. 10 ml) og en lukket beholder med sterilt næringsmedium (plastflaske med skrukork, 2 liter). Ensileringssettet er lett å transportere, krever liten lagerplass og er lagringsstabilt, noe som har stor betydning f.eks. i beredskapssammenheng. An ensiling set consists of a vial with freeze-dried lactic acid bacteria (approx. 10 ml) and a closed container with sterile nutrient medium (plastic bottle with screw cap, 2 litres). The silage set is easy to transport, requires little storage space and is stable in storage, which is of great importance e.g. in the context of preparedness.
Preparatet kan tilsettes formaterialet ved bruk av konvensjonelt innhøstningsutstyr (forhøster/slag-høster etc.) The preparation can be added to the pre-material using conventional harvesting equipment (pre-harvester/splash-harvester etc.)
I tillegg har dette produktet de samme fordeler som andre melkesyrebakterie-preparater for ensilering, idet det er miljøvennlig, biologisk kompatibelt, ikke-helseskadelig (ved f.eks. sprut i øyne), ikke-etsende (på klær, hud etc.) og ikke-korrosivt på redskap (forhøster etc). In addition, this product has the same advantages as other lactic acid bacteria preparations for ensiling, in that it is environmentally friendly, biologically compatible, non-harmful (in case of splashes in the eyes, for example), non-corrosive (on clothes, skin etc.) and non-corrosive to implements (harvester etc.).
Dyrkninaseksempel Cultivation example
Fremstilling av frysetørret bakteriepreparat Production of freeze-dried bacterial preparation
7 forskjellige melkessyrebakterieslekter, 5 Lactobacillus spp og 2 Pediococcus s<pp> ble dyrket på et medium (modifisert MRS) med følgende sammensetning: 7 different lactic acid bacteria genera, 5 Lactobacillus spp and 2 Pediococcus s<pp> were grown on a medium (modified MRS) with the following composition:
Tween 80R er et registrert varemerke for polyoksyetylen-(20)-sorbitanmonooleat. Tween 80R is a registered trademark of polyoxyethylene-(20)-sorbitan monooleate.
Alle bakteriearter dyrkes til en tetthet på log celletall= 9-10 og høstes ved sentrifugering. Bakterieartene blandes til en slurry, tilsettes kryoprotektivt agens (natriumgluta-mat, tørrmelk) og dispenseres sterilt på hetteglass. Bakteriemassen fryses ned til -70°C og frysetørres. Hetteglassene forsegles under nitrogenatmo-sfære. Tilberedt på denne måte har bakteriepreparatene en forventet holdbarhet på over 10 år ved 4°C. Preparatet betegnes i det følgende som ensileringsmiddel ifølge oppfinnelsen. En prosedyre for bruk av preparatet ved ensilering av forgress kan ha følgende form: Hetteglasset med frysetørret bakteriepreparat fylles halvfullt med godt uttappet, kaldt springvann (eventuelt med sterilt næringsmedium), påsettes gummipropp og ristes godt. All bacterial species are grown to a density of log cell number = 9-10 and harvested by centrifugation. The bacterial species are mixed into a slurry, cryoprotective agent (sodium glutamate, dry milk) is added and sterilely dispensed into vials. The bacterial mass is frozen to -70°C and freeze-dried. The vials are sealed under a nitrogen atmosphere. Prepared in this way, the bacterial preparations have an expected shelf life of over 10 years at 4°C. The preparation is referred to in the following as silage agent according to the invention. A procedure for using the preparation when ensiling forage can take the following form: Fill the vial with freeze-dried bacterial preparation half full with well-drained, cold tap water (possibly with sterile nutrient medium), attach a rubber stopper and shake well.
Innholdet i hetteglasset helles over i beholderen med steril næringsbuljong (2 liter) som holder romtemperatur ved tilsetning. Korken skrus på, og beholderen settes til aktivering ved romtemperatur (20-25°C) i ett døgn. Innholdet bør brukes straks aktiveringsperioden er over, men kan lagres i 1 uke ved kjellertemperatur (5-10°C). The contents of the vial are poured into the container with sterile nutrient broth (2 litres), which is kept at room temperature when added. The cap is screwed on, and the container is set for activation at room temperature (20-25°C) for one day. The contents should be used as soon as the activation period is over, but can be stored for 1 week at cellar temperature (5-10°C).
Umiddelbart før bruk blandes innholdet i beholderen godt og fortynnes med kaldt, godt uttappet springvann til ca. 25 liter i en plastkanne. Blandingen sprøytes på gresset via forhøster, og er beregnet til ca. 7 tonn gress. Immediately before use, mix the contents of the container well and dilute with cold, well-drained tap water to approx. 25 liters in a plastic jug. The mixture is sprayed on the grass via pre-harvester, and is intended for approx. 7 tons of grass.
Ved denne metoden påføres gresset et minimum av 1.000.000 melkesyrebakterier pr. gram. With this method, a minimum of 1,000,000 lactic acid bacteria are applied to the grass per gram.
Eksempel 1 Example 1
Sammenlignende forsøk med metaboliserende arter anvendt ifølge oppfinnelsen, maursyre, pH, melkesyre og pressvæske. Comparative experiments with metabolizing species used according to the invention, formic acid, pH, lactic acid and press fluid.
Forsøk ble gjenomført i 6 m<2> siloer (diam. 1,6 m, høyde 3,0 m). Prøveuttak ble gjort med et 1 m langt stålrør (diam. 40 mm) som blé slått vertikalt ned i siloen fra toppen. Experiments were carried out again in 6 m<2> silos (diam. 1.6 m, height 3.0 m). Sampling was done with a 1 m long steel pipe (diam. 40 mm) which was lowered vertically into the silo from the top.
Gressmaterialet bestod av timotei (73%), engsvingel (17%), rødkløver (6%) og andre gressarter (4%). The grass material consisted of timothy (73%), meadow fescue (17%), red clover (6%) and other grass species (4%).
Gressets tørrstoffinnhold var 14-15%. Bufferkapasiteten var 350 mekv/kg tørrstoff (ts) og sukkermengden, uttrykt som vannløselig karbohydrat (WSC), var 115-120 g/kg ts. The dry matter content of the grass was 14-15%. The buffer capacity was 350 meq/kg dry matter (ts) and the amount of sugar, expressed as water-soluble carbohydrate (WSC), was 115-120 g/kg ts.
Tabell 2 Table 2
Akkumulert pressvæske t.o.m. dag 59 samt tap av tørrstoff Accumulated pressure fluid up to day 59 as well as loss of dry matter
Kommentar: Comment:
Metaboliserende arter anvendt ifølge oppfinnelsen viser en betydelig raskere pH-senkning enn både kontroll og maursyresilo, noe som fører til en sekundær pH-stigning parallelt med omsetning av dannet melkesyre. Pressvæskedannelsen ved bruk av oppfinnelsespreparatet er betydelig redusert i forhold til kontroll og maursyresilo, og dette gir seg også utslag i et redusert tap av tørrstoff. Metabolizing species used according to the invention show a significantly faster pH lowering than both the control and the formic acid silo, which leads to a secondary pH rise parallel to the turnover of formed lactic acid. Press fluid formation when using the preparation of the invention is significantly reduced compared to the control and formic acid silo, and this also results in a reduced loss of dry matter.
Eksempel 2 Example 2
Sammenlignende forsøk med metaboliserende arter og maursyre. Tap i form av karbondioksyd. Comparative experiments with metabolizing species and formic acid. Loss in the form of carbon dioxide.
Forsøket ble gjennomført ved bruk av 10 1 småsiloer. Tap av karbondioksyd ble bestemt i form av vekttap. The experiment was carried out using 10 1 small silos. Loss of carbon dioxide was determined in terms of weight loss.
Gressmaterialet bestod hovedsakelig av timotei og engsvingel (50/50). Gressets tørrstoffinnhold var 23%. The grass material consisted mainly of timothy and meadow fescue (50/50). The dry matter content of the grass was 23%.
Kommentar: Comment:
Tap i form av karbondioksyd er noe større de første par dager i kontroll og metaboliserende arter enn i maursyresilo. Senere i ensileringsperioden øker også kulldiok-sydproduksjonen i maursyresiloen, og det totale tap etter 50-105 dager er sammenlignbart i siloer ensilert med de metaboliserende arter og maursyre. Losses in the form of carbon dioxide are somewhat greater in the first few days in control and metabolizing species than in formic acid silos. Later in the ensiling period, carbon dioxide production also increases in the formic acid silo, and the total loss after 50-105 days is comparable in silos ensiled with the metabolizing species and formic acid.
Eksempel 3 Example 3
Sammenlignende forsøk med metaboliserende arter, maursyre, samt to kommersielle melkesyrebakteriepreparater (Prep. 1 og Prep. 2). pH og melkesyredannelse. Comparative experiments with metabolizing species, formic acid, as well as two commercial lactic acid bacteria preparations (Prep. 1 and Prep. 2). pH and lactic acid formation.
Forsøket ble gjennomført i 2 kg siloer. Gressmaterialet bestod hovedsakelig av timotei med tørrstoff 20,9% og WSC 129 g/kg. The experiment was carried out in 2 kg silos. The grass material consisted mainly of timothy with dry matter 20.9% and WSC 129 g/kg.
i 1 .—_ 1 1 1 1 - •—* ;Kommentar: ;pH-utviklingen i silo med de metaboliserende arter viser en betydelig raskere senkning enn i kontroll og maursyre, og en noe raskere senkning enn ved bruk av de to kommersielle bakteriepreparater. Denne pH-utviklingen reflekteres også i dannelsen av melkesyre. ;Eksempel 4 ;Omsetning av stivelse ;Medium 1: MRS - glukose + bromkresolpurpur. ;Medium 2: MRS - glukose + 1% stivelse + bromkresolpurpur Inkuberingstemperatur 2 8 °C ;Inkuberingstid 24 timer. ;;<*> Skala fra 0 (negativ reaksjon) til 5 (maksimum positiv reaksjon). i 1 .—_ 1 1 1 1 - •—* ;Comment: ;The pH development in the silo with the metabolizing species shows a significantly faster lowering than in control and formic acid, and a somewhat faster lowering than when using the two commercial bacterial preparations . This pH development is also reflected in the formation of lactic acid. ;Example 4 ;Turnover of starch ;Medium 1: MRS - glucose + bromocresol purple. ;Medium 2: MRS - glucose + 1% starch + bromocresol purple Incubation temperature 2 8 °C ;Incubation time 24 hours. ;;<*> Scale from 0 (negative reaction) to 5 (maximum positive reaction).
1, 2, 3 og 4 betegner intermediære reaksjoner. 1, 2, 3 and 4 denote intermediate reactions.
3, 4 og 5 angir positive reaksjoner. 3, 4 and 5 indicate positive reactions.
Kommentar: Comment:
Resultatene viser at karbonkilden (glukose) i MRS mediet kan erstattes med stivelse, dvs. Li. plantarum kan omsette stivelse. The results show that the carbon source (glucose) in the MRS medium can be replaced with starch, i.e. Li. plantarum can convert starch.
Eksempel 5 Example 5
Tørrstofftap (akkumulerte verdier) i avløp fra pilotskala-forsøk. Dry matter loss (accumulated values) in effluent from pilot-scale experiments.
C = kontroll, N = foreliggende fremgangsmåte, F = maursyre C = control, N = present method, F = formic acid
Tabell 6 viser betydelig reduksjon i avløpstap ved ensilering med foreliggende fremgangsmåte sammenliknet med maursyre. Miljøforurensingspotensialet blir derfor betraktelig mindre med foreliggende fremgangsmåte enn med maursyre. Table 6 shows a significant reduction in waste water loss when ensiling with the present method compared with formic acid. The environmental pollution potential is therefore considerably less with the present method than with formic acid.
Videre viser tabell 7 og 8 sammenlignende forsøk med metaboliserende arter ifølge oppfinnelsen, maursyre og ingen tilsetning (kontroll). Furthermore, Tables 7 and 8 show comparative experiments with metabolizing species according to the invention, formic acid and no addition (control).
Forsøkene er utført i 6 m<3> pilotsiloer på gressmateriale med 30% tørrstoff (tabell 7) og 20% tørrstoff (tabell 8). The experiments were carried out in 6 m<3> pilot silos on grass material with 30% dry matter (table 7) and 20% dry matter (table 8).
Resultatene viser at produksjon av melkesyre med påfølgende pH-reduksjon skjer raskest i siloer med metaboliserende arter ifølge oppfinnelsen. The results show that production of lactic acid with subsequent pH reduction occurs fastest in silos with metabolizing species according to the invention.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO881867A NO164576C (en) | 1988-04-28 | 1988-04-28 | PROCEDURE FOR ENSILING PLANTS. |
PCT/NO1989/000036 WO1989010067A1 (en) | 1988-04-28 | 1989-04-26 | Preparation of silage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO881867A NO164576C (en) | 1988-04-28 | 1988-04-28 | PROCEDURE FOR ENSILING PLANTS. |
Publications (4)
Publication Number | Publication Date |
---|---|
NO881867D0 NO881867D0 (en) | 1988-04-28 |
NO881867L NO881867L (en) | 1989-10-30 |
NO164576B true NO164576B (en) | 1990-07-16 |
NO164576C NO164576C (en) | 1990-10-24 |
Family
ID=19890849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO881867A NO164576C (en) | 1988-04-28 | 1988-04-28 | PROCEDURE FOR ENSILING PLANTS. |
Country Status (2)
Country | Link |
---|---|
NO (1) | NO164576C (en) |
WO (1) | WO1989010067A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI94875C (en) * | 1993-01-15 | 1995-11-03 | Panimolaboratorio Bryggerilabo | Process for processing industrial germinated seed material for food use |
US8519008B2 (en) | 2003-01-22 | 2013-08-27 | Purina Animal Nutrition Llc | Method and composition for improving the health of young monogastric mammals |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1442055A1 (en) * | 1964-07-13 | 1969-03-06 | Beck Dr Theodor | Process for the production and use of a bacterial preparation as a silage aid in the preparation of fodder |
GB1547063A (en) * | 1977-07-07 | 1979-06-06 | Salen Interdevelop Ab | Process for the biological ensiling of vegetable and/or animals materials |
DD237255A1 (en) * | 1985-05-13 | 1986-07-09 | Ostra Veb | METHOD FOR THE MICROBIAL ENZYMATIC PRODUCTION OF SILAGES FROM ALLIA-RICH GREEN PLANTS |
EP0311469A3 (en) * | 1987-09-02 | 1990-05-30 | Plant Genetic Systems N.V. | Transformed lactic acid bacteria |
-
1988
- 1988-04-28 NO NO881867A patent/NO164576C/en unknown
-
1989
- 1989-04-26 WO PCT/NO1989/000036 patent/WO1989010067A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO164576C (en) | 1990-10-24 |
NO881867D0 (en) | 1988-04-28 |
WO1989010067A1 (en) | 1989-11-02 |
NO881867L (en) | 1989-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gibson et al. | Bacteriological changes in silage made at controlled temperatures | |
Cai et al. | Effect of NaCl‐tolerant lactic acid bacteria and NaCl on the fermentation characteristics and aerobic stability of silage | |
US4981705A (en) | Bacterial treatment to preserve silage | |
FI82354B (en) | KONSERVERING AV FAERSKFODER. | |
JPH02265443A (en) | Preserving method for fodder and grain | |
US4528199A (en) | Silage production from fermentable forages | |
CN105062891A (en) | Enzyme-containing composition and method for enhancing stability of liquid microbial inoculant | |
US20140186929A1 (en) | Compositions and methods comprising a combination silage inoculant | |
EP0071858A1 (en) | Silage preservation with propionic acid producing microorganisms | |
EP1194541B1 (en) | Non-lactate-assimilating yeast for improving aerobic stability of silage | |
US6905716B2 (en) | Propionic acid based preservative agent for animal and vegetable products | |
Gibson et al. | Bacteriological changes in silage as affected by laceration of the fresh grass | |
Allen et al. | The effect of the addition of various materials and bacterial cultures to grass silage at the time of making on the subsequent bacterial and chemical changes | |
Shao et al. | Fermentation quality of forage oat (Avena sativa L.) silages treated with pre-fermented juices, sorbic acid, glucose and encapsulated-glucose | |
Alli et al. | Effects of additives on lactic acid production and water soluble carbohydrates in chopped corn and alfalfa | |
NO164576B (en) | PROCEDURE FOR ENSILING PLANTS. | |
Cai et al. | Stabilization of poultry processing by-products and waste and poultry carcasses through lactic acid fermentation | |
CA1098364A (en) | Process for fermentation of green fodder | |
NO143366B (en) | PROCEDURE FOR BIOLOGICAL ENSILATION OF VEGETABLE AND / OR ANIMAL MATERIALS | |
CN108419898A (en) | A kind of straw feed ensiling additive and application | |
EP0580236A2 (en) | Silage inoculant | |
Rauramaa et al. | The effect of inoculants and cellulase on the fermentation and microbiological composition of grass silage: II Microbiological changes in the silages | |
JPS5913175B2 (en) | Silage manufacturing method | |
US3147121A (en) | Preparation of silage with pediococcus cerevisiae | |
JPS61209554A (en) | Production of silage |