NO160653B - PROCEDURE FOR THE PREPARATION OF Sulfur Dioxide. - Google Patents

PROCEDURE FOR THE PREPARATION OF Sulfur Dioxide. Download PDF

Info

Publication number
NO160653B
NO160653B NO843050A NO843050A NO160653B NO 160653 B NO160653 B NO 160653B NO 843050 A NO843050 A NO 843050A NO 843050 A NO843050 A NO 843050A NO 160653 B NO160653 B NO 160653B
Authority
NO
Norway
Prior art keywords
granules
metal
granulation
metal sulphates
sulphates
Prior art date
Application number
NO843050A
Other languages
Norwegian (no)
Other versions
NO843050L (en
NO160653C (en
Inventor
Guenter Lailach
Rudolf Gerken
Christoph Muecke
Original Assignee
Bayer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Ag filed Critical Bayer Ag
Publication of NO843050L publication Critical patent/NO843050L/en
Publication of NO160653B publication Critical patent/NO160653B/en
Publication of NO160653C publication Critical patent/NO160653C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/52Preparation of sulfur dioxide by roasting sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/08Chloridising roasting

Description

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av svoveldioksyd ved termisk spalting av metallsulfater og samtidig røsting av sulfidiske malmer. The invention relates to a method for producing sulfur dioxide by thermally splitting metal sulphates and simultaneously roasting sulphidic ores.

Den termiske spalting av metallsulfater og svovelsyre er en sterkt endoterm prosess. For å påføre den nødvendige reak-sjonsvarme forbrennes derfor ofte i samme reaksjonsrom kull, fyringsolje eller fyrihgsgasser eller fortrinnsvis svovel eller sulfidiske malmer, fortrinnsvis svovelkis. Derved gjennomføres den termiske spalting ved anvendelse av fyringsolje eller -gass samt av svovel ofte i etasjeovner. The thermal decomposition of metal sulfates and sulfuric acid is a strongly endothermic process. In order to apply the necessary reaction heat, coal, fuel oil or fuel gases or preferably sulfur or sulphidic ores, preferably pyrite, are therefore often burned in the same reaction room. Thereby, the thermal decomposition is carried out using fuel oil or gas as well as sulfur, often in floor furnaces.

Den moderne fremgangsmåte av den termiske spalting i hvirvelsjiktreaktorer krever det permanente nærvær av et hvirvel-sjikt, idet jernoksyd er spesielt egnet som lagringsmaterial. For å erstatte de ved slitasje dannede tap byr svovelkisen seg direkte som svovelråstoff som også er en relativt pris-gunstig energibærer. The modern method of thermal splitting in fluidized bed reactors requires the permanent presence of a fluidized bed, iron oxide being particularly suitable as a storage material. In order to replace the losses caused by wear and tear, pyrite offers itself directly as sulfur raw material, which is also a relatively cost-effective energy carrier.

Problematisk ved denne fremgangsmåte er å innføre svovelkis, spesielt i form av findelt fIotasjonskis og sulfatene, som ofte er svovelsyreholdige og hygroskopiske, i hvirvelsjiktreaktoren, og således fordele i sjiktet at energiforbruk og energifrigjøring er i likevekt mest mulig i alle områder av de ofte meget store reaktorer. Bare da er det å oppnå maksimal spalteytelse uten at metallsulfater utføres fra reaktoren eller sintersjikt oppstår ved lokal overoppheting. The problem with this method is to introduce sulphide, especially in the form of finely divided flotation pyrite and the sulphates, which are often sulfuric acid-containing and hygroscopic, into the fluidized bed reactor, and thus distribute it in the bed so that energy consumption and energy release are in equilibrium as much as possible in all areas of the often very large reactors. Only then is it possible to achieve maximum splitting performance without metal sulphates being carried out from the reactor or sinter layers arising from local overheating.

Formålet med oppfinnelsen består i å forbedre inntak så The purpose of the invention is to improve intake so

vel av de sulfidiske malmer som også metallsulfåtene i hvirvelsjiktreaktoren, men også i andre egnede reaktorer som etasjeovner eller dreierørsovner og å sikre den opti-male sammenblanding av de energiforbrukende og energigiv-ende råstoffer. well of the sulphidic ores as well as the metal sulphates in the fluidized bed reactor, but also in other suitable reactors such as floor furnaces or rotary tube furnaces and to ensure the optimal mixing of the energy-consuming and energy-giving raw materials.

Det lykkes ved at metallsulfåtene og de sulfidiske malmer It succeeds in that the metal sulphates and the sulphidic ores

i det følgende nevnt kis, granuleres sammen, eventuelt sammen med ytterligere energibærere og innmates i reak- in the following mentioned kis, are granulated together, possibly together with additional energy carriers and fed into the reactor

torene som granuler. the tores as granules.

Oppfinnelsens gjenstand er følgelig en fremgangsmåte til fremstilling av svoveldioksyd ved termisk spalting av metallsulfater og samtidig røsting av sulfidiske malmer i egnede reaktorer, idet metallsulfåtene granuleres sammen med metall-sulf idene og innføres i reaktoren, idet fremgangsmåten erkarakterisert vedat metallsulfåtene forgranuleres ved hjelp av svovelsyre og/eller granulerlngshjelpemidler og deretter omhylles med metallsulfider. The object of the invention is therefore a method for producing sulfur dioxide by thermally splitting metal sulphates and simultaneously roasting sulphidic ores in suitable reactors, the metal sulphates being granulated together with the metal sulphides and introduced into the reactor, the method being characterized in that the metal sulphates are pre-granulated using sulfuric acid and /or granulation aids and then coated with metal sulphides.

Mens kis alene bare er dårlig granulerbar og gir myke for While kis alone is only poorly granulable and gives soft linings

en mekanisk transport og ovnsinntak uegnede granuler, ble det overraskende funnet at metallsulfater og kis sammen er godt granulerbare og gir stabile for den mekaniske påkjenning i driftsforløpet innbefattende reaktorinntak egnede granuler. a mechanical transport and furnace intake unsuitable granules, it was surprisingly found that metal sulphates and silica together are well granulable and give stable for the mechanical stress in the course of operation including reactor intake suitable granules.

De dannede granuler består av en indre kjerne som består av metallsulfater og et hylster av kis. Svovelsyreholdige metallsulfater slik de fremkommer ved inndamping av Ti02~tynnsyrer eller beisoppløsninger lar seg granulere uten problemer når de foreligger som "tørre", dvs. ikke pastøse, men sprø filterkaker. The formed granules consist of an inner core consisting of metal sulphates and a shell of quartz. Sulfuric acid-containing metal sulphates as they appear by evaporation of Ti02~ dilute acids or pickling solutions can be granulated without problems when they are present as "dry", i.e. not pasty, but brittle filter cakes.

Spesielt egnet som metallsulfater innen oppfinnelsens ramme er derfor vedhengningsyreholdige filterkaker. Deres ved-hengningssyreinnhold kan før granuleringen senkes ved mekanisk etteravfukting, eksempelvis med båndpressefiltre, hvorved filterkakens sprøhet forbedres. Particularly suitable as metal sulphates within the scope of the invention are filter cakes containing residual acid. Their residual acid content can be lowered before granulation by mechanical dehumidification, for example with belt press filters, whereby the friability of the filter cake is improved.

Granuleringen gjennomføres i forskjellige apparater. Granulertallerkner er meget godt egnet, idet granuleringen foregår en- eller flertrinnet. The granulation is carried out in different devices. Granulating plates are very well suited, as the granulation takes place in one or more stages.

Ved de syreholdige salters hygroskopiske egenskaper blir imidlertid granulene hurtig fuktige og kleber sammen. Due to the hygroscopic properties of the acidic salts, however, the granules quickly become moist and stick together.

Ifølge oppfinnelsen får man relativt faste godt risledyk tige granuler når man overtrekker ovennevnte granuler på en annen granuleringstallerken eller i den ytre ring av samme tallerken med kis. De derved dannede granuler adsorberer også ved lengre ligging i luft bare litt fuktighet og forblir godt risledyktige. According to the invention, relatively firm, well-driable granules are obtained when the above-mentioned granules are coated on another granulation plate or in the outer ring of the same plate with kis. The granules thus formed also adsorb only a little moisture when lying in air for longer periods and remain well-rippled.

Tørre, risledyktige metallsulfater kan forgranuleres ved tilsetning av svovelsyre, olje eller kjente granuleringshjelpe-midler som melasse, fiskelim, bentonitt eller sulfittavlut og deretter omhylles med kis. Dry, free-flowing metal sulphates can be pre-granulated by adding sulfuric acid, oil or known granulation aids such as molasses, fish glue, bentonite or sulphite liquor and then encased in kieselguhr.

Som kis kan det anvendes finkis med partikkelstørrelse inn-til 5 mm. Spesielle fordeler byr fremgangsmåten imidlertid ved anvendelse av fIotasjonskis, hvis partikkelstørrelse i det vesentlige ligger under 0,1 mm. De derved oppnådde granuler er meget godt risledyktige og lagringsdyktige. Dessuten unngås de store vanskeligheter som fremkommer ved innføring av fIotasjonskis i hvirvelsjiktreaktorer. Fine pike with a particle size of up to 5 mm can be used as pike. However, the method offers special advantages when using flotation crystals, the particle size of which is essentially below 0.1 mm. The granules thus obtained are very well wickable and storable. In addition, the major difficulties that arise when introducing flotation ice into fluidized bed reactors are avoided.

Forholdet mellom kis og metallsulfater kan varieres innen The ratio between pyrites and metal sulphates can be varied within

et vidt omfang tilsvarende de driftsmessige krav ved rå-stoff anvendelsen . Ved tilsetning av de kjente granulerings-hjelpemidler kan fastheten av kiselhylsteret økes, spesielt ved stort forhold mellom kis og metallsulfat, hvilket imidlertid vanligvis ikke er nødvendig for normal håndtering. a wide range corresponding to the operational requirements of the raw material application. By adding the known granulation aids, the firmness of the silicon casing can be increased, especially in the case of a large ratio between silica and metal sulphate, which is, however, not usually necessary for normal handling.

Som fordelaktig viser det seg den forholdsregel at de av metallsulfåtene og metallsulfidene bestående granuler pudres med tørre, ikke klebende stoffer. Som- slike ikke klebende stoffer kan det nevnes kullstøv, finklull, svovel og/eller avbrann. Ved denne pudring forbedres ytterligere granulenes risleevne. The precaution that the granules consisting of the metal sulphates and metal sulphides are powdered with dry, non-sticky substances turns out to be advantageous. Examples of such non-sticky substances include coal dust, fine coal, sulfur and/or burnt coal. With this powdering, the granules' dribble ability is further improved.

Anvendelsen av de ifølge oppfinnelsen fremstilte granuler sikrer en jevnere drift av reaktorene og høyere spaltings-ytelse, spesielt ved hvirvelsjiktreaktorer. The use of the granules produced according to the invention ensures smoother operation of the reactors and higher cleavage performance, especially in fluidized bed reactors.

Fordelene ifølge oppfinnelsen skal tydeliggjøres ved hjelp The advantages according to the invention shall be made clear by means of

av følgende eksempler. of the following examples.

Eksempel _l_!Sammenli2ningseksemp_el)_ Example _l_!Comparison example_el)_

Sprø metallsulfater (overveiende Fe-sulfat med Mg-, Al, Mn-og andre sulfater) med ca. 30 vekt-% vedhengningssyre (som saltfri syre med 65% H2S04) (=filtersalt I) ble granulert i en granuleringstallerken. Etter 1-2 minutter var det av de fine deler blitt granuler av 3-10 mm diameter. Ved ytterligere rulling i tallerkene ble granuleringsoverflaten fuktig glinsende og etter 4-5 minutter begynte granulene å klebe til hverandre. Brittle metal sulphates (mainly Fe sulphate with Mg, Al, Mn and other sulphates) with approx. 30% by weight of attachment acid (as salt-free acid with 65% H 2 SO 4 ) (= filter salt I) was granulated in a granulation plate. After 1-2 minutes, the fine parts had become granules of 3-10 mm diameter. Upon further rolling in plates, the granulation surface became moist glistening and after 4-5 minutes the granules began to stick to each other.

Når granulene etter 2-4 minutters oppholdstid i granuleringstallerken ble pudret med brunkullstøv, forble de risledyktige. When the granules were dusted with lignite dust after a 2-4 minute residence time in the granulation plate, they remained free flowing.

En del av granulene ble hensatt i bygningen åpent i en skål. Etter 48 timer var granulene tydelig sammenklebet. Vekt-økningen ved adsorpsjonen av luftfuktighet utgjorde 13,6%. A portion of the granules were stored in the building open in a bowl. After 48 hours, the granules were clearly stuck together. The increase in weight due to the adsorption of air humidity was 13.6%.

Eksempel_2_^Sammenligningsek Example_2_^Comparison sec

Det ble forsøkt å granulere svovelkis A (fIotasjonskis med 70% under 0,04 mm kornstørrelse) i en granuleringstallerken. Derved dannet det seg bare få granuler med 3-20 mm diameter, som i hånden lett kunne trykkes og som ikke var egnet for innmating i røsteovner med de normale transport- og doser-ingsorganer. An attempt was made to granulate sulfur pyrite A (flotation pyrite with 70% below 0.04 mm grain size) in a granulation plate. Thereby, only a few granules with a diameter of 3-20 mm were formed, which could easily be pressed by hand and which were not suitable for feeding into roasting furnaces with the normal transport and dosing devices.

Eksemp_el_3: Example_el_3:

I en granuleringstallerken (d = 0,8 m) ble det tilsatt filtersalt I, som ble frembragt ved etteravfukting av en dreiefilterkake ved hjelp av båndpressefilter og bryting av den plateaktige kake ved hjelp av stiftmølle sammen med svovelkis A i forhold 1:1. Etter 5 minutter ble det tørre, matt glinsende, ,godt risledyktige granulat uttatt. Sikt-analysen fremgår av tabell 1. In a granulation plate (d = 0.8 m) was added filter salt I, which was produced by dehumidifying a rotary filter cake using a belt press filter and breaking the plate-like cake using a pin mill together with pyrite A in a 1:1 ratio. After 5 minutes, the dry, matt shiny, well-flowable granules were taken out. The Sikt analysis appears in table 1.

Eksemgel_4: Example gel_4:

I en granuleringstallerken ble det fylt 2 kg filtersalt I. Etter 3 minutter ble det til de fuktige glinsende granuler In a granulation plate, 2 kg of filter salt I were filled. After 3 minutes, the moist glistening granules

i løpet av 30 sekunder satt 2 kg svovelkis A. Etter ytterligere 2 minutter ble granuleringstallerkenen stoppet og de kuleformede granuler siktet (tabell 1). within 30 seconds, 2 kg of pyrite A settled. After a further 2 minutes, the granulation plate was stopped and the spherical granules were sieved (Table 1).

Granulene var av tilstrekkelig fasthet for normal påkjenning ved transport, bunkring og dosering. Etter 3 uker i en åpen skål i laboratoriet var de enda godt risledyktige. Vekt-økningen på grunn av fuktighetsadsorpsjon utgjorde 3,2%. The granules were of sufficient firmness for normal stress during transport, bunkering and dosing. After 3 weeks in an open bowl in the laboratory, they were still well-dried. The weight increase due to moisture adsorption amounted to 3.2%.

Eksemp_el_5: Example_el_5:

Analogt eksempel 4 ble filtersalt I granulert med svovelkis Analogous to example 4, filter salt I was granulated with pyrite

B (finkis med midlere korning 1,3 mm). De dannede granuler hadde et glinsende utseende og var likeldes godt risledyktige. B (finite with medium grain 1.3 mm). The granules formed had a glistening appearance and were likewise well free-flowing.

Eksempe<l>_<6:>Example<l>_<6:>

Granuler ble fremstilt analogt eksempel 4, og deretter pudret med 100 g brunkullstøv. Direkte etter fremstillingen som også etter 3 ukers lagringstid i en åpen skål var risledyktig-heten tydelig bedre enn ved upudrede granuler tilsvarende eksempel 4. Granules were prepared analogously to example 4, and then powdered with 100 g of lignite dust. Directly after production and also after 3 weeks of storage in an open bowl, the flowability was clearly better than with unpowdered granules corresponding to example 4.

Eksempel_7<:>Example_7<:>

Analogt eksempel 4 ble filtersalt I og svovelkis A granulert Analogous to example 4, filter salt I and pyrite A were granulated

i forholdet 2:1 .(7a) og 1:2 (7b). I begge tilfeller ble det oppnådd tilstrekkelig faste, godt risledyktige granuler. in the ratio 2:1 .(7a) and 1:2 (7b). In both cases, sufficiently firm, well-flowable granules were obtained.

Eksemp_el_8: Example_el_8:

Filtersalt II (dreiefilterkake med 42% 65%-ig svovelsyre Filter salt II (rotary filter cake with 42% 65% sulfuric acid

som heftefuktighet) ble forgranulert analogt eksempel 4 og ettergranulert med samme mengde svovelkis A. Granulene (sikteanalyse tabell 1) var godt risledyktige, men tydelig mindre trykkfaste enn i eksempel 3-7. as binder moisture) was pre-granulated analogously to example 4 and post-granulated with the same amount of pyrite A. The granules (sieve analysis table 1) were well flowable, but clearly less compressive-resistant than in examples 3-7.

Eksemgel_9: Exemgel_9:

En granuleringstallerken av 1 m diameter og 0,2 m dybde var utrustet med en indre sylindrisk ring av 0,6 m diameter og 0,15 m dybde. I det indre området ble det dosert 100 kg filtersalt I/time. De plane, glatte granuler fra filtersalt I rullet i det ytre området og ble der blandet med 50 kg svovelkis A/time. De over den ytre kant avrullende granuler var meget godt risledyktige og jevne (tabell 1). A granulation plate of 1 m diameter and 0.2 m depth was equipped with an inner cylindrical ring of 0.6 m diameter and 0.15 m depth. In the inner area, 100 kg of filter salt I/hour was dosed. The flat, smooth granules from filter salt I rolled in the outer area and were there mixed with 50 kg pyrite A/hour. The granules rolling over the outer edge were very well flowable and smooth (table 1).

Eksempel_10: Example_10:

Ved avvanning av jernsulfat-heptahydrat fremstilt risledyktig jernsulfat-monohydrat ble granulert i det indre området av granuleringstallerken (tilsvarende eksempel 9) med sprøyting med melassebppløsning. De i det ytre området av tallerkenen avrullende granuler ble blandet i vektforhold 1:1 med svovelkis A. Det rullet godt risledyktige granuler fra det ytre området som i korning og fasthet var fremstilt tilsvarende det tilsvarende eksempel 9. By dewatering ferrous sulfate heptahydrate, free-flowing ferrous sulfate monohydrate was granulated in the inner area of the granulation plate (corresponding to example 9) by spraying with molasses solution. The granules rolling off in the outer area of the plate were mixed in a 1:1 weight ratio with pyrite A. Well-driable granules rolled from the outer area which in terms of grain size and firmness were produced similar to the corresponding example 9.

Claims (6)

1. Fremgangsmåte til fremstilling av svoveldioksyd ved termisk spalting av metallsulfater og samtidig røsting av sulfidiske malmer i egnede reaktorer, idet metallsulfåtene granuleres sammen med metallsulfidene og innføres i reaktorene,karakterisert vedat metallsulfåtene forgranuleres ved hjelp av svovelsyre og/eller granulerings-hjelpemidler og deretter omhylles med metallsulfider.1. Process for the production of sulfur dioxide by thermally splitting metal sulphates and simultaneously roasting sulphidic ores in suitable reactors, the metal sulphates being granulated together with the metal sulphides and introduced into the reactors, characterized in that the metal sulphates are pre-granulated using sulfuric acid and/or granulation aids and then enveloped with metal sulfides. 2. Fremgangsmåte ifølge krav 1, karakterisert vedat metallsulfåtene er klebesyreholdige filterkaker.2. Method according to claim 1, characterized in that the metal sulphates are adhesive acid-containing filter cakes. 3. Fremgangsmåte ifølge et av kravene 1 eller 2,karakterisert vedat før granuleringen, nedsettes ved mekanisk etteravfukting klebesyreinnholdet av filterkaken.3. Method according to one of claims 1 or 2, characterized in that before the granulation, the adhesive acid content of the filter cake is reduced by mechanical dehumidification. 4. Fremgangsmåte ifølge et av kravene 1-3,karakterisert vedat de av metallsulfater og metallsulfider bestående granuler pudres med tørre, ikke klebende stoffer.4. Method according to one of claims 1-3, characterized in that the granules consisting of metal sulphates and metal sulphides are powdered with dry, non-sticky substances. 5. Fremgangsmåte ifølge krav 4, karakterisert vedat de tørre, ikke klebende stoffer er kullstøv, finkull, svovel og/eller avbrann.5. Method according to claim 4, characterized in that the dry, non-sticky substances are coal dust, fine coal, sulfur and/or slag. 6. Fremgangsmåte ifølge et av kravene 1-5,karakterisert vedat granuleringen foregår i et eller flere trinn ved hjelp av granuleringstallerken.6. Method according to one of claims 1-5, characterized in that the granulation takes place in one or more stages by means of the granulation plate.
NO843050A 1983-08-09 1984-07-27 PROCEDURE FOR MANUFACTURING Sulfur Dioxide. NO160653C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19833328710 DE3328710A1 (en) 1983-08-09 1983-08-09 METHOD FOR PRODUCING SULFUR DIOXIDE

Publications (3)

Publication Number Publication Date
NO843050L NO843050L (en) 1985-02-11
NO160653B true NO160653B (en) 1989-02-06
NO160653C NO160653C (en) 1989-05-16

Family

ID=6206137

Family Applications (1)

Application Number Title Priority Date Filing Date
NO843050A NO160653C (en) 1983-08-09 1984-07-27 PROCEDURE FOR MANUFACTURING Sulfur Dioxide.

Country Status (6)

Country Link
EP (1) EP0139120B1 (en)
CA (1) CA1249416A (en)
DE (2) DE3328710A1 (en)
ES (1) ES534976A0 (en)
FI (1) FI77435C (en)
NO (1) NO160653C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3633710A1 (en) * 1986-10-03 1988-04-14 Bayer Ag METHOD FOR PRODUCING SULFUR DIOXIDE
DE3833381A1 (en) * 1988-10-01 1990-04-05 Bayer Ag METHOD FOR PRODUCING SULFUR DIOXIDE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2174185A (en) * 1938-03-16 1939-09-26 Gen Chemical Corp Process for roasting ore
FR1052063A (en) * 1951-03-06 1954-01-21 Basf Ag Process for the production of gas containing sulfur dioxide
FR1256213A (en) * 1960-03-30 1961-03-17 Int Nickel Canada Advanced process of roasting nickel, cobalt and copper sulfides, with or without iron

Also Published As

Publication number Publication date
FI843100A0 (en) 1984-08-07
NO843050L (en) 1985-02-11
EP0139120A1 (en) 1985-05-02
EP0139120B1 (en) 1987-01-14
CA1249416A (en) 1989-01-31
ES8504621A1 (en) 1985-04-16
FI77435B (en) 1988-11-30
NO160653C (en) 1989-05-16
DE3462016D1 (en) 1987-02-19
ES534976A0 (en) 1985-04-16
DE3328710A1 (en) 1985-02-28
FI843100A (en) 1985-02-10
FI77435C (en) 1989-03-10

Similar Documents

Publication Publication Date Title
US3956446A (en) Method of forming discrete pieces or pellets from meltable glass-producing mixtures
US4201751A (en) Gas purification
NO161585B (en) DEVICE FOR AA CERTAIN HEMATOCRITI VALUES.
NO130014B (en)
NO160653B (en) PROCEDURE FOR THE PREPARATION OF Sulfur Dioxide.
US3977892A (en) Agglomeration of finely divided particles
GB1361708A (en) Process for agglomerating sodium carbonate peroxide
EP0124736A3 (en) Granules of zeolite bonded by silicates, process for their production and their use
JPH04270113A (en) Production of sodium bicarbonate
EP0168308B1 (en) Process for the treatment of iron ii sulfate heptahydrate for suppressing its tendency to agglomerate and to make it free-flowing
US4075311A (en) Process for preparing granulated magnesium hydroxide and magnesia of a large specific surface
EP0360555A1 (en) Process for preparing sodium cyanide
JPS6339524B2 (en)
US5372628A (en) Method for producing reducible iron-containing material having less clustering during direct reduction and products thereof
CZ287802B6 (en) Process for preparing pure granulated strontium carbonate, the strontium carbonate per se and its use
US4274878A (en) Sulphide pellet materials
SU1586998A1 (en) Method of heat treatment of phosphorite pellets
JPS6235969B2 (en)
CZ2006793A3 (en) The method of manufacturing industrial silicate granulate, especially kaolin, clay, betonite and fired
CN106622096B (en) Isopropanol deep desulfuration and the nickel-based sorbent of deodorization and its preparation method and application
SU1122726A1 (en) Sulfidizer for processing oxidized non-ferrous ores and concentrates
FR2540399A1 (en) PROCESS FOR REMOVING SULFUR BIOXIDE FROM MIXTURES
JPS63274722A (en) Reduced-iron composition and its production
Sartowski et al. Preliminary Treatment for Decreasing the Silicic Acid Content in the Bayer Process
SU1043178A1 (en) Method for processing arsenic-bearing wastes high-phosphorus cast iron