NO162260B - PROCEDURE FOR HEATING PROCESS AIR FOR INDUSTRIAL USE. - Google Patents
PROCEDURE FOR HEATING PROCESS AIR FOR INDUSTRIAL USE. Download PDFInfo
- Publication number
- NO162260B NO162260B NO833848A NO833848A NO162260B NO 162260 B NO162260 B NO 162260B NO 833848 A NO833848 A NO 833848A NO 833848 A NO833848 A NO 833848A NO 162260 B NO162260 B NO 162260B
- Authority
- NO
- Norway
- Prior art keywords
- plasma
- plasma generator
- air
- gas
- process air
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000010438 heat treatment Methods 0.000 title claims description 16
- 239000007789 gas Substances 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000000498 cooling water Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000003570 air Substances 0.000 description 30
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 30
- 238000005245 sintering Methods 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- 239000003245 coal Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 4
- 239000002803 fossil fuel Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000010327 methods by industry Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L15/00—Heating of air supplied for combustion
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
- C21B5/002—Heated electrically (plasma)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/32—Technologies related to metal processing using renewable energy sources
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Discharge Heating (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Furnace Details (AREA)
- Treatment Of Fiber Materials (AREA)
- Glass Compositions (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Direct Air Heating By Heater Or Combustion Gas (AREA)
- Plasma Technology (AREA)
- Air Supply (AREA)
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte ved oppvarming av prosessluft for industrielle formål tjil en forutbestembar temperatur. The present invention relates to a method for heating process air for industrial purposes to a predetermined temperature.
Forbruket av prosessgass, spesielt luft med høyere temperatur, er i mange industrielle prosesser stor. En vanlig varmebehandling av forskjellige store gassvolumer ved hjelp av f.eks. varmevekslere krever altfor store investeringer, The consumption of process gas, especially air with a higher temperature, is large in many industrial processes. A normal heat treatment of various large gas volumes using e.g. heat exchangers require far too large investments,
og man er derfor i den senere tid stadig gått mere over til å utnytte en forbrenning av fossilt brensel for slik oppvarming såsom kull, koks, naturgass, olje osv. Både fra miljømessige og prosesstekniske synspunkter er en slik forbrenning problematisk - miljømessig særlig ved at med-følgende utslipp av svovelforbindelser med tilsvarende for-suring av miljøet samt nedsmussing ved røk og sot og prosessteknisk ved at svovel ikke må forekomme i visse prosesser, f.eks. i forskjellige jern- og stålfremstillingsprosesser. Dertil kommer også kostnadsaspektene - ettersom prisene and therefore, in recent times, people have increasingly switched to utilizing the combustion of fossil fuels for such heating, such as coal, coke, natural gas, oil, etc. Both from an environmental and process engineering point of view, such a combustion is problematic - particularly from an environmental point of view, with -following emission of sulfur compounds with corresponding acidification of the environment as well as pollution by smoke and soot and process engineering in that sulfur must not occur in certain processes, e.g. in various iron and steel manufacturing processes. There are also the cost aspects - as the prices
på fossile brensler i den senere tid har steget skiredaktig. on fossil fuels in recent times has skyrocketed.
i in
I IN
Det ovenfor omtalte problem har stadig beskjeftiget mange fagmenn innenfor området. I forbindelse med stålfremstil-ling er det også allerede utviklet en metode for å øke temperaturen i blæstgass ved en masovn i den hensikt å The above-mentioned problem has constantly occupied many professionals in the field. In connection with steel production, a method has also already been developed to increase the temperature in blast gas at a blast furnace with the aim of
øke produksjonen og samtidig redusere koksforbruket. Ved denne kjente fremgangsmåte ledes blæstgassen helt eller delvis gjennom et plasma som dannes i en plasmagenerator av i og for seg kjent type ved hjelp av en elektrisk lys-bue. Fordelen med en plasmagenerator er dens høye virknings-grad som kommer opp i nærheten av 90% og at en meget høy temperatur kan oppnås, normalt over 3000°C. increase production and at the same time reduce coke consumption. In this known method, the blowing gas is led in whole or in part through a plasma which is formed in a plasma generator of a known type by means of an electric arc. The advantage of a plasma generator is its high efficiency, which is close to 90% and that a very high temperature can be achieved, normally over 3000°C.
I en plasmagass som dannes i en plasmagenerator er en del In a plasma gas that is formed in a plasma generator is a part
av de foreliggende atomer og molekyler ioniserte, og disse ioniserte partikler er meget reaktive. Når plasmagass frem-stilt av en luftstrøm går over til normale betingelser ved lavere temperatur, får man imidlertid foruten nitrogen og oksygen også nitrogenoksyder. Nitrogenoksydene er som kjent meget giftige og gir opphav til dannelse av salpetersyre of the present atoms and molecules ionized, and these ionized particles are very reactive. However, when plasma gas produced by an air stream changes to normal conditions at a lower temperature, nitrogen oxides are obtained in addition to nitrogen and oxygen. Nitrogen oxides are known to be very toxic and give rise to the formation of nitric acid
som kan forstyrre prosessutstyret. Ved den tidligere kjente oppvarming av blæstluft for masovner er det ikke tatt noe hensyn- til nitrogenoksyddannelsen fordi plasmagassen som dannes innblåses direkte i masovnen, hvor en automatisk nedbrytning av nitrogenoksyder oppnås under gjennomløpet av masovnchargeringen. which can interfere with the process equipment. In the previously known heating of blast air for blast furnaces, no consideration has been given to the formation of nitrogen oxides because the plasma gas that is formed is blown directly into the blast furnace, where an automatic breakdown of nitrogen oxides is achieved during the passage of the blast furnace charging.
Således angår US patent 3 708 409 en fremgangsmåte hvor nitrogen og argon eller luft, hydrogen og nitrogen bringes til å passere en plasmagenerator. Her er det imidlertid ikke tatt hensyn til slike dannede nitrogenoksyder. Thus, US patent 3,708,409 relates to a method where nitrogen and argon or air, hydrogen and nitrogen are made to pass through a plasma generator. Here, however, such formed nitrogen oxides have not been taken into account.
Også i NO patent 142 989, som beskriver oppvarming av nitrogengass og argon i en plasmagenerator, GB patent 1 457 862 og SE patent 371 453, Also in NO patent 142 989, which describes the heating of nitrogen gas and argon in a plasma generator, GB patent 1 457 862 and SE patent 371 453,
som omhandler dannelse av en forbrenningsgass av CO og H2, er det sett bort fra problemet med dannelse av nitrogenoksyder. which deals with the formation of a combustion gas of CO and H2, the problem of formation of nitrogen oxides is disregarded.
Formålet med foreliggende oppfinnelse er å unngå ovennevnte ulemper, samt å tilveiebringe en fremgangsmåte ved oppvarming av prosessluft uten at prosessluften forurenses, og uten at den ovenfor nevnte nitrogenoksyddannelse finner sted, og som dessuten fører til en billigere oppvarming sammenlignet med en konvensjonell oppvarming ved hjelp av fossile brensler. The purpose of the present invention is to avoid the above-mentioned disadvantages, as well as to provide a method for heating process air without the process air being polluted, and without the above-mentioned nitrogen oxide formation taking place, and which also leads to cheaper heating compared to conventional heating using fossil fuels.
Dette løses ifølge oppfinnelse ved den innledningsvis beskrevne fremganas-måte, slik som beskrevet i krav l's karakteriserende del. According to the invention, this is solved by the method described at the outset, as described in the characterizing part of claim 1.
Gass-strømmen som oppvarmes i plasmageneratoren består The gas flow that is heated in the plasma generator consists of
av vanndamp. Det har nemlig for en fagmann helt overraskende vist seg at. det ikke forekommer noe nitrogenoksyddannelse heller i blandingssonen når den varme plasmagass dannet av vanndamp blandes med luft. of water vapor. For a professional, it has surprisingly turned out that. no nitrogen oxide formation occurs either in the mixing zone when the hot plasma gas formed from water vapor is mixed with air.
Ifølge en ytterligere foretrukket utførelsesform av oppfinnelsen1 dannes vanndampen som oppvarmes i plasmageneratoren helt eller delvis ved hjelp av de kjølevannstap som oppnås According to a further preferred embodiment of the invention1, the water vapor that is heated in the plasma generator is formed in whole or in part by means of the cooling water losses that are achieved
i plasmageneratoren. in the plasma generator.
Oppfinnelsen skal i det følgende beskrives nærmere under hen-visning til de vedlagte tegninger som på eksemplifiserende måte viser noen utførelsesformer av oppfinnelsen hvor: fig. 1 viser skjematisk en anordning ifølge oppfinnelsen, fig. 2 viser skjematisk et kulsinterverk med båndrist ut- styrt med varmluftdannelsen ifølge oppfinnelsen og fig. 3 viser et snitt langs linjen IV - IV gjennom anord ningen ifølge fig. 2. 1 fig. 1 vises således skjematisk en plasmagenerator som er angitt med 1. Plasmageneratoren 1 har en tilførselsledning 2 for en gass-strøm for oppvarming, som fortrinnsvis består av vanndamp. Ved passasjen av den elektriske lysbuen som dannes i plasmageneratoren får gassen en plasmatilstand og såkalt plasmagass dannes. Umiddelbart etter plasmageneratoren sett i strømningsretningen er det anordnet en vann-kjølt form 3 med tilhørende lanser 4 for tilførsel av even-tuelt tilsetningsmateriale. Umiddelbart etter formen til-føres strømmen av luftvolumet for oppvarming en plasmagass med meget høy temperatur, hvilket foretas gjennom et tilløp 7 som munner i det som kan betegnes som en blandings- eller reaksjonssone 8. The invention will be described in more detail in the following with reference to the attached drawings which exemplify some embodiments of the invention where: fig. 1 schematically shows a device according to the invention, fig. 2 schematically shows a carbon sintering plant with a belt grate out- controlled with the hot air formation according to the invention and fig. 3 shows a section along the line IV - IV through anord ning according to fig. 2. 1 fig. 1 thus schematically shows a plasma generator which is indicated by 1. The plasma generator 1 has a supply line 2 for a gas flow for heating, which preferably consists of water vapour. During the passage of the electric arc that is formed in the plasma generator, the gas acquires a plasma state and so-called plasma gas is formed. Immediately after the plasma generator, viewed in the direction of flow, there is a water-cooled mold 3 with an associated lance 4 for the supply of any additive material. Immediately after the mold, a plasma gas with a very high temperature is added to the flow of the air volume for heating, which is done through an inlet 7 which opens into what can be described as a mixing or reaction zone 8.
Plasmageneratorens metalldeler er vannkjølte og ca. 15% The metal parts of the plasma generator are water-cooled and approx. 15%
av effekten som tilføres plasmageneratoren faller bort som tap til kjølevannet. Ved å konstruere plasmageneratoren slik at trykk og temperatur kan økes, kan vannet benyttes for dampgenerering i en varmeveksler. of the power supplied to the plasma generator is lost as a loss to the cooling water. By designing the plasma generator so that pressure and temperature can be increased, the water can be used for steam generation in a heat exchanger.
Trykket i dampen som skal mates til plasmageneratoren skal fortrinnsvis ligge på 3 - 4 bar, hvilket medfører tempera-turer på minst 120°C, og plasmageneratorens kjølekanaler må således dimensjoneres for å tåle i det minste disse betingelser hvilket likevel ikke innebærer noe problem. The pressure in the steam to be fed to the plasma generator should preferably be 3 - 4 bar, which entails temperatures of at least 120°C, and the plasma generator's cooling channels must thus be sized to withstand at least these conditions, which nevertheless does not imply any problem.
I fig. 2 vises tilpasning av oppfinnelsen til et kulsinterverk med båndrist. I det her viste kulsinterverket arbeider et endeløst bånd 11 bestående av et stort antall innbyrdes koblede vogner 12 som ruller på skinner for transport av agglomerert jernmalmslagg, såkalte pellets,gjennom en ovn 13. Tilførselen av pellets til vognene 12 skjer kontinuerlig gjennom en rullesikt 14. Vognene 12 passerer i nevnte orden to tørkesoner 15, 16, en. forvarmingssone 17, en sintrings-sone 18 med to sintringssoner 18a, 18b samt to kjølesoner 19, 20. Bunnflaten i disse vogner 12 er utformet luftgjennom-trengelige og kunne f.eks. være gitterformede eller nett-formede . In fig. 2 shows adaptation of the invention to a coal sintering plant with a belt grate. In the coal sintering plant shown here, an endless belt 11 consists of a large number of interconnected carriages 12 that roll on rails for the transport of agglomerated iron ore slag, so-called pellets, through a furnace 13. The supply of pellets to the carriages 12 takes place continuously through a roller screen 14. The wagons 12 pass in the aforementioned order two drying zones 15, 16, one. preheating zone 17, a sintering zone 18 with two sintering zones 18a, 18b and two cooling zones 19, 20. The bottom surface of these carriages 12 is designed to be air-permeable and could e.g. be grid-shaped or net-shaped.
Som prosessluft til kulsinterverket kan det f.eks. anvendes kjøleluft fra en annen del av prosessen. Luften innmates ved hjelp av en kjølevifte 21, hvorunder luften først blåses inn i kjølesonene 19, 20'. En mindre del av luften strømmer gjennom den siste kjølesonen 20, mates ved hjelp av en tørke-luftvifte 2 2 til den første tørkesone 15 for å strømme oppad gjennom sjiktet av pellets i vognene og gjennom en utsugnings-vifte 23 ut i en skorstein 24. As process air for the carbon sintering plant, it can e.g. cooling air from another part of the process is used. The air is fed in by means of a cooling fan 21, under which the air is first blown into the cooling zones 19, 20'. A smaller portion of the air flows through the last cooling zone 20, is fed by means of a drying air fan 22 to the first drying zone 15 to flow upwards through the layer of pellets in the carts and through an extraction fan 23 out into a chimney 24.
Den største del av den innsugde luft føres opp i et rør eller kappe 25, hvoretter den strømmer ned gjennom kanaler 25a, 25b til i forvarmingssonen 17 og til i sintringszonen 18 anord-nede brennere 26 henholdsvis 27. En passende fordeling kan være fire par brennere i forvarmingssonen og 7 par brennere i sintringssonen. The largest part of the sucked-in air is led up into a pipe or casing 25, after which it flows down through channels 25a, 25b to the preheating zone 17 and to the sintering zone 18 arranged burners 26 and 27 respectively. A suitable distribution can be four pairs of burners in the preheating zone and 7 pairs of burners in the sintering zone.
En liten del av kjøleluften bringes til å strømme ned gjennom vognene i den andre ettersintringssonen 18b, slik at sintringsprosessen fullbyrdes også i de nederste pellets-sjiktene i vognene. A small part of the cooling air is caused to flow down through the carriages in the second post-sintering zone 18b, so that the sintering process is also completed in the lowermost pellet layers in the carriages.
Under sintringssonene 18a, 18b er det anordnet en rekupera-sjonsvifte 28, fra hvilken luften føres gjennom en ledning 29 til den andre tørkesonen 16,for etter å ha passert vognene som er fylt med pellets, å blåses ut gjennom skorsteinen sammen med luften fra sintringssonen ved hjelp av en avgass-vifte. Below the sintering zones 18a, 18b, a recovery fan 28 is arranged, from which the air is led through a line 29 to the second drying zone 16, so that, after passing the carts filled with pellets, to be blown out through the chimney together with the air from the sintering zone using an exhaust fan.
Ved tilpasning av den ifølge oppfinnelsen foreslåtte By adapting the one proposed according to the invention
teknikk til et slikt kulsinterverk, erstattes gjerne technique for such a coal sintering plant is often replaced
seks av brennerparene i sintringssonen med plasmageneratorer utformet ifølge fig. 1 hvorigjennom den nødvendige oppvarming av luften oppnås uten nitrogenoksyddannelse. six of the burner pairs in the sintering zone with plasma generators designed according to fig. 1 through which the necessary heating of the air is achieved without nitrogen oxide formation.
Volumet av den atomiseringsluft som normalt anvendes for olje-brennerene er tilstrekkelig for anvendelse i de plasmageneratorer som er foreslått ifølge oppfinnelsen. Noen ytterligere prosessteknisk forandring, såsom installering av ytterligere vifter og kompressorer, kreves derfor ikke hvis kulsinterverkets prosessluftoppvarming skjer på den måte som foreslås ifølge oppfinnelsen. Det eneste som kreves er således en installasjon av plasmabrennerene som er foreslått ifølge oppfinnelsen med tilhørende elektrisk! utstyr og tilbehør, samt tilkobling til en kilde for vanddamp eller annen gass. The volume of the atomizing air normally used for the oil burners is sufficient for use in the plasma generators proposed according to the invention. Any further process technical change, such as the installation of additional fans and compressors, is therefore not required if the coal sintering plant's process air heating takes place in the manner proposed according to the invention. The only thing required is thus an installation of the plasma burners proposed according to the invention with associated electrical! equipment and accessories, as well as connection to a source of water vapor or other gas.
I fig. 3 vises et tverrsnitt gjennom anordningen i fig. 2 langs linjen IV - IV som går gjennom sintringssonen. In fig. 3 shows a cross section through the device in fig. 2 along the line IV - IV which passes through the sintering zone.
Herav fremgår at vognene 12 med hjul 31 går på skinner From this it appears that the carriages 12 with wheels 31 run on rails
32. Luften som er oppvarmet til 900°C,strømmer fra kappen 32. The air, heated to 900°C, flows from the mantle
25 ned gjennom kanalene 25a og 25b til brennerområdet, hvor den oppvarmes for siden å komme inn i ovnsområdet 33 og ned gjennom vognene som er fylt med pellets. I fig. 3 25 down through the channels 25a and 25b to the burner area, where it is heated before entering the furnace area 33 and down through the carts which are filled with pellets. In fig. 3
vises anordningen med plasmageneratorer utformet ifølge oppfinnelsen som vist i fig. 1. Anleggets funksjon vil fremgå klarere i forbindelse med det nedenfor beskrevne utførelseseksempel. shows the device with plasma generators designed according to the invention as shown in fig. 1. The facility's function will appear more clearly in connection with the execution example described below.
Man skal være oppmerksom på at den beskrevne tilpasning It should be noted that the described adaptation
av oppfinnelsen bare er en av de mange tenkelige tekniske of the invention is only one of the many conceivable technical
I IN
f f
tilpasninger som kan utføres takket være at problemet med nitrogenoksyddannelsen nå er løst på en tilfredsstil-lende måte. adaptations that can be carried out thanks to the fact that the problem of nitrogen oxide formation has now been solved in a satisfactory manner.
Oppfinnelsen skal nå belyses nærmere ved et utførelses-eksempel i forbindelse med et kulsinterverk som er skjematisk gjengitt i fig. 2 og 3. The invention will now be explained in more detail by means of an embodiment example in connection with a coal sintering plant which is schematically reproduced in fig. 2 and 3.
Eksempel Example
Produksjonen i kulsinterverket antas å nå 420 tonn pellets pr. time. Tidligere i prosessen anvendt luft med en temperatur på ca. 900°C anvendes som inngangsluft. For selve sintringsprosessen kreves som kjent en temperatur på ca. 1300°C. Imidlertid må innkomne pellets ikke utsettes for en sprangvis økning av temperaturen til 1300OC. Derfor er anordningen slik utformet, hvilket også fremgår av ovenstående detaljerte beskrivelse, at man i en første tørkesone anvender en tørkeluft som har en temperatur på Production in the coal sinter plant is expected to reach 420 tonnes of pellets per year. hour. Earlier in the process, air was used with a temperature of approx. 900°C is used as inlet air. As is known, the sintering process itself requires a temperature of approx. 1300°C. However, incoming pellets must not be subjected to a sudden increase in temperature to 1300OC. Therefore, the device is designed in such a way, which is also evident from the above detailed description, that in a first drying zone a drying air is used which has a temperature of
ca. 250°C, hvorpå lufttemperaturen sakte økes i forvarm-ingssoner. Etter sintringssonen er det anordnet ettervarm-ingssoner, hvilket kreves for at også de pellets som ligger underst skal rekke å sintre. Således er det særlig i selve sintringssonen som skal foreligge at de tidligere anvendte oljebrennere erstattes med piasmageneratorene som foreslås ifølge oppfinnelsen. about. 250°C, after which the air temperature is slowly increased in preheating zones. After the sintering zone, after-heating zones are arranged, which is required so that the pellets that lie below also have time to sinter. Thus, it is particularly in the sintering zone itself that the previously used oil burners are to be replaced with the plasma generators proposed according to the invention.
Med nevnte produksjonskapasitet kreves et effekttilskudd på 3 9 MW tilsvarende 3,4 tonn olje/time for oppvarming av ca. 70.000 Nm<3> luft/time. With the aforementioned production capacity, a power supplement of 3 9 MW is required, corresponding to 3.4 tonnes of oil/hour for heating approx. 70,000 Nm<3> air/hour.
Båndovnsverket i utførelseseksempelet har 11 brennerpar hvorav 7 i sintringssonen. Ved denne tilpasning av oppfinnelsen byttes fortrinnsvis de 6 siste brennerparene ut mot 6 parvis koblede plasmageneratorer. Volumet av den gass-strøm som passerer plasmageneratoren for dannelse av plasmagass,utgjør som regel bare 10% av det til slutt er-holdte volum prosessluft som anvendes for sintringen. Inngangstemperaturen på denne gass-strømmen er derfor ikke kritisk. The belt furnace plant in the design example has 11 pairs of burners, 7 of which are in the sintering zone. In this adaptation of the invention, the last 6 pairs of burners are preferably replaced by 6 plasma generators connected in pairs. The volume of the gas stream that passes through the plasma generator to form plasma gas usually only accounts for 10% of the final volume of process air used for sintering. The inlet temperature of this gas stream is therefore not critical.
En forutsetning for en vellykket prosessutvikling ved så investeringskrevende anlegg som kulsinterverk,er absolutt at eventuelle forbedringer kan oppnås med minst mulig inn-grep i det foreliggende anlegg. Disse krav oppfylles i foreliggende tilfelle, hvor oljebrenneraggregatene bare behøver å erstattes med piasmageneratorene sammen med elektrisk utstyr for elektrisk forsyning av disse og visse mindre til-setninger. Energibehovet ved anvendelse av plasmabrenner og oljebrenner er i store trekk de samme. Plasmabrennerens virk-ningsgrad er likevel høyere enn virkningsgraden til oljebren-nerene. Det vesentlige i sammenhengen er likevel at fossile brennstoffer, hvis priser sti.ger meget raskt, ved oppfinnelsen kan erstattes med den vesentlig billigere elektriske energi. A prerequisite for successful process development in such an investment-intensive facility as a coal sinter plant is absolutely that any improvements can be achieved with the least possible intervention in the current facility. These requirements are met in the present case, where the oil burner units only need to be replaced with the plasma generators together with electrical equipment for the electrical supply of these and certain minor additions. The energy requirements when using a plasma torch and an oil torch are largely the same. The efficiency of the plasma burner is nevertheless higher than the efficiency of the oil burners. The important thing in the context is nevertheless that fossil fuels, whose prices rise very quickly, can be replaced by the invention with the significantly cheaper electrical energy.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8301698A SE435998B (en) | 1983-03-28 | 1983-03-28 | KIT FOR HEATING OF PROCESS AIR FOR INDUSTRIAL PROCESSES |
Publications (3)
Publication Number | Publication Date |
---|---|
NO833848L NO833848L (en) | 1984-10-01 |
NO162260B true NO162260B (en) | 1989-08-21 |
NO162260C NO162260C (en) | 1989-11-29 |
Family
ID=20350556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO833848A NO162260C (en) | 1983-03-28 | 1983-10-21 | PROCEDURE FOR HEATING PROCESS AIR FOR INDUSTRIAL USE. |
Country Status (14)
Country | Link |
---|---|
JP (1) | JPS59180233A (en) |
KR (1) | KR840007951A (en) |
AT (1) | AT380142B (en) |
BE (1) | BE898091A (en) |
BR (1) | BR8306324A (en) |
ES (1) | ES8407356A1 (en) |
FI (1) | FI78808C (en) |
FR (1) | FR2543666B1 (en) |
GB (1) | GB2138256B (en) |
IT (1) | IT1169894B (en) |
NL (1) | NL8303704A (en) |
NO (1) | NO162260C (en) |
SE (1) | SE435998B (en) |
ZA (1) | ZA837916B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102698677B (en) * | 2012-05-12 | 2014-10-29 | 新疆天业(集团)有限公司 | Plasma impinging stream reaction method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE371453C (en) * | 1973-03-26 | 1978-01-23 | Skf Ind Trading & Dev | KIT FOR PRODUCTION OF REDUCTION GAS |
BE814899A (en) * | 1974-05-10 | 1974-11-12 | PROCESS FOR MANUFACTURING HOT REDUCING GAS. | |
FR2499590B2 (en) * | 1980-07-15 | 1987-07-31 | Siderurgie Fse Inst Rech | PROCESS FOR REDUCING THE CONSUMPTION OF REDUCING AGENTS IN AN APPARATUS FOR REDUCING AND FUSING METAL ORES, ESPECIALLY IN A BLAST STEEL FURNACE |
BE891514A (en) * | 1981-12-17 | 1982-06-17 | Centre Rech Metallurgique | IMPROVEMENTS IN PROCESSES FOR MANUFACTURING HOT REDUCING GASES |
-
1983
- 1983-03-28 SE SE8301698A patent/SE435998B/en not_active IP Right Cessation
- 1983-10-11 GB GB08327156A patent/GB2138256B/en not_active Expired
- 1983-10-21 FR FR8316801A patent/FR2543666B1/en not_active Expired
- 1983-10-21 NO NO833848A patent/NO162260C/en unknown
- 1983-10-24 FI FI833881A patent/FI78808C/en not_active IP Right Cessation
- 1983-10-25 IT IT23429/83A patent/IT1169894B/en active
- 1983-10-25 AT AT0379883A patent/AT380142B/en not_active IP Right Cessation
- 1983-10-25 ZA ZA837916A patent/ZA837916B/en unknown
- 1983-10-27 NL NL8303704A patent/NL8303704A/en not_active Application Discontinuation
- 1983-10-27 BE BE0/211777A patent/BE898091A/en not_active IP Right Cessation
- 1983-11-01 JP JP58203765A patent/JPS59180233A/en active Pending
- 1983-11-02 ES ES526976A patent/ES8407356A1/en not_active Expired
- 1983-11-18 BR BR8306324A patent/BR8306324A/en not_active IP Right Cessation
- 1983-11-26 KR KR1019830005603A patent/KR840007951A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
AT380142B (en) | 1986-04-10 |
GB8327156D0 (en) | 1983-11-09 |
KR840007951A (en) | 1984-12-11 |
FI833881A0 (en) | 1983-10-24 |
SE8301698L (en) | 1984-09-29 |
FI78808B (en) | 1989-05-31 |
ES526976A0 (en) | 1984-10-01 |
SE435998B (en) | 1984-11-05 |
ES8407356A1 (en) | 1984-10-01 |
BE898091A (en) | 1984-02-15 |
FI833881A (en) | 1984-09-29 |
GB2138256B (en) | 1986-06-25 |
NO162260C (en) | 1989-11-29 |
SE8301698D0 (en) | 1983-03-28 |
NO833848L (en) | 1984-10-01 |
ZA837916B (en) | 1985-06-26 |
JPS59180233A (en) | 1984-10-13 |
FR2543666A1 (en) | 1984-10-05 |
BR8306324A (en) | 1984-11-13 |
FI78808C (en) | 1989-09-11 |
FR2543666B1 (en) | 1988-10-14 |
GB2138256A (en) | 1984-10-17 |
NL8303704A (en) | 1984-10-16 |
IT1169894B (en) | 1987-06-03 |
IT8323429A0 (en) | 1983-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6216611B1 (en) | Closed cycle waste combustion | |
CN204757712U (en) | Electric stove flue gas processing system | |
JPS5914714B2 (en) | Method for recovering and reevaluating heat from hot gases and hot gases | |
EP1379811B1 (en) | Closed cycle waste combustion | |
US10302301B2 (en) | Method and apparatus for controlling inlet temperature of dedusting apparatus in oxygen combustion boiler equipment | |
CN106755718B (en) | The fume waste heat utilization and dust removal integrated system and technique that pneumatic steelmaking generates | |
KR20150100740A (en) | Energy recovery from fumes from a melting furnace with a gas turbine and heat exchangers | |
CN104271898B (en) | The waste gas of the most spontaneous iron equipment is for the method producing steam | |
RU2476600C2 (en) | Method for coal gasification and production of iron, and system used for that purpose | |
CN104964274A (en) | Smoke waste heat recovery and re-circulating temperature adjusting method and system of natural gas oxygen-rich combustion furnace | |
RU2657561C2 (en) | Method for combustion of low-grade fuel | |
US4584465A (en) | Method and apparatus for heating process air for industrial purposes | |
KR20150097529A (en) | Energy recovery from fumes from a melting furnace using a gas turbine and heat exchangers | |
CN204943454U (en) | The flue gas waste heat recovery of natural gas oxygen-enriched combustion furnace and recirculation thermoregulating system | |
NO162260B (en) | PROCEDURE FOR HEATING PROCESS AIR FOR INDUSTRIAL USE. | |
CN206281365U (en) | A kind of high-temp waste gas afterheat utilizing system | |
LU84337A1 (en) | METHOD FOR SUPPLYING ENERGY TO A HEATING OVEN FOR METALLURGICAL PRODUCTS | |
RU2553160C2 (en) | Energy extraction from gases in blast-furnace unit | |
Nimbalkar et al. | Technologies and materials for recovering waste heat in harsh environments | |
JPH0721391B2 (en) | Operation method of equipment attached to smelting furnace | |
NO158980B (en) | PROCEDURE AND DEVICE FOR HEATING PROCESS AIR FOR INDUSTRIAL PURPOSES. | |
CN103667685A (en) | Series preheating method and series preheating system for coal gas of sintering ignition furnace | |
JP6203998B2 (en) | Heating device | |
JP3161615B2 (en) | Humidifying blast furnace air | |
RU2575890C2 (en) | Heating device |