NO161332B - CHEMICAL MASS WITH GOOD STRENGTH, DEATHABILITY AND PAINTABILITY, AND PROCEDURE FOR THE PREPARATION OF THE MASS. - Google Patents

CHEMICAL MASS WITH GOOD STRENGTH, DEATHABILITY AND PAINTABILITY, AND PROCEDURE FOR THE PREPARATION OF THE MASS. Download PDF

Info

Publication number
NO161332B
NO161332B NO823323A NO823323A NO161332B NO 161332 B NO161332 B NO 161332B NO 823323 A NO823323 A NO 823323A NO 823323 A NO823323 A NO 823323A NO 161332 B NO161332 B NO 161332B
Authority
NO
Norway
Prior art keywords
mass
pulp
salts
chemical
good strength
Prior art date
Application number
NO823323A
Other languages
Norwegian (no)
Other versions
NO823323L (en
NO161332C (en
Inventor
Elisabeth Soeremark
Christer Soeremark
Mats-Olof Hedblom
Original Assignee
Alby Klorat Ab
Soedra Skogsaegarna Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alby Klorat Ab, Soedra Skogsaegarna Ab filed Critical Alby Klorat Ab
Publication of NO823323L publication Critical patent/NO823323L/en
Publication of NO161332B publication Critical patent/NO161332B/en
Publication of NO161332C publication Critical patent/NO161332C/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/004Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)
  • Paints Or Removers (AREA)

Description

Den foreliggende oppfinnelse vedrører en kjemisk masse The present invention relates to a chemical mass

med god styrke, avvanningsevne og målbarhet, samt en fremgangsmåte til fremstilling av massen. with good strength, dewatering ability and measurability, as well as a method for producing the pulp.

Ved fremstilling av lignocellulosebaserte arkstrukturer In the production of lignocellulose-based sheet structures

av en suspensjon av fibrer og vann bearbeides fiberen først mekanisk i våt tilstand. of a suspension of fibers and water, the fiber is first processed mechanically in a wet state.

Denne operasjon, maleoperasjonen, er en av papirteknikkens viktigste enhetsoperasjoner. Ved maling på forskjellige måter kan forskjellige kvalitetsegenskaper'oppnås hos arket, oy det blir mulig å forandre forskjellige fiberråvarers anvendelighet. This operation, the painting operation, is one of paper technology's most important unit operations. By painting in different ways, different quality properties can be achieved in the sheet, and it becomes possible to change the applicability of different fiber raw materials.

De mekaniske behandlingsprinsipper for å oppnå forskjellige produktegenskaper er imidlertid meget uklare, og fremfor alt er maleprosessens grunnleggende mekanismer ukjente, slik at malingen> kan sies å foregå mer eller mindre ifølge gammel tradi-sjon. However, the mechanical treatment principles to achieve different product properties are very unclear, and above all the basic mechanisms of the painting process are unknown, so that the painting> can be said to take place more or less according to old tradition.

Fibermaterialet oppviser en kompleks morfologisk oppbygning, og de forandringer som foregår i malesonen er av heterogen natur, noe som vanskeliggjør en nærmere beskrivelse av disse. Vanligvis pleier malingens innvirkning å oppdeles i: The fiber material exhibits a complex morphological structure, and the changes that take place in the male zone are of a heterogeneous nature, which makes a detailed description of these difficult. Generally, the impact of the paint tends to be divided into:

fiberlengdeforkortelse fiber length shortening

finmaterialproduksjon fine material production

delaminering delamination

ekstern fibrillering external fibrillation

svelling swelling

dislokasjoner dislocations

nedsettelse av polymerisasjonsgrad. reduction of degree of polymerization.

Disse maleeffekter medfører .i den våte tilstand at fiberens strekkfasthet øker mens elastisitetsmodulen minker. Malte tørkete fibrer oppviser høyere verdier både for strekkfasthet og elasti-sitetsmodul enn umalte fibrer. These grinding effects cause, in the wet state, that the fiber's tensile strength increases while the modulus of elasticity decreases. Painted dried fibers show higher values both for tensile strength and modulus of elasticity than unpainted fibres.

Papirets egenskaper forandres kraftigst i det innledende stadium av malingen. Vanligvis oppnås økninger i densitet, bruddfasthet og samtlige egenskaper bortsett fra rivefasthet, mens opasitet, luftpermeabilitet og dimensjonshygrostabilitet synker. The properties of the paper change most strongly in the initial stage of painting. Generally, increases in density, breaking strength and all properties except tear resistance are achieved, while opacity, air permeability and dimensional hygrostability decrease.

En analyse av årsak og virkning av malingens innvirkning på det ferdige ark vanskeliggjøres av den manglende innsikt i hvordan papirs egenskaper oppstår. Generelt kan det sies at dannet finmateriale og mykgjøringen (som innebærer økt svelling) av fiberen har stor betydning. An analysis of the cause and effect of the paint's impact on the finished sheet is made difficult by the lack of insight into how paper's properties arise. In general, it can be said that formed fine material and the softening (which involves increased swelling) of the fiber are of great importance.

Cellulosefiberens svelling kan betraktes med en synsmåte hentet fra den fysikalske kjemi for geler. Derav fremgår det hvordan forskjellige parametre, såsom pH-verdier, temperatur, saltinnhold etc. påvirker fiberens svellingstilstand og finfiberfraksjonens svellingsnivå. The swelling of the cellulose fiber can be considered with a point of view taken from the physical chemistry of gels. This shows how different parameters, such as pH values, temperature, salt content etc. affect the swelling state of the fiber and the swelling level of the fine fiber fraction.

Den tradisjonelle måte til å øke effektiviteten ved maleoperasjonen er å modifisere maleorganets konstruksjon og cellu-losematerialets konsentrasjon i måleapparatet. Dessuten er også forandringer av temperatur og pH-verdi samt tilsetning av forskjellige kjemikalier prøvet for å oppnå en ønsket effektivitets-akning ved malingen i forbindelse med papirfremstillingsproses-sen, dvs. ved viderebearbeidelsen av den først tørkete masse. The traditional way to increase the efficiency of the grinding operation is to modify the construction of the grinding body and the concentration of the cellulose material in the measuring device. In addition, changes in temperature and pH value as well as the addition of various chemicals have been tested in order to achieve a desired efficiency increase in the paint in connection with the papermaking process, i.e. in the further processing of the first dried pulp.

Moen entydige resultater av en mekanisk modifisering av maleorganet har ikke kunnet oppnås. En utvikling mot bedre fast-hetsegenskaper hos malte lignocellulosematerialer etter behandling i kjent, anvendt måleutstyr kan imidlertid fornemmes. Når det gjelder forandringen av de kjemiske betingelser ved maieope-rasjonen er det heller ikke iaktatt noen større effekter sammenliknet med det som oppnås ved tradisjonell papirfremstilling. However, unequivocal results of a mechanical modification of the grinding organ have not been achieved. However, a development towards better firmness properties of milled lignocellulosic materials after treatment in known, used measuring equipment can be sensed. When it comes to the change in the chemical conditions during the pulping operation, no major effects have been observed compared to what is achieved in traditional papermaking.

Formålet med den foreliggende oppfinnelse er å frembringe en kjemisk masse med god styrke, avvanningsevne og målbarhet, samt å frembringe en fremgangsmåte til fremstilling av den kjemiske masse. The purpose of the present invention is to produce a chemical mass with good strength, dewatering ability and measurability, as well as to produce a method for producing the chemical mass.

Den kjemiske masse ifølge oppfinnelsen kjennetegnes ved at den, som steriske hindringer for dannelse av hydrogenbindinger, inneholder ett eller flere lavmolekylære, vannløselige salter som, etter koking men før tørking, er blandet i massen. For-trinnsvis tilsettes det 0,1-10 vekt% salt, regnet av massens tørre vekt. The chemical mass according to the invention is characterized by the fact that, as steric obstacles to the formation of hydrogen bonds, it contains one or more low molecular weight, water-soluble salts which, after boiling but before drying, are mixed into the mass. Preferably, 0.1-10% by weight of salt is added, calculated from the dry weight of the mass.

Den grunnleggende tanke ved oppfinnelsen er at et lavmole-kylært salt skal være nærværende under tørkingen, i det minste i dennes begynnelsesstadium. The basic idea of the invention is that a low-molecular salt should be present during the drying, at least in its initial stage.

Det er kjent at ved tørking av masse klapper den svelte fiber sammen, dvs. at gelstrukturen forsvinner. Ved den etterføl-gende tilsetning av vann under papirfremstillingen gjeninntar fiberen ikke sin.opprinnelige tilstand, dvs. at denne prosess er i det minste delvis irreversibel. En forklaring på at den svelte fiber klapper sammen ved tørking, er at når vannet fjernes kommer cellulosekjedene så nær hverandre at det utvikles hydrogenbindinger mellom disse. Derved forsvinner de hulrom som finnes i massens gelstruktur. Når vann senere tilføres ved den videre bear-beidelse av massen, er dette ikke i stand til å bryte hydrogén-bindingene, og en irreversibel "sammenklapping" er således opp-stått. It is known that when pulp is dried, the swollen fibers collapse, i.e. that the gel structure disappears. With the subsequent addition of water during papermaking, the fiber does not regain its original state, i.e. that this process is at least partially irreversible. One explanation for the swollen fiber collapsing when drying is that when the water is removed, the cellulose chains come so close to each other that hydrogen bonds develop between them. Thereby, the voids found in the mass's gel structure disappear. When water is later added during the further processing of the mass, this is not capable of breaking the hydrogen bonds, and an irreversible "collapse" has thus occurred.

Ved fremgangsmåten ifølge oppfinnelsen frembringes det steriske hindringer for dannelse av hydrogenbindinger ved at massen, etter koking men før tørking, blandes med en vannløsning av ett eller flere lavmolekylære salter. Disse salter trenger inn i gelstrukturens hulrom og danner der steriske hindringer, slik at cellulosekjedsne ikke kan nærme seg hverandre, hvorved dannelsen av hydrogenbindinger for en stor del hindres. In the method according to the invention, steric obstacles to the formation of hydrogen bonds are created by mixing the mass, after boiling but before drying, with a water solution of one or more low molecular weight salts. These salts penetrate into the cavities of the gel structure and form steric hindrances there, so that the cellulose chains cannot approach each other, thereby preventing the formation of hydrogen bonds to a large extent.

Ved på denne måte for en stor del å hindre den irreversible "sammenklapping" av fibrenes gelstruktur, kan fibrene igjen svelle ved tilsetning av vann og stort sett gjeninnta den tilstand de hadde før tørkingen. By preventing the irreversible "collapsing" of the gel structure of the fibers in this way to a large extent, the fibers can again swell upon the addition of water and largely resume the state they had before drying.

Derved oppnås forbedret styrke, avvanningsevne og målbarhet hos den behandlete masse sammenliknet med ubehandlet masse. This results in improved strength, dewatering ability and measurability of the treated pulp compared to untreated pulp.

Ved utførelse av fremgangsmåten ifølge den foreliggende oppfinnelse blandes den utørkete, kjemiske, blekete eller ublekete masse med en vannløsning av egnete lavmolekylære salter. Etter denne tilsetning tørkes massen på vanlig måte, f.eks. ved anvendelse av en spraytørke, ved varmetilførsel ved hjelp av stråling eller konveksjon (f.eks. med en viftetørke for masse) eller ved hjelp av oppvarmete flater som det eventuelt utøves trykk mot (f.eks. sylindertørke for masse). When carrying out the method according to the present invention, the undried, chemical, bleached or unbleached pulp is mixed with a water solution of suitable low molecular weight salts. After this addition, the mass is dried in the usual way, e.g. by using a spray dryer, by applying heat by means of radiation or convection (e.g. with a fan dryer for pulp) or by means of heated surfaces against which pressure is possibly applied (e.g. cylinder dryer for pulp).

Egnete salter for tilsetning til massen er lavmolekylære vannløselige salter. Det er viktig at saltenes molekylstørrelse er tilstrekkelige liten for at disse skal kunne trenge inn i gelstrukturen og avsettes der under dannelse av et sterisk hinder. Suitable salts for addition to the mass are low-molecular water-soluble salts. It is important that the molecular size of the salts is sufficiently small so that these can penetrate into the gel structure and be deposited there under the formation of a steric hindrance.

Det er dessuten viktig at det tilsatte salt ikke danner ioner som er skadelige ved den senere anvendelse av massen. Idet massen etter tørkingen igjen suspenderes i vann går nemlig en stor del av disse avsatte salter igjen i løsning. Et salt som danner klorioner er således ikke alltid egnet, idet klorioner ofte er uønskete i den etterfølgende behandling. Etter som massens endelige anvendelse ofte ikke er kjent for masseprodusenten, er det hensiktsmessig å anvende et salt som anvendes i andre forbindelser ved masse- og papirfremstilling. Eksempler på egnete salter er natriumsulfat og natriumtiosulfat, som er kjemikalier som generelt anvendes innen masseindustrien. Også organiske salter kan anvendes under forutsetning av at de har tilstrekkelig små molekyler til å trenge inn i geistrukturens hulrom. It is also important that the added salt does not form ions that are harmful when the mass is used later. As the pulp is again suspended in water after drying, a large part of these deposited salts go back into solution. A salt that forms chlorine ions is thus not always suitable, as chlorine ions are often undesirable in the subsequent treatment. As the end use of the pulp is often not known to the pulp producer, it is appropriate to use a salt that is used in other compounds in pulp and paper production. Examples of suitable salts are sodium sulphate and sodium thiosulphate, which are chemicals generally used in the pulp industry. Organic salts can also be used on the condition that they have sufficiently small molecules to penetrate into the voids of the gel structure.

Meget små mengder av den aktive komponent er nødvendige for å oppnå den ønskete effekt. En eller noen få tiendedels prosent, regnet av massens tørrvekt, er vanligvis tilstrekkelig, men opp til 10 vekt% kan anvendes. Very small amounts of the active component are necessary to achieve the desired effect. One or a few tenths of a percent, calculated on the dry weight of the mass, is usually sufficient, but up to 10% by weight can be used.

En alternativ måte til å gi massen de ønskete egenskaper er å blande inn i ubehandlet masse en pa den ovenfor be-skrevne måte behandlet masse i egnete proporsjoner, hvorved hele masseblandingen får de ønskede egenskaper. An alternative way to give the pulp the desired properties is to mix into untreated pulp a pulp treated in the manner described above in suitable proportions, whereby the entire pulp mixture acquires the desired properties.

Nedenfor følger eksempler på utførelsesformer av den foreliggende oppfinnelse. Examples of embodiments of the present invention follow below.

Eksempler Examples

De i eksemplene angitte tester er utført ifølge SCAN-test-metodene, som er utgitt og anbefalt av Sentrallaboratoriene for masse-, papir- og tremasseindustriene i Danmark, Finland, Norge og Sverige: Følgende SCAN-metoder er anvendt: SCAN:C 19 Avvanningsmotstand hos masse ifølge Schopper-Rieglermetoden. The tests given in the examples are carried out according to the SCAN test methods, which are published and recommended by the Central Laboratories for the pulp, paper and wood pulp industries in Denmark, Finland, Norway and Sweden: The following SCAN methods are used: SCAN:C 19 Dewatering resistance in pulp according to the Schopper-Riegler method.

SCAN:C 24 Maling av masse i PFI-mølle. SCAN:C 24 Grinding pulp in a PFI mill.

SCAN:C 2 5 Laboratoriemaling i Valleyhollender. SCAN:C 2 5 Laboratory painting in Valleyhollender.

SCAN:C 26 Fremstilling av laboratorieark for fysikalsk SCAN:C 26 Preparation of laboratory sheets for physical

testing. testing.

SCAN.-C 2 7R Lysspredningskoef f isient. SCAN.-C 2 7R Light scattering coefficient.

SCAN:C 28 Bestemmelse, av de fysikalske egenskapene hos SCAN:C 28 Determination of the physical properties of

laboratorieark. laboratory sheet.

SCAN:C 24 Sprangstyrke. SCAN:C 24 Jump strength.

SCAN:C 11 Rivestyrke hos papir og papp. SCAN:C 11 Tear strength of paper and cardboard.

SCAN:P 16 Strekkfasthet og bøyning. SCAN:P 16 Tensile strength and bending.

Eksempel 1 Example 1

Natriumsulfat (Na2S04) ble løst i vann til egnet konsentrasjon. I denne løsning ble det dispergert en utørket, bleket barsulfatmasse med et opprinnelig vanninnhold på ca. 80% til en sluttmassekonsentrasjon på 5%. Etter ca. 1 minutt ble massen avvannet ved drenering og pressing til et tørrstoffinnhold på Sodium sulfate (Na2SO4) was dissolved in water to a suitable concentration. An undried, bleached bar sulfate mass with an original water content of approx. 80% to a final mass concentration of 5%. After approx. 1 minute, the mass was dewatered by draining and pressing to a dry matter content of

ca. 35%. Etter lufttørking ved ca. 60°C ble massen malt i en Valley-hollender. Der ble pH justert til 5 etter tilsetning av about. 35%. After air drying at approx. 60°C, the mass was ground in a Valley Dutchman. There, the pH was adjusted to 5 after the addition of

NaOH eller U^ SO^. Konsentrasjonen av natriumsulfat i den tørkete masse beregnes av tørrstoffinnholdene hos utgangsmassen, konsentrasjonen i dispersjonen og i den utpressede masse. Som referanse ble det anvendt en prøve som var dispergert i vann uten tilsetning av salt, men som for øvrig hadde gjennomgått samme behandling som ovenfor. NaOH or U^SO^. The concentration of sodium sulphate in the dried mass is calculated from the dry matter contents of the starting mass, the concentration in the dispersion and in the extruded mass. As a reference, a sample was used which had been dispersed in water without the addition of salt, but which otherwise had undergone the same treatment as above.

Følgende sammenlikningsverdier mellom referanse og prøve som inneholdt forskjellige mengder natriumsulfat ble oppnådd: The following comparison values between reference and sample containing different amounts of sodium sulfate were obtained:

E ksempel 2 Example 2

Fremgangsmåten ifølge eksempel 1 ble gjentatt, men med en tørketemperatur på 90-95°C og 5% natriumsulfat i den tørkete prøve. Følgende resultater ble oppnådd: The procedure according to example 1 was repeated, but with a drying temperature of 90-95°C and 5% sodium sulphate in the dried sample. The following results were obtained:

Eksempel 3 Example 3

Fremgangsmåten ifølge eksempel 1 ble gjentatt, men med maling utført i PFI-mølle samt med de i tabellen angitte natrium- The procedure according to example 1 was repeated, but with grinding carried out in a PFI mill and with the sodium indicated in the table

sulfatkonsentrasjoner i den tørkete massen. sulphate concentrations in the dried pulp.

Resultater oppnådd ved en sammenlikning ved lik avvanning, 30°SR: Resultater oppnådd ved en sammenlikning ved lik strekk-indeks, 85 kNm/kg Results obtained in a comparison with equal dewatering, 30°SR: Results obtained in a comparison with equal tensile index, 85 kNm/kg

Eksempel 4 Example 4

Fremgangsmåten ifølge eksempel 1 ble gjentatt, men massen var av utørket/ubleket barsulfatmasse. Konsentrasjonen av natrium-sulf at i den tørkete masse er angitt i tabellen. Følgende resultater ble oppnådd: The procedure according to example 1 was repeated, but the pulp was of undried/unbleached bar sulfate pulp. The concentration of sodium sulphate in the dried pulp is indicated in the table. The following results were obtained:

Eksempel 5 Example 5

Fremgangsmåten ifølge eksempel 1 ble gjentatt, men saltet var natriumklorid. Følgende resultater ble oppnådd: The procedure according to example 1 was repeated, but the salt was sodium chloride. The following results were obtained:

Eksempel 6 Example 6

Fremgangsmåten ifølge eksempel 1 ble gjentatt, men saltet var natriumtiosulfat. Følgende resultater ble oppnådd: The procedure according to example 1 was repeated, but the salt was sodium thiosulphate. The following results were obtained:

Eksempel 7 Example 7

Fremgangsmåten i eksempel 1 ble gjentatt, men massen var utørket, ubleket sulfatmasse med natriumtiosulfat som tilsetning. Følgende resultater ble oppnådd: The procedure in example 1 was repeated, but the mass was undried, unbleached sulphate mass with sodium thiosulphate as an additive. The following results were obtained:

Eksempel 8 Example 8

Fremgangsmåten ifølge eksempel 1 ble gjentatt, men med henholdsvis monoetanolamin (MEA), dietanolamin (DEA) og trietanol-amin (TEA) som tilsetninger. Følgende resultater ble oppnådd: The procedure according to example 1 was repeated, but with monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) respectively as additives. The following results were obtained:

Eksempel 9 1 Example 9 1

Fremgangsmåten ifølge eksempel 1 ble gjentatt, men massen var ubleket sulfatmasse og tilsetningen var urea. Følgende resultater ble oppnådd: The procedure according to example 1 was repeated, but the mass was unbleached sulphate mass and the addition was urea. The following results were obtained:

Eksempel 10 Example 10

Fremgangsmåten ifølge eksempel 1, med den forskjell at utgangsmaterialet her var en tørket bleket sulfatmasse. Noen vesentlige forskjeller mellom referansens og henholdsvis 3, 6 og 10% tilsetning av Na2S04 kunne ikke konstateres. The method according to example 1, with the difference that the starting material here was a dried bleached sulphate mass. No significant differences between the reference and respectively 3, 6 and 10% addition of Na2S04 could be ascertained.

Eksempel 11 Example 11

En utørket, umalt og bleket sulfatmasse ble tørket på kon-vensjonell måte.på en papirmaskin i forsøksmålestokk. Derved ble den våte bane sprøytet med en kjemikalieløsning (se tabell) før presspartiet. Den endelige mengde tilsetningskjemikalier i den tørkete masse ble anslått ved ekstraksjon med varmt vann. Når det gjaldt ammoniumkarbonat, som forgasses ved tørkingen av massen, er en tilført mengde blitt beregnet av konsentrasjon og strømning av de andre kjemikalier over sprøyterøret. Den således tørkete masse ble dispergert i en oppløsningsanordning og malt, hvoretter det ble fremstilt papir i forsøksmålestokk, alt på kjent måte. Ved papirfremstillingen ble det tilsatt utelukkende kjemikalier for å regulere pH til 6 (henholdsvis NaOH og H^ SO^). Denne pH-justering ble utført allerede i oppløsningsanordningen. Resultatene fremgår av tabellen nedenfor. For å minimalisere innvirkning av variasjon i forholdene mellom fasthetene på langs og på tvers er det i tabellen angitt strekkfasthet^^ iangS x strekkfasthet » . Samtlige fastheter er beregnet for en og An undried, unpainted and bleached sulphate pulp was dried in a conventional manner on a pilot scale paper machine. Thereby, the wet web was sprayed with a chemical solution (see table) before the pressing part. The final amount of additive chemicals in the dried pulp was estimated by hot water extraction. In the case of ammonium carbonate, which is gasified during the drying of the mass, an added quantity has been calculated from the concentration and flow of the other chemicals over the spray pipe. The pulp thus dried was dispersed in a dissolving device and ground, after which paper was produced on an experimental scale, all in a known manner. During the paper production, only chemicals were added to regulate the pH to 6 (respectively NaOH and H^SO^). This pH adjustment was already carried out in the dissolution device. The results appear in the table below. In order to minimize the impact of variation in the ratios between the longitudinal and transverse strengths, the table shows tensile strength^^ iangS x tensile strength » . All fastnesses are calculated for a and

pa tvers ^ -a-a samme maleinnsats. Som referanse ble det anvendt en masse som ved tørking var sprøytet med vann, men som for øvrig hadde gjennomgått samme behandling. across ^ -a-a same painting effort. As a reference, a mass was used which had been sprayed with water during drying, but which otherwise had undergone the same treatment.

Claims (4)

1. Kjemisk masse med god styrke, avvanningsevne og målbarhet, karakterisert ved at den, som steriske hindringer for dannelse av hydrogenbi.ndir.Ger, inneholder ett eller flere lavmolekylære, vannløselige. salter som, etter koking men før tørking, er blandet i massen.1. Chemical mass with good strength, dewatering ability and measurability, characterized in that it contains one or more low-molecular, water-soluble, as steric obstacles for the formation of hydrogen bonds. salts which, after cooking but before drying, are mixed into the pulp. 2. Masse i samsvar med krav 1, karakterisert v e d at saltene foreligger i en mengde på 0,1-10 vekt%, regnet av massens tørre vekt.2. Mass in accordance with claim 1, characterized in that the salts are present in an amount of 0.1-10% by weight, calculated from the dry weight of the mass. 3. Fremgangsmåte til fremstilling av kjemisk masse med god styrke, avvanningsevne og målbarhet, karakterisert ved at det frembringes steriske hindringer for dannelse av hydrogenbindinger ved at massen, etter koking men for tørking, blandes ned en vannløsning av ett eller flere lavmolekylære salter.3. Process for the production of chemical pulp with good strength, dewatering ability and measurability, characterized by the fact that steric hindrances are produced for the formation of hydrogen bonds by the pulp, after boiling but before drying, being mixed into a water solution of one or more low molecular weight salts. 4. Fremgangsmåte i samsvar med krav 3, karakterisert ved at saltene tilføres i en mengde på 0,1-10 vekt%, regnet av massens terre vekt.4. Method in accordance with claim 3, characterized in that the salts are added in an amount of 0.1-10% by weight, calculated on the dry weight of the mass.
NO823323A 1981-11-19 1982-10-04 CHEMICAL MASS WITH GOOD STRENGTH, DEATHABILITY AND PAINTABILITY, AND PROCEDURE FOR THE PREPARATION OF THE MASS. NO161332C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8106885A SE8106885L (en) 1981-11-19 1981-11-19 CHEMICAL MASS WITH IMPROVED STRENGTH, DRAINAGE FORM, AND PAINTABILITY AND SET TO MAKE IT

Publications (3)

Publication Number Publication Date
NO823323L NO823323L (en) 1983-05-20
NO161332B true NO161332B (en) 1989-04-24
NO161332C NO161332C (en) 1989-08-02

Family

ID=20345071

Family Applications (1)

Application Number Title Priority Date Filing Date
NO823323A NO161332C (en) 1981-11-19 1982-10-04 CHEMICAL MASS WITH GOOD STRENGTH, DEATHABILITY AND PAINTABILITY, AND PROCEDURE FOR THE PREPARATION OF THE MASS.

Country Status (5)

Country Link
BR (1) BR8206713A (en)
CA (1) CA1193808A (en)
FI (1) FI70618C (en)
NO (1) NO161332C (en)
SE (1) SE8106885L (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114534A (en) * 1990-05-16 1992-05-19 Georgia-Pacific Corporation Drying cellulosic pulp
US5314582A (en) * 1992-07-22 1994-05-24 Chicopee Cellulosic fiber of improved wettability
US6562743B1 (en) 1998-12-24 2003-05-13 Bki Holding Corporation Absorbent structures of chemically treated cellulose fibers
WO2005063309A2 (en) 2003-12-19 2005-07-14 Bki Holding Corporation Fibers of variable wettability and materials containing the fibers
SE540103C2 (en) * 2016-07-11 2018-03-27 Stora Enso Oyj Method of manufacturing intermediate product for conversioninto microfibrillated cellulose

Also Published As

Publication number Publication date
NO823323L (en) 1983-05-20
FI823350A0 (en) 1982-10-01
NO161332C (en) 1989-08-02
SE8106885L (en) 1983-05-20
CA1193808A (en) 1985-09-24
BR8206713A (en) 1983-10-04
FI70618C (en) 1986-09-24
FI823350L (en) 1983-05-20
FI70618B (en) 1986-06-06

Similar Documents

Publication Publication Date Title
Banavath et al. A comparative study of the effect of refining on charge of various pulps
Cardoso et al. Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills
Bhardwaj et al. A comparative study of the effect of refining on physical and electrokinetic properties of various cellulosic fibres
BR112018010110B1 (en) METHOD FOR PRODUCTION OF PAPER, CARDBOARD OR SIMILAR AND PAPER OR CARDBOARD PRODUCT
CA1192353A (en) Drying wood pulp
NO174724B (en) Procedure for making paper and cardboard
Suurnäkki et al. Effects of enzymatic removal of xylan and glucomannan on the pore size distribution of kraft fibres
NO168593C (en) PROCEDURE FOR MANUFACTURING PAPER AND CARTON
CN106880077A (en) A kind of tobacco stalk processing method for lifting papermaking-method reconstituted tobaccos quality
Lyytikäinen et al. The effect of hemicellulose extraction on fiber charge properties and retention behavior of kraft pulp fibers
Öhman et al. Precipitation and filtration of lignin from black liquor of different origin
NO161332B (en) CHEMICAL MASS WITH GOOD STRENGTH, DEATHABILITY AND PAINTABILITY, AND PROCEDURE FOR THE PREPARATION OF THE MASS.
Fahlén et al. Ultrastructural changes in a holocellulose pulp revealed by enzymes, thermoporosimetry and atomic force microscopy
KR100581406B1 (en) Additive for paper making
NO157340B (en) PROCEDURE FOR THE MANUFACTURE OF NITROCELLULOS MATERIAL WITH IMPROVED STRENGTH, DEATHABILITY AND TESTABILITY.
US4361463A (en) Method in the production of dissolving pulp
Park et al. A novel method to evaluate fibre hornification by high resolution thermogravimetric analysis
Uyeda et al. The effect of cooking agents on Japanese paper
Lovell Fibrous Holocellulose from Softwoods.
Ceccherini et al. Novel CED-based rheological test to evaluate pulp reactivity
Antes et al. Effects of Modified Cooking on Fiber Wall Structure of E. globulus and E. nitens.
Win et al. Effect of pulping conditions on the properties of bamboo paper
NO843919L (en) PROCEDURE FOR MANUFACTURING TREMASS
US2810647A (en) Process of preparing fiber from pithcontaining plant materials
NO167051B (en) PROCEDURE FOR THE ESTABLISHMENT OF CONCRETE CONSTRUCTIONS IN LOANS, FROM THE TERRACE LEVEL, AND EQUIPMENT FOR EXERCISING THE PROCEDURE