NO162127B - CYLINDER COVER FOR TOTAL SHUTT COMBUSTION MACHINE. - Google Patents

CYLINDER COVER FOR TOTAL SHUTT COMBUSTION MACHINE. Download PDF

Info

Publication number
NO162127B
NO162127B NO861393A NO861393A NO162127B NO 162127 B NO162127 B NO 162127B NO 861393 A NO861393 A NO 861393A NO 861393 A NO861393 A NO 861393A NO 162127 B NO162127 B NO 162127B
Authority
NO
Norway
Prior art keywords
condensation
water
resin
condensate
water tolerance
Prior art date
Application number
NO861393A
Other languages
Norwegian (no)
Other versions
NO162127C (en
NO861393L (en
Inventor
Alois Bitterli
Original Assignee
Sulzer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Ag filed Critical Sulzer Ag
Publication of NO861393L publication Critical patent/NO861393L/en
Publication of NO162127B publication Critical patent/NO162127B/en
Publication of NO162127C publication Critical patent/NO162127C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/04Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00 by simultaneous or alternative use of direct air-cooling and liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/02Arrangements for cooling cylinders or cylinder heads, e.g. ducting cooling-air from its pressure source to cylinders or along cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/04Cylinders; Cylinder heads  having cooling means for air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0002Cylinder arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/021Cooling cylinders
    • F01P2003/022Cooling cylinders combined with air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Glass Compositions (AREA)
  • Materials For Medical Uses (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Description

Fremgangsmåte til fremstilling av mineralullplater. Method for the production of mineral wool sheets.

Ved fremstilling av porøse mineralullplater som er avbundet ved hjelp av et bindemiddel må det brukes et bindemiddel som er egnet til å etablere innbyrdes forbindelse mellom fibrene på de punkter hvor fibrene berører hverandre, uten at bindemiddelet utfyller mellomrommene mellom fibrene i vesentlig grad. Det er kjent å tilføre bindemiddelet i form av en vandig oppløsning av et forkondensat eller forpolymerisat av en kunstharpiks. Vanligvis tilføres den vandig oppløsning under selve fremstillingen av mineralullen mens fibrene er varme, f. eks. umiddelbart etter at fibrene har forlatt det fiberdannende organ, mens de enda befinner seg svevende i en gasstrøm i det såkalte blåsekammer. Herved frem-skyndes den videre kondensasjon og polymerisering, samtidig med at vannet fjernes. In the production of porous mineral wool boards that are bonded using a binder, a binder must be used that is suitable for establishing a mutual connection between the fibers at the points where the fibers touch each other, without the binder filling the spaces between the fibers to a significant extent. It is known to add the binder in the form of an aqueous solution of a precondensate or prepolymer of an artificial resin. Usually, the aqueous solution is added during the actual production of the mineral wool while the fibers are hot, e.g. immediately after the fibers have left the fiber-forming organ, while they are still suspended in a gas stream in the so-called blowing chamber. This accelerates further condensation and polymerisation, at the same time as the water is removed.

Bindemiddelet bør fortrinnsvis være av en slik art at det i forkondensert og varm og ennu noe vannholdig tilstand kan flyte på fiberoverflatene mot de nevnte berøringspunktene mellom fibrene og klebe fibrene sammen i berøringspunktene. The binder should preferably be of such a nature that, in a pre-condensed and hot and still somewhat aqueous state, it can float on the fiber surfaces towards the mentioned points of contact between the fibers and stick the fibers together at the points of contact.

Selvom bindemiddelet påføres de varme fibre mens disse svever i en gasstrøm og straks bevirker sammenklebning av en del av fibrene, må kondensasjonen og inntørringen ikke drives lenger enn at bindemiddelet under den etterfølgende avsetning av fibrene stadig er klebrig og kan bevirke sammenbinding i de nye berøringspunkter som dannes under avsetningen, og ved den dernest følgende sterkere eller svakere sammenpresning av det dannede produkt. Even if the binder is applied to the hot fibers while they are floating in a gas stream and immediately causes a part of the fibers to stick together, the condensation and drying must not be carried out further than that during the subsequent deposition of the fibers the binder is still sticky and can cause bonding in the new contact points which is formed during the deposition, and by the subsequent stronger or weaker compression of the formed product.

Etter avsetningen og sammenpresningen føres produktet til en herdeovn. Her gjennomgår det en oppvarmning, hvorunder bindemiddelet fremdeles bør ha mulighet for å flyte hen til berøringspunktene mellom fibrene. Deretter ferdig-kondenséres bindemiddelet og herdes derved til en fast, vannbestandig kunstharpiks, fordelt mellom fibrene hvor disse berører hverandre. After the deposition and compression, the product is taken to a curing oven. Here it undergoes a heating, during which the binder should still have the opportunity to flow to the contact points between the fibers. The binder is then fully condensed and thereby hardened into a firm, water-resistant synthetic resin, distributed between the fibers where they touch each other.

Det er kjent å anvende fenolformaldehydforkondensater som bindemiddel ved fremstilling av avbundne mineralullprodukter. Disse fremstilles ved kondensasjon i vandig oppløsning ved pH-verdier på ca. 8-10 med overskudd av formaldehyd. Som katalysator brukes i alminnelighet sterke baser. De mest anvendte katalysatorer er alkalimetallhydroksyder, særlig natrimhydroksyd. Disse har imidlertid flere ulemper, selvom de nøytraliseres etter kondensasjonen. De medfører således at den herdede kunstharpiks bindes dårlig til fibrene, at den har dårlige dielektriske egenskaper og at den mangler vannbestandighet på grunn av alkali-metallionene. It is known to use phenol-formaldehyde precondensates as a binding agent in the production of bonded mineral wool products. These are produced by condensation in aqueous solution at pH values of approx. 8-10 with an excess of formaldehyde. Strong bases are generally used as catalysts. The most commonly used catalysts are alkali metal hydroxides, particularly sodium hydroxide. However, these have several disadvantages, even if they are neutralized after condensation. They thus cause the hardened synthetic resin to bind poorly to the fibres, that it has poor dielectric properties and that it lacks water resistance due to the alkali metal ions.

Det er imidlertid også kjent å anvende jordalkalihydroksyder, f. eks. kalsium-hydroksyd og bariumhydroksyd, som katalysatorer, og disse vil på grunn av det karbondioksyd som alltid finnes i herdeovnen og blåsekammeret, delvis utfelles som karbonater, hvorved metallionen fjernes. Slike barium- og kalsiumholdige oppløsninger har den ulempe at de ikke kan blandes med emul-sjonsharpikser. Videre synes det som om jordalkalim et allene danner tungt-oppløselige forbindelser med fenol. However, it is also known to use alkaline earth hydroxides, e.g. calcium hydroxide and barium hydroxide, as catalysts, and due to the carbon dioxide that is always present in the curing oven and the blowing chamber, these will partially precipitate as carbonates, whereby the metal ion is removed. Such barium- and calcium-containing solutions have the disadvantage that they cannot be mixed with emulsion resins. Furthermore, it seems that alkaline earth alone forms sparingly soluble compounds with phenol.

Endelig gjelder det for alle disse uorganiske katalysatorer at de, når de anvendes alene, lett forårsaker at herdingen foregår for raskt, slik at harpiksen ikke kan flyte hen til fibrenes berøringspunkter under oppvarmingen i herdeovnen. Finally, it is true for all these inorganic catalysts that, when used alone, they easily cause curing to take place too quickly, so that the resin cannot flow to the points of contact of the fibers during heating in the curing oven.

Det er videre kjent å anvende ioneutbytning for å fjerne ionene fra den vandige oppløsning av forkondensatet, idet metallionene byttes med hydrogen- eller ammoniumioner. Ved bytning med hydrogenioner kan pH-verdien bli så lav at harpiksen utfelles i ionebytteren, og dette vanskeliggjør fremstillingen og med-fører tap. Ved bytning med ammoniumioner dannes det fri ammoniakk som kan dampes av. En ulempe ved denne metode er imidlertid at ammoniakken reagerer med formaldehyd og danner hexametylentetramin som forårsaker at det dannes illeluktende forbindelser i herdeovnen. It is also known to use ion exchange to remove the ions from the aqueous solution of the precondensate, the metal ions being exchanged with hydrogen or ammonium ions. When exchanging with hydrogen ions, the pH value can become so low that the resin precipitates in the ion exchanger, and this makes production difficult and leads to losses. When exchanged with ammonium ions, free ammonia is formed which can be evaporated. A disadvantage of this method, however, is that the ammonia reacts with formaldehyde and forms hexamethylenetetramine, which causes foul-smelling compounds to form in the curing oven.

Den foreliggende oppfinnelse angår en fremgangsmåte til fremstilling av avbundne mineralullprodukter, hvor de varme, ennu svevende fibre i blåsekammeret umiddelbart etter at de har forlatt fiberiseringsorganet, påsprøytes en vandig oppløsning av et forkondensat som etter hel eller delvis fordampning av vannet holder fibrene sammen i deres berøringspunkter og herder, når den dannede ull oppvarmes etter at luften er suget fra. Oppfinnelsen tilsikter å unngå de mangler som er forbundet med de kjente fremgangsmåter, og dette oppnås ved at det brukes en oppløsning av et forkondensat som er fremstilt på en spesiell måte. The present invention relates to a method for the production of bonded mineral wool products, where the hot, still suspended fibers in the blowing chamber, immediately after they have left the fiberizing device, are sprayed with an aqueous solution of a pre-condensate which, after complete or partial evaporation of the water, holds the fibers together at their points of contact and hardens, when the formed wool is heated after the air has been sucked out. The invention aims to avoid the shortcomings associated with the known methods, and this is achieved by using a solution of a pre-condensate which has been prepared in a special way.

Fremgangsmåten ifølge oppfinnelsen medfører de største fordeler når fremstillingen av oppløsningen av fenolformaldehydforkondensatet skjer i forbindelse med fremstillingen av det mineralullprodukt som det skal inngå i, og fortrinnsvis umiddelbart før oppløsningen skal brukes. The method according to the invention entails the greatest advantages when the preparation of the solution of the phenol formaldehyde precondensate takes place in connection with the preparation of the mineral wool product in which it is to be included, and preferably immediately before the solution is to be used.

Dette medfører betydelige fordeler, idet de oppløsninger av fenolformaldehyd-forkondensat som går i handelen, har en rekke ytterligere ulemper. Slike oppløsninger må av hensyn til omkostningene ved transport og oppbevaring være meget konsentrerte. De skal derfor ha en tilsvarende stor fortynnbarhet med vann og skal kunne bevare denne under transport og lagring. Kondensasjonen er derfor stanset på et tidlig stadium, eller oppløsningen kan være tilsatt ekstra formalin som fremmer oppløseligheten. Disse forhold kan resultere i et forholdsvis stort tap av fenol og formaldehyd i blåsekammeret og under herdingen. Også disse ulemper unngås ved fremgangsmåten ifølge oppfinnelsen. This entails significant advantages, as the commercially available solutions of phenol formaldehyde precondensate have a number of further disadvantages. Due to the costs of transport and storage, such solutions must be very concentrated. They must therefore have a correspondingly large dilutability with water and must be able to preserve this during transport and storage. Condensation is therefore stopped at an early stage, or the solution can have extra formalin added to promote solubility. These conditions can result in a relatively large loss of phenol and formaldehyde in the blowing chamber and during curing. These disadvantages are also avoided by the method according to the invention.

Oppfinnelsén er karakterisert ved at det brukes en oppløsning som er fremstilt ved at fenol og formaldehyd i vandig oppløsning og i nærvær at et tertiært amin med kokepunkt 60-100°C som katalysator, uten faseadskillelse og tørring kondenseres til en vanntoleranse på 2-6 og fortynnes til en konsentrasjon som ligger innenfor den nevnte toleranse. The invention is characterized in that a solution is used which is prepared by phenol and formaldehyde in aqueous solution and in the presence of a tertiary amine with a boiling point of 60-100°C as a catalyst, without phase separation and drying, is condensed to a water tolerance of 2-6 and diluted to a concentration that lies within the aforementioned tolerance.

Ved vanntoleranse skal her forstås forholdet mellom den mengde vann som kan tilsettes en viss oppløsning av et forkondensat før det skjer en utfelning, og mengden av oppløsningen i den form den er fremstilt. Ved fremgangsmåten ifølge oppfinnelsen skal det være et forholdsvis snevert spillerom mellom vanntoleransen og brukskonsentrasjonen, og dette medfører at forkondensasjonen kan drives forholdsvis langt. Bruken av et tertiært amin som katalysator bevirker at dannelsen av forkondensatet kan skje ved en dertil egnet pH-verdi hvor forkondensasjonen foregår hurtig og bekvemt uten at det er fare for at kondensasjonen etter påføringen på fibrene skal foregå for hurtig, slik at forkondensatet ikke mer kan flyte til berøringspunktene under oppvarmingen i herdeovnen. By water tolerance, here is meant the ratio between the amount of water that can be added to a certain solution of a pre-condensate before precipitation occurs, and the amount of the solution in the form in which it is prepared. In the method according to the invention, there must be a relatively narrow margin of leeway between the water tolerance and the use concentration, and this means that the pre-condensation can be operated relatively far. The use of a tertiary amine as a catalyst means that the formation of the pre-condensate can take place at a suitable pH value where the pre-condensation takes place quickly and conveniently without the danger that the condensation after application to the fibers will take place too quickly, so that the pre-condensate can no longer flow to the contact points during heating in the curing oven.

Det at et forkondensat, fremstilt ifølge foreliggende oppfinnelse er overlegent The fact that a pre-condensate produced according to the present invention is superior

i forhold til kjente, lignende bindemidler i disse henseender henger sammen med at de tertiære aminer er flyktige og forsvinner fra forkondensatet samtidig som vannet damper av under oppholdet på de varme fibre, og da for en vesentlig del allerede i blåsekammeret. Forkondensatet får derved lavere pH, og man kan oppnå at den fortsatte kondensasjon ikke foregår så raskt at kunstharpiksen blir for hård og sprø. in relation to known, similar binders in these respects is connected to the fact that the tertiary amines are volatile and disappear from the pre-condensate at the same time as the water evaporates during the stay on the hot fibres, and then for a significant part already in the blowing chamber. The pre-condensate thereby has a lower pH, and it can be achieved that the continued condensation does not take place so quickly that the synthetic resin becomes too hard and brittle.

Ifølge en særlig fordelaktig utførelsesform for oppfinnelsen benyttes det som katalysator trietyllamin. Kokepunktet for trietyllamin er 89, 5°C, hvilket har vist seg å passe godt med de temperaturer og fordampningsforhold som i alminnelighet hersker i fiberiseringsapparatets blåsekammer. According to a particularly advantageous embodiment of the invention, triethylamine is used as catalyst. The boiling point for triethylamine is 89.5°C, which has been shown to fit well with the temperatures and evaporation conditions that generally prevail in the blowing chamber of the fiberisation apparatus.

Ved fordampning av triaminet kan forkondensåtets pH komme for nær ned til 7 allerede før mineralfiberproduktet kommer inn i herdeovnen, og herdingen kan derved komme til å foregå for langsomt. Det kan derfor ifølge en utførelsesform for oppfinnelsen være hensiktsmessig at det som katalysator tilsettes ytterligere et jordalkalihydroksyd, f. eks. bariumhydroksyd. Da mengden av dette ikke behøver å være så stor som den må være hvis det skal brukes som katalysator alene, medfører bruken av jordalkalihydroksyd i forbindelse med triamin ikke de ovennevnte ulemper. When the triamine evaporates, the pH of the pre-condensate can drop too close to 7 even before the mineral fiber product enters the curing oven, and curing can thereby proceed too slowly. According to one embodiment of the invention, it may therefore be appropriate that a further alkaline earth hydroxide is added as a catalyst, e.g. barium hydroxide. As the amount of this does not need to be as large as it must be if it is to be used as a catalyst alone, the use of alkaline earth hydroxide in connection with triamine does not entail the above-mentioned disadvantages.

Det har ifølge oppfinnelsen vist seg at kondensasjonen av fenolformaldehyd-kondensatet under fremstillingen med fordel kan føres frem til en vanntoleranse som ligger mellom 2 og 6, fortrinnsvis mellom 5 og 5,4. Kondensasjonen er således ført vesentlig lengre frem enn det hittil har vært mulig, og dette medfører at forkondensatet får en god klebeevne allerede på et stadium som ligger forut for fibrenes avleiring. Man oppnår videre ved å avpasse forholdet mellom triamin og jordalkalihydroksyd en utmerket kontroll over forkondensatets flyteegenskaper før herdingen, idet flyte- og herdetiden vil avta med økende mengde av jordalkali-hydroksydet. According to the invention, it has been shown that the condensation of the phenol-formaldehyde condensate during production can advantageously be brought to a water tolerance that is between 2 and 6, preferably between 5 and 5.4. Condensation has thus been carried forward significantly further than has hitherto been possible, and this means that the pre-condensate acquires good adhesiveness already at a stage which is prior to the deposition of the fibres. By adjusting the ratio between triamine and alkaline earth hydroxide, excellent control over the flow properties of the pre-condensate before curing is achieved, as the flow and curing time will decrease with increasing amounts of alkaline earth hydroxide.

Det er kjent som bindemiddel ved fremstilling av avbundne mineralullprodukter It is known as a binding agent in the production of bonded mineral wool products

å bruke fenolformaldehydkondensater som er modifisert med andre harpiksdannere, f. eks. aminoharpiksdannere. Det har vist seg at triaminer er velegnete som katalysatorer, også når kunstharpiksen modifiseres på denne måte. Ifølge en utførelsesform for oppfinnelsen kan man derfor gå frem på den måte at det som modifiseringsmiddel for harpiksen tilsettes komponentene for en kunstharpiks av lignende art som fenolformaldehydharpiksen, f. eks. komponentene for en amino-harpiks, såsom melamin, urea og dicyandiamid, hvoretter kondensasjonen fortsettes. to use phenol formaldehyde condensates modified with other resin formers, e.g. amino resin formers. It has been shown that triamines are suitable as catalysts, also when the synthetic resin is modified in this way. According to one embodiment of the invention, one can therefore proceed in such a way that the components for an artificial resin of a similar nature to the phenol formaldehyde resin are added as a modifier for the resin, e.g. the components for an amino resin, such as melamine, urea and dicyandiamide, after which the condensation is continued.

Man kan også tilsette en modifiserende harpiks i form av et vannoppløselig eller vannoppløst forkondensat etter at fenolformaldehydforkondensatet er kondensert til den ønskede vanntoleranse. Ved begge disse fremgangsmåter oppnås det utmerkede resultater. You can also add a modifying resin in the form of a water-soluble or water-dissolved pre-condensate after the phenol-formaldehyde pre-condensate has been condensed to the desired water tolerance. Excellent results are achieved with both of these methods.

Oppfinnelsen skal i det følgende illustreres ved noen utførelseseksempler. In the following, the invention will be illustrated by some design examples.

EKSEMPEL 1 EXAMPLE 1

Fenolharpiks kondensert med trietyllamin som katalysator Phenolic resin condensed with triethylamine as catalyst

900 kg fenol 900 kg of phenol

1560 kg formalin (36, 7 vektprosent formaldehyd) 1,560 kg of formalin (36.7% formaldehyde by weight)

45 kg trietyllamin 45 kg of triethylamine

kondenseres ved 76°C til vanntoleransen er 5,2. Produktet avkjøles og fortynnes med vann til blandingen utgjør 10.000 liter. is condensed at 76°C until the water tolerance is 5.2. The product is cooled and diluted with water until the mixture amounts to 10,000 litres.

EKSEMPEL 2 EXAMPLE 2

Kondensasjon med en blanding av trietyllamin og bariumhydroksyd Condensation with a mixture of triethylamine and barium hydroxide

som katalysator as a catalyst

900 kg fenol 900 kg of phenol

1560 kg formalin (36,7 vektprosent formaldehyd) 1,560 kg of formalin (36.7% formaldehyde by weight)

24 kg bariumhydroksydhydrat 24 kg of barium hydroxide hydrate

31 kg trietyllamin 31 kg of triethylamine

kondenseres ved 76°C til vanntoleransen er 5. Produktet avkjøles og fortynnes med kaldt vann til blandingen utgjør 10.000 liter. is condensed at 76°C until the water tolerance is 5. The product is cooled and diluted with cold water until the mixture amounts to 10,000 litres.

EKSEMPEL 3 EXAMPLE 3

Trietvllaminkondensert fenolharpiks modifisert med melamin og dicyandiamid Triethylamine-condensed phenolic resin modified with melamine and dicyandiamide

390 kg fenol 390 kg of phenol

1785 kg formalin (36, 7 vektprosent formaldehyd) 1,785 kg of formalin (36.7% formaldehyde by weight)

23 kg trietyllamin 23 kg of triethylamine

kondenseres 1 time ved 76°C til en vanntoleranse på ca. 8-10, deretter tilsettes is condensed for 1 hour at 76°C to a water tolerance of approx. 8-10, then added

488 kg melamin 488 kg of melamine

195 kg dicyandiamid 195 kg dicyandiamide

220 kg furfurylalkohol. 220 kg of furfuryl alcohol.

Blandingen kondenseres videre ved 76°C til vanntoleransen er 2, 3. Produktet avkjøles og fortynnes med kaldt vann til blandingen utgjør 4500 liter. The mixture is further condensed at 76°C until the water tolerance is 2.3. The product is cooled and diluted with cold water until the mixture amounts to 4,500 litres.

EKSEMPEL 4 EXAMPLE 4

Trietvllaminkondensert fenolharpiks tilsatt melaminharpiks Triethylamine condensed phenolic resin with added melamine resin

660 kg fenol 660 kg of phenol

1140 kg formalin (36, 7 vektprosent formaldehyd) 1140 kg of formalin (36.7% formaldehyde by weight)

22, 1 kg trietyllamin 22.1 kg of triethylamine

kondenseres under omrøring ved 76°C til vanntoleransen er 6, 2. Produktet avkjøles, og det tilsettes kaldt vann til blandingen utgjør 3300 liter. Under omrøring tilsettes så is condensed with stirring at 76°C until the water tolerance is 6.2. The product is cooled, and cold water is added until the mixture amounts to 3300 litres. Then add while stirring

667 kg "Melurit M-100" (melaminharpiks fra Fosfatbolaget) 667 kg "Melurit M-100" (melamine resin from Phosphatbolaget)

og deretter and then

41, 5 kg furfurylalkohol, 41.5 kg furfuryl alcohol,

og blandingen fylles opp til 4500 liter med kaldt vann. and the mixture is filled up to 4,500 liters with cold water.

Claims (6)

1. Fremgangsmåte til fremstilling av mineralullplater hvor de varme ennu svevende fibre umiddelbart etter at de har forlatt fiberiseringsenheten og befinner seg i ullkammeret, påsprøytes en vandig oppløsning av et herdbart forkondensat av en formaldehyd harpiks som etter hel eller delvis avdampning av vannet for-binder fibrene i deres innbyrdes berøringspunkter og herder til en kunstharpiks når den dannede mineralull oppvarmes, karakterisert ved at der anvendes et forkondensat som inneholder tertiær amin med kokepunkt 60-100°C som katalysator og som er kondensert til en vanntoleranse på 2-6, og før påsprøyting fortynnes til en brukskonsentrasjon som ligger innenfor den ved kondensasjonen resulterende vanntoleranse.1. Method for the production of mineral wool sheets where the warm still floating fibers immediately after they have left the fiberization unit and are in the wool chamber, an aqueous solution of a hardenable precondensate of a formaldehyde resin is sprayed on which, after complete or partial evaporation of the water, connects the fibers in their mutual points of contact and hardens into a synthetic resin when the formed mineral wool is heated, characterized in that a pre-condensate containing tertiary amine with a boiling point of 60-100°C is used as a catalyst and which is condensed to a water tolerance of 2-6, and before spraying diluted to a usable concentration that lies within the water tolerance resulting from the condensation. 2. Fremgangsmåte som i krav 1, karakterisert ved at det som katalysator brukes trietyllamin.2. Method as in claim 1, characterized in that triethylamine is used as catalyst. 3. Fremgangsmåte som i krav 1 eller 2, karakterisert ved at det som katalysator ytterligere tilsettes et jordalkalihydroksyd, f. eks. bariumhydroksyd.3. Method as in claim 1 or 2, characterized in that an alkaline earth hydroxide, e.g. barium hydroxide. 4. Fremgangsmåte som i kravene 1, 2 eller 3, karakterisert ved at kondensasjonen drives til en vanntoleranse som ligger mellom 5 og 5,4, og at kondensatet før bruken fortynnes til en brukskonsentrasjon som ligger innenfor den ved kondensasjonen resulterende vanntoleranse.4. Method as in claims 1, 2 or 3, characterized in that the condensation is driven to a water tolerance that is between 5 and 5.4, and that the condensate is diluted before use to a use concentration that is within the water tolerance resulting from the condensation. 5. Fremgangsmåte som i kravene 1,2,3 eller 4, karakterisert ved at det som modifiseringsmiddel for kunstharpiksen under forkondensasjonen tilsettes komponenter for en kunstharpiks av lignende art, f. eks. melamin, dicyandiamid eller urea, hvorpå kondensasjonen fortsettes.5. Method as in claims 1,2,3 or 4, characterized in that components for a synthetic resin of a similar nature are added as a modifier for the synthetic resin during the precondensation, e.g. melamine, dicyandiamide or urea, after which the condensation is continued. 6. Fremgangsmåte som i kravene 1, 2, 3, 4 eller 5, karakterisert ved at det etter forkondensasjonen tilsettes et modifiserende, vannoppløselig eller vannoppløst forkondensat for en kunstharpiks av lignende art, f. eks. et forkondensat for melamin- eller ureaharpiks.6. Method as in claims 1, 2, 3, 4 or 5, characterized in that a modifying, water-soluble or water-dissolved pre-condensate is added after the pre-condensation for an artificial resin of a similar nature, e.g. a precondensate for melamine or urea resin.
NO861393A 1985-04-11 1986-04-10 CYLINDER COVER FOR TOTAL SHUTT COMBUSTION MACHINE. NO162127C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH154485 1985-04-11

Publications (3)

Publication Number Publication Date
NO861393L NO861393L (en) 1986-10-13
NO162127B true NO162127B (en) 1989-07-31
NO162127C NO162127C (en) 1989-11-08

Family

ID=4212898

Family Applications (1)

Application Number Title Priority Date Filing Date
NO861393A NO162127C (en) 1985-04-11 1986-04-10 CYLINDER COVER FOR TOTAL SHUTT COMBUSTION MACHINE.

Country Status (7)

Country Link
JP (1) JPS61237822A (en)
CN (1) CN1004368B (en)
DE (1) DE3513525C1 (en)
DK (1) DK161987B (en)
GB (1) GB2173858B (en)
IT (1) IT1191706B (en)
NO (1) NO162127C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312097B4 (en) * 2003-03-19 2015-10-08 Andreas Stihl Ag & Co. Kg Two-stroke engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB764882A (en) * 1954-01-30 1957-01-02 Hendrick Van Der Horst Improvements relating to opposed-piston internal combustion engines
JPS5360420A (en) * 1976-11-11 1978-05-31 Mitsubishi Heavy Ind Ltd Scavenging device for two-cycle system internal combustin engine

Also Published As

Publication number Publication date
DE3513525C1 (en) 1986-11-06
NO162127C (en) 1989-11-08
CN86102145A (en) 1986-10-08
GB8608774D0 (en) 1986-05-14
NO861393L (en) 1986-10-13
CN1004368B (en) 1989-05-31
IT8619875A0 (en) 1986-03-26
DK136286A (en) 1986-10-12
GB2173858A (en) 1986-10-22
DK161987B (en) 1991-09-02
GB2173858B (en) 1988-11-30
DK136286D0 (en) 1986-03-24
IT1191706B (en) 1988-03-23
IT8619875A1 (en) 1987-09-26
JPS61237822A (en) 1986-10-23

Similar Documents

Publication Publication Date Title
US5371140A (en) Emulsifiable phenolic resole resin
US6642299B2 (en) Urea-formaldehyde resin binders containing styrene acrylates and acrylic copolymers
US5674971A (en) Urea-formaldehyde resin composition and method of preparation thereof
FI101713B (en) Methods of preparing phenolic binder
EP0964836B1 (en) Modified urea-formaldehyde binder for making fiber mats
US4904516A (en) Phenol-formaldehyde resin solution containing water soluble alkaline earth metal salt
CA2034399A1 (en) Glass fiber insulation binder
NO115074B (en)
CN103319673B (en) Modification method of melamine formaldehyde resin
JPH11172073A (en) Water-soluble and storage-stable resol-melamine resin
CN106349987B (en) Special modified phenolic resin adhesive for bamboo floor and preparation method thereof
DK2197928T3 (en) WATER-MIXABLE RESIN COMPOSITION
NO157036B (en) PROCEDURE TO ACHIEVE AN AUTOMATIC EVALIZATION IN A DIGTALLY CONSTRUCTED TELECOMMUNICATIONS LINE CIRCUIT, AS WELL AS A CIRCUIT TO COMPLETE THE PROCEDURE.
US5710239A (en) Water-soluble sulfonated melamine-formaldehyde resins
US6881814B2 (en) Borate modified phenolic resin for insulation material
NO117840B (en)
NO162127B (en) CYLINDER COVER FOR TOTAL SHUTT COMBUSTION MACHINE.
USRE30375E (en) Calcia catalyzed resins
CN108503758A (en) Method for producing thermosetting phenolic resin and pass through the available phenolic resin of this method
US4235950A (en) High temperature mineral fiber binder
NO323518B1 (en) Modified melamine formaldehyde resins, method of preparation and their use for impregnation
USRE32408E (en) Lignosulfonate-phenol-formaldehyde resin binder
US4423173A (en) Lignosulfonate-phenol-formaldehyde resin binder
US11518851B2 (en) Concentrated solution of poly(furfuryl alcohol) for sizing organic or mineral fibres
NO137784B (en) PROCEDURES FOR THE PREPARATION OF STEREOISOMERS OF 1- (1`- (O-CHLOROBENZYL) -2`-PYRROLYL) -2-DI-SEC-BUTYLAMINOETHANOL AND ACID ADDITIONAL SALTS THEREOF