NO160159B - CONNECTOR BEARS FOR CONNECTION OF COATING BEARS OF TWO ISOLATED CONNECTOR ELEMENTS. - Google Patents

CONNECTOR BEARS FOR CONNECTION OF COATING BEARS OF TWO ISOLATED CONNECTOR ELEMENTS. Download PDF

Info

Publication number
NO160159B
NO160159B NO823292A NO823292A NO160159B NO 160159 B NO160159 B NO 160159B NO 823292 A NO823292 A NO 823292A NO 823292 A NO823292 A NO 823292A NO 160159 B NO160159 B NO 160159B
Authority
NO
Norway
Prior art keywords
reaction
reactor
catalyst
ammonia
approx
Prior art date
Application number
NO823292A
Other languages
Norwegian (no)
Other versions
NO823292L (en
NO160159C (en
Inventor
Jacob Pellikan
Hubertus Bastiaan Kruithof
Marcel Caduff
Heinz Nyffeler
Hansrudolf Kaempf
Original Assignee
Von Roll Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH6269/81A external-priority patent/CH657686A5/en
Priority claimed from CH7420/81A external-priority patent/CH662402A5/en
Application filed by Von Roll Ag filed Critical Von Roll Ag
Publication of NO823292L publication Critical patent/NO823292L/en
Publication of NO160159B publication Critical patent/NO160159B/en
Publication of NO160159C publication Critical patent/NO160159C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53241Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/97Checking completion of joining or correct joining by using indications on at least one of the joined parts
    • B29C66/976Checking completion of joining or correct joining by using indications on at least one of the joined parts by the use of an indicator pin, e.g. being integral with one of the parts to be joined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • F16L47/03Welded joints with an electrical resistance incorporated in the joint
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/20Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints for non-disconnectable joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • B29L2023/225Insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/24Pipe joints or couplings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Description

Fremgangsmåte for katalytisk fremstiNing av olefinisk umettede aldehyder og nitriler. Process for the catalytic production of olefinically unsaturated aldehydes and nitriles.

Foreliggende oppfinnelse vedrører en forbedring ved fremgangsmåten for fremstilling av The present invention relates to an improvement in the method for the production of

olefinisk umettede nitriler eller aldehyder ved olefinically unsaturated nitriles or aldehydes by

reaksjon med oksygen eller ammoniakk og oksygen med et olefin. Foreliggende oppfinnelse ved-rører mer spesielt en forbedring ved fremstilling reaction with oxygen or ammonia and oxygen with an olefin. The present invention relates more particularly to an improvement in manufacturing

av olefinisk umettede aldehyder som f. eks. akrolein ved en fremgangsmåte som omfatter katalytisk dampfasereaksjon av oksygen og propylen of olefinically unsaturated aldehydes such as acrolein by a process comprising catalytic vapor phase reaction of oxygen and propylene

og en forbedring ved fremstilling av et olefinisk and an improvement in the preparation of an olefinic

umettet nitril som alkrylnitril ved en fremgangsmåte som omfatter katalytisk dampfasereaksjon unsaturated nitrile such as alkrynitrile by a method comprising catalytic vapor phase reaction

av ammoniakk, oksygen og propylen i et flertall of ammonia, oxygen and propylene in a majority

eller serier av kommuniserende reaksjonsavdelinger eller -soner som inneholder en fiuldisert or series of communicating reaction compartments or zones containing a fiuldised

katalysator ved hvilken oksygenet innføres ved catalyst by which the oxygen is introduced by

et punkt som befinner seg i det minste én reaksjonsavdeling eller -sone ovenfor den avdeling a point located at least one reaction compartment or zone above that compartment

eller den sone i hvilken de andre reagerende or the zone in which the other responders

stoffer innføres. Fremgangsmåten kan utføres substances are introduced. The procedure can be carried out

kontinuerlig i lange tidsperioder uten at det er nødvendig å avbryte prosessen og regenerere katalysatoren slik som det vanligvis kreves ved slike .fremgangsmåter. Ved foreliggende fremgangsmåte opprettholdes katalysatorens fremragende opprinnelige aktivitet i lange tidsperioder, hvil-ket betyr betydelig økonomiske besparelser ved fremgangsmåtens utførelse i teknisk målestokk. continuously for long periods of time without the need to interrupt the process and regenerate the catalyst as is usually required in such processes. With the present method, the excellent original activity of the catalyst is maintained for long periods of time, which means significant financial savings when the method is carried out on a technical scale.

I henhold til det foran anførte går fremgangsmåten ifølge oppfinnelsen ut på katalytisk fremstilling a<y> olefinisk umettede aldehyder og nitriler fra et olefin, oksygen og eventuelt ammoniakk ved å bringe nevnte olefin, oksygen og eventuelt ammoniakk i kontakt med en fluidisert fast katalysator ved en forhøyet temperatur i en reaksjpnssone som inneholder i det minste 5 kommuniserende avdelinger, og det karakteristr iske ved fremgangsmåten er at oksygenet innfø-res først og olefinet og eventuelt ammoniakken deretter og at nevnte olefin har strukturformelen: According to the above, the method according to the invention involves the catalytic production of olefinically unsaturated aldehydes and nitriles from an olefin, oxygen and optionally ammonia by bringing said olefin, oxygen and optionally ammonia into contact with a fluidized solid catalyst at a elevated temperature in a reaction zone containing at least 5 communicating compartments, and the characteristic feature of the method is that the oxygen is introduced first and the olefin and possibly the ammonia afterwards and that said olefin has the structural formula:

hvor R er et hydrogenatom eller en metylgruppe. where R is a hydrogen atom or a methyl group.

Når det ønskede produkt er et olefinisk umettet aldehyd som akrolein eller metakrolein, anvendes ikke noe ammoniakk i reaksjonsblandingen. Når det ønskede produkt på den annen side er et olefinisk umettet nitril, som f. eks. akrylnitril eller methakryniltril innføres ammoniakk i reaksjonsblandingen. Foreliggende fremgangsmåte er således en oksydasjonsprosess som danner olefinisk umettede aldehyder i fravær av ammoniakk og olefinisk umettede nitriler i nærvær av ammoniakk. When the desired product is an olefinically unsaturated aldehyde such as acrolein or methacrolein, no ammonia is used in the reaction mixture. When the desired product, on the other hand, is an olefinically unsaturated nitrile, such as e.g. acrylonitrile or methacrylnitrile, ammonia is introduced into the reaction mixture. The present method is thus an oxidation process which forms olefinically unsaturated aldehydes in the absence of ammonia and olefinically unsaturated nitriles in the presence of ammonia.

En hvilken som helst kilde for molekylært oksygen kan anvendes ved fremgangsmåten. Molforholdet oksygen til olefin i reaksjonsblandingen skal være i området 0,5 : 1 til 5 : 1 og et forhold av ca. 1 : 1 til 2 : 1 er å foretrekke. Any source of molecular oxygen can be used in the process. The molar ratio of oxygen to olefin in the reaction mixture must be in the range 0.5:1 to 5:1 and a ratio of approx. 1:1 to 2:1 is preferable.

Tilstedeværelsen av mettede hydrokarboner,, propan eller n-butan, f. eks. i tilmafeningsblan-dingen synes ikke å innvirke på reaksjonen i noen nevneverdig grad, og disse stoffer synes ba-re å virke som fortynningsmidler. Tilstedeværelsen av mettede hydrokarboner i tilmatningen til reaktoren er følgelig innenfor rammen for denne reaksjon. På lignende måte kan andre inerte gassformete fortynningsmidler som f. eks. nitrogen og oksyder av karbon være til stede i reak-sjonsblandingene uten noen skadelig virkning. The presence of saturated hydrocarbons, propane or n-butane, e.g. in the dilution mixture does not seem to affect the reaction to any significant degree, and these substances seem only to act as diluents. The presence of saturated hydrocarbons in the feed to the reactor is therefore within the scope of this reaction. In a similar way, other inert gaseous diluents such as e.g. nitrogen and oxides of carbon be present in the reaction mixtures without any harmful effect.

Ved fremstillingen av olefinisk umettede nitriler kan molforholdet ammoniakk til olefin i tilmatningen variere mellom ca. 0,05 : 1 til 5 : 1. Det er ingen virkelig øvre grense for ammoniakk-olefinforholdet. Ved ammoniakk-olefinforholdet merkbart mindre enn det støkometriske forhold 1 : 1 vil det dannes forskjellige mengder av oksy-generte derivater av olefinet. In the production of olefinically unsaturated nitriles, the molar ratio of ammonia to olefin in the feed can vary between approx. 0.05 : 1 to 5 : 1. There is no real upper limit to the ammonia-to-olefin ratio. If the ammonia-olefin ratio is noticeably less than the stoichiometric ratio 1:1, different amounts of oxygenated derivatives of the olefin will be formed.

Anvendelsen av vann i reaksjonsblandingen er innenfor fremgangsmåtens ramme. Forbedrin-ger er blitt iakttatt ved reaksjoner utført i nærvær av vann sammenlignet med slike forsøk som er utført i fravær av tilsatt vann. Tilstedeværelsen, av vann har følgelig en utpreget gunstig virkning på reaksjonen, men reaksjoner som ikke omfatter vann i reaksjonsblandingen skal ikke forståes å være utelukket fra oppfinnelsen. The use of water in the reaction mixture is within the framework of the method. Improvements have been observed in reactions carried out in the presence of water compared to such experiments carried out in the absence of added water. The presence of water consequently has a distinctly beneficial effect on the reaction, but reactions that do not include water in the reaction mixture should not be understood to be excluded from the invention.

Hvis vann skal innføres i reaksjonsblandingen skal generelt molforholdet vann til olefin være minst ca. 0,25.: 1. Forhold av størrelsesor-denen 1 : .1 er. særlig ønskelige, men høyere forhold kan anvendes, dvs. opp til ca. 10 : 1. Som følge, av gjenvinningsproblemene er det i almin-nelighet å foretrekke bare å anvende så meget vann som ér.nødvendig for å få den ønskede forbedring av utbyttet. Det vil forståes at vann ikke bare oppfører seg som et fortynningsmiddel i reaksjonsblandingen, skjønt det ikke kan gis noen forklaring på den nøyaktige måte som vann inn-virker på reaksjonen... If water is to be introduced into the reaction mixture, the molar ratio of water to olefin must generally be at least approx. 0.25.: 1. Ratio of the order of magnitude 1 : .1 is. particularly desirable, but higher ratios can be used, i.e. up to approx. 10 : 1. As a result of the recovery problems, it is generally preferable to only use as much water as is necessary to obtain the desired improvement in yield. It will be understood that water does not only act as a diluent in the reaction mixture, although no explanation can be given as to the exact way in which water affects the reaction...

'VAndre inerte fortynningsmidler som nitrogen og,karbondioksyd kan være til stede i reaksjonsblandingen, men det er ikke blitt iakttatt, noen Other inert diluents such as nitrogen and carbon dioxide may be present in the reaction mixture, but it has not been observed that any

gunstig virkning på reaksjonen ved tilstedeværelsen av slike fortynningsmidler. beneficial effect on the reaction by the presence of such diluents.

En hvilken som helst av en av de mange katalysatorer som virker ved reaksjonen mellom propylen, oksygen og eventuelt ammoniakk for å danne akrolein eller eventuelt akrylnitril er nyttige ved foreliggende fremgangsmåte. En særlig ønsket gruppe av katalysatorer for foreliggende fremgangsmåtes formål, som er mer detaljert beskrevet i US-patent nr. 2 904 580, 3 044 966, 3 050 546 og 2 941 007, er vismut-, tinn- og anti-monsalter av fosformolybdensyre og molybden-syrer, vismut-sili<i>komolybdat, Vismut-sillkofos-formolybdat og vismutfosforwolframat, og av disse foretrekkes et vismutfosformolybdat. Andre katalysatorer som er nyttige ved foreliggende oppfinnelse, omfatter de kombinerte oksyder av vismut og molybden, vismut, molybden og eventuelt fosfor, forbedret ved tilsetning av oksyder av barium og silicium, og de kombinerte oksyder av antimon og tinn. Særlig nyttige ved foreliggende Any one of the many catalysts which act by the reaction of propylene, oxygen and optionally ammonia to form acrolein or optionally acrylonitrile are useful in the present process. A particularly desired group of catalysts for the purposes of the present method, which are described in more detail in US Patent Nos. 2,904,580, 3,044,966, 3,050,546 and 2,941,007, are bismuth, tin and antimony salts of phosphormolybdic acid and molybdenum acids, bismuth silicomolybdate, bismuth silicophos formmolybdate and bismuth phosphortungstate, and of these a bismuth phosphormolybdate is preferred. Other catalysts useful in the present invention include the combined oxides of bismuth and molybdenum, bismuth, molybdenum and possibly phosphorus, improved by the addition of oxides of barium and silicon, and the combined oxides of antimony and tin. Particularly useful in the present

oppfinnelse er de kombinerte oksyder av antimon invention are the combined oxides of antimony

og et annet flerverdig metalloksyd, og særlig fordelaktig er de kombinerte oksyder av antimon og uran, antimon og jern, antimon og thorium, antimon og cerium og antimon og mangan såvel som forbedrede og avslitndngsmotstandsdyktige katalysatorer av den type som er beskrevet i US-patent nr. 3 186 955, 3 200 081 og 3 200 084. and another polyvalent metal oxide, and particularly advantageous are the combined oxides of antimony and uranium, antimony and iron, antimony and thorium, antimony and cerium and antimony and manganese as well as improved and wear-resistant catalysts of the type described in US patent no. .3,186,955, 3,200,081 and 3,200,084.

Ytterligere katalysatorer som er nyttige ved foreliggende fremgangsmåte er åpenbart i de belgiske patenter nr. 592 434, 593 097, 598 511, 603 020, 612 136, 615 605 og 603 031; kanadisk patent nr. 619 497, fransk patent nr. 1 278 289, bri-tiske patenter nr. 874 593* og 904 418 og US-patent nr. 2 481 826. Additional catalysts useful in the present process are disclosed in Belgian Patent Nos. 592,434, 593,097, 598,511, 603,020, 612,136, 615,605 and 603,031; Canadian Patent No. 619,497, French Patent No. 1,278,289, British Patent Nos. 874,593* and 904,418 and US Patent No. 2,481,826.

Katalysatorene kan fremstilles ved en hvilken som helst av de mange fremgangsmåter for katalysatorfremstilling som er kjent for fagfolk på området. F. eks. kan katalysatoren fremstilles ved ko-gelatinering av de forskjellige bestanddeler. Den ko-gelatinerte masse kan tørkes i overensstemmelse med vanlig teknikk. Katalysatoren kan spray-tørkes, ekstruderes som pellets eller overføring til kuler i oljer som kjent på området. Alternativt kan katalysatorkomponentene blandes med et underlag eller bæremiddel i form av et slam etterfulgt av tørking eller de kan im-pregneres på kiselsyre eller et annet bæremiddel. Katalysatoren kan fremstilles i en hvilken som helst egnet form og fortrinsvis som små partikler som er egnet for bruk i en fluidiseringsreaktor. For oppfinnelsens formål foretrekkes en katalysator med en partikkelstørrelse mellom 1 og 500 mikron. For oppfinnelsens formål er videre katalysatorer som foretrekkes slifce som er sammensatt av et oksyd av antimon og oksydet av et annet flerverdig metall og særlig fordelaktig katalysatorer sammensatt av de kombinerte oksyder av antimon og uran, antimon og jern, antimon og tinn, antimon og thorium, antimon og cerium og antimon og mangan. The catalysts can be prepared by any of the many catalyst preparation methods known to those skilled in the art. For example the catalyst can be produced by co-gelatinization of the various components. The co-gelatinized mass can be dried in accordance with conventional techniques. The catalyst can be spray-dried, extruded as pellets or transferred to balls in oils as known in the field. Alternatively, the catalyst components can be mixed with a substrate or carrier in the form of a slurry followed by drying or they can be impregnated on silicic acid or another carrier. The catalyst may be prepared in any suitable form and preferably as small particles suitable for use in a fluidization reactor. For the purposes of the invention, a catalyst with a particle size between 1 and 500 microns is preferred. For the purposes of the invention, catalysts that are further preferred are those composed of an oxide of antimony and the oxide of another polyvalent metal, and particularly advantageous catalysts composed of the combined oxides of antimony and uranium, antimony and iron, antimony and tin, antimony and thorium, antimony and cerium and antimony and manganese.

Den temperatur ved hvilken foreliggende f remgangsmåte utføres, kan være en hvilken som helst.i området fra 260 til 540°C (500 til 1000°F). Det foretrukne tempera turområdet er fra 370 til 510° C (705 til 950° F). The temperature at which the present process is carried out can be anywhere in the range of 260 to 540°C (500 to 1000°F). The preferred temperature range is from 370 to 510° C (705 to 950° F).

De trykk ved hvilke reaksjonen utføres ér også en viktig variabel størrelse og reaksjonen skal utføres ved ca. atmosfærisk trykk eller noe over atmosfærisk trykk (2 til 3 atmosfærer). Generelt er høye trykk, dvs. over 17,5 kg/cm<2> (250 p.s.i.g.) ikke egnet ved fremgangsmåten da høy-ere trykk har en tendens til å begunstige dan-nelsen av uønskede biprodukter. The pressure at which the reaction is carried out is also an important variable and the reaction must be carried out at approx. atmospheric pressure or slightly above atmospheric pressure (2 to 3 atmospheres). In general, high pressures, i.e. above 17.5 kg/cm<2> (250 p.s.i.g.) are not suitable in the process as higher pressures tend to favor the formation of undesirable by-products.

Den tilsynelatende kontakttid som anvendes ved fremgangsmåten er ikke av spesiell kritisk betydning. Kontakttider i området 0,1 til 50 sekunder kan anvendes. Den tilsynelatende kontakttid defineres som den tidslengde i sekunder som en volumenhet av gassen, målt under reak-sjonsforholdene, er i kontakt med den tilsynelatende volumenhet av katalysatoren. Den tilsynelatende kontakttid kan f. eks. beregnes fra det tilsynelatende volum av katalysatorsjiktet, mid-deltemperaturen og trykket ved reaksjonen og strømhastighetene av komponentene til reaksjonsblandingen i karet. Den optimale kontakttid vil naturligvis variere alt etter det olefin som behandles, men generelt kan det sies at en kontakttid av 1 til 15 sekunder er å foretrekke. The apparent contact time used in the method is not of particular critical importance. Contact times in the range 0.1 to 50 seconds can be used. The apparent contact time is defined as the length of time in seconds that a volume unit of the gas, measured under the reaction conditions, is in contact with the apparent volume unit of the catalyst. The apparent contact time can e.g. is calculated from the apparent volume of the catalyst bed, the medium temperature and pressure of the reaction and the flow rates of the components of the reaction mixture in the vessel. The optimal contact time will of course vary according to the olefin being treated, but in general it can be said that a contact time of 1 to 15 seconds is preferable.

Generelt er det apparat som er egnet for ut-førelse av fremgangsmåten, et apparat som er egnet for å bringe dampene i kontakt med et suspendert partikkelformet fast stoff. Foreliggende fremgangsmåte kan utføres enten kontinuerlig eller intermitterende, skjønt det er å foretrekke at den utøves kontinuerlig av økonomiske årsaker. Reaktoren som anvendes ved foreliggende fremgangsmåte må utgjøre i det minste 3 og fortrinsvis 3 kamre, avdelinger eller soner som kommuniserer med hverandre og er adskilt fra hverandre ved i det minste ett og fortrinsvis to perforerte organer. Kamrene, avdelingene eller sonene er fortrinsvis forbundet i serie i et vertikalt forhold 1 motsetning til et parallelt eller horisontalt forhold. Bunnsonen må være utstyrt med midler for innføring av molekylært oksygen og det må foreligge midler for innføring av de andre reagerende stoffer i en sone over eller nedenfor nevnte bunnsone. Arealet i den totale reaktor under den sone hvor det annet reagerende stoffet eller reagerende stoffer innføres skal utgjøre fra 5 til 75, og fortrinsvis fra 10 til 60 pst. Særlig fordelaktig utføres fremgangsmåten i en reaktor av den foran nevnte type som har i det minste 4 avdelinger eller soner som hver kommuniserer med og er adskilt fra den neste, nærmeste med et perforert organ. In general, the apparatus which is suitable for carrying out the method is an apparatus which is suitable for bringing the vapors into contact with a suspended particulate solid. The present method can be carried out either continuously or intermittently, although it is preferable that it is carried out continuously for economic reasons. The reactor used in the present method must comprise at least 3 and preferably 3 chambers, compartments or zones which communicate with each other and are separated from each other by at least one and preferably two perforated bodies. The chambers, compartments or zones are preferably connected in series in a vertical relationship as opposed to a parallel or horizontal relationship. The bottom zone must be equipped with means for the introduction of molecular oxygen and there must be means for the introduction of the other reacting substances in a zone above or below said bottom zone. The area in the total reactor below the zone where the other reacting substance or reacting substances are introduced must amount to from 5 to 75, and preferably from 10 to 60 percent. The method is particularly advantageously carried out in a reactor of the aforementioned type which has at least 4 departments or zones, each of which communicates with and is separated from the next, nearest one by a perforated organ.

Det foretrukne apparat omfatter en kolon-ne som inneholder en serie av hullstyrte organer eller perforerte skåler som er stablet horisontalt over kolonnenes lengde. Perforeringene i skålene, gasshastigheten og partikkelstørrelsen for katalysatoren reguleres tilstrekkelig til at man får en selv-regulerende reaksjonstype med optimal omdannelse og utbytte. Et kritisk trekk ved apparatet som er nyttig ved foreliggende oppfinnelse, er tilstedeværelsen av et første gassinnløp ved eller nær bunnen av apparatet for innføring av molekylært oksygen i reaktoren og i det minste et annet gassinnløp som er anordnet i en annen reaksjonsavdeling over eller under avdelingen som inneholder det nevnte første gass-innløp og det nevnte annet gassinløp er til stede for innføring av olefint og eventuelt ammoniakken 1 apparatet. • Avdelingen som inneholder det første gassinnløp skal fortrinsvis oppvise i det minste en reaksjonsavdeling mellom denne og den avdeling som inneholder nevnte annet gass-innløp. The preferred apparatus comprises a column containing a series of hole-guided bodies or perforated bowls which are stacked horizontally along the length of the column. The perforations in the bowls, the gas velocity and the particle size for the catalyst are regulated sufficiently to obtain a self-regulating type of reaction with optimal conversion and yield. A critical feature of the apparatus useful in the present invention is the presence of a first gas inlet at or near the bottom of the apparatus for introducing molecular oxygen into the reactor and at least one other gas inlet arranged in another reaction compartment above or below the compartment which contains the aforementioned first gas inlet and the aforementioned second gas inlet is present for the introduction of olefin and optionally the ammonia 1 apparatus. • The compartment containing the first gas inlet should preferably have at least one reaction compartment between this and the compartment containing said second gas inlet.

Reaktoren er fortrinsvis et vertikalt montert fritt, rundt eller konisk bunnrør konstruert av metall, som f. eks. rustfritt stål, eller et annet passende materiale og lukket ved bunnen. I nær-heten av og opp fra bunnrøret kan det være transverst montert en eller flere reaksjonsgass-fordelingsgitre eller fordelings-«spiders» som kjent i teknikken. Fordelingsgitteret kan tjene både som en katalysatorbærer og som et for-delingsgitter for luft eller oksygen som innføres under gitteret. The reactor is preferably a vertically mounted free, round or conical bottom tube constructed of metal, such as e.g. stainless steel, or other suitable material and closed at the bottom. In the vicinity of and up from the bottom tube, one or more reaction gas distribution grids or distribution "spiders" as known in the art may be mounted transversely. The distribution grid can serve both as a catalyst carrier and as a distribution grid for air or oxygen which is introduced below the grid.

De hullstyrte elementer som adsklller en kommuniserende reaksjonsavdeling eller -sone fra en annen i reaksjonsområdet, kan monteres transverst inne i reaktoren eller kan være sikter, rister, perforerte plater, kjegle- eller pyramidiske formete plater eller mer enn en av disse typer eller også andre. Flere detaljer angående de forskjellige typer og anordninger av åpninger i platene som brukes i reaksjonsavdelingen vil fremgå av US-patent 2 433 798, 2 830 556, 2 740 698, 2 893 219, 2 847 360, 2 893 849 Og 2 893 851 og i den artikkel som er offentliggjort i A. I. CH. E. Journal, 5 (mars 1959) side 540—60. The hole-controlled elements separating one communicating reaction compartment or zone from another in the reaction area may be mounted transversely inside the reactor or may be sieves, shakers, perforated plates, cone or pyramid shaped plates or more than one of these types or others. More details regarding the different types and arrangements of openings in the plates used in the reaction section will be found in US Patents 2,433,798, 2,830,556, 2,740,698, 2,893,219, 2,847,360, 2,893,849 and 2,893,851 and in the article published in A. I. CH. E. Journal, 5 (March 1959) pages 540-60.

Typen av åpningene i de hullstyrte elementer kan varieres innen vide grenser, idet det en-este krav er at i det minste en del av åpningen er tilstrekkelig stor til å tillate passering av katalysatoren og de reagerende stoffer. Det er å focetrekke at åpningene i de gjenriomhullete elementer er rektangulære, triangulære, sirku-lære eller ovale og at størrelsen av åpningene er innenfor området fra ca. 3,2 mm (0,125") til 76 mm (3"). Det optimale for dette området vil naturligvis variere alt etter størrelsen av reaktoren. Flere detaljer angående de forskjellige typer og anordninger av åpninger i de hullstyrte organer som er nyttige, er beskrevet i US-patent 2 433 798, 2 740 698, 2 893 849, 2 893 851 og i den artikkel som er nevnt ovenfor offentliggjort i A. I. CU. E. Journal. The type of the openings in the hole-controlled elements can be varied within wide limits, the only requirement being that at least part of the opening is sufficiently large to allow passage of the catalyst and the reacting substances. It is to be noted that the openings in the perforated elements are rectangular, triangular, circular or oval and that the size of the openings is within the range from approx. 3.2 mm (0.125") to 76 mm (3"). The optimum for this area will naturally vary according to the size of the reactor. More details regarding the various types and arrangements of apertures in the hole-guided members that are useful are described in US Patents 2,433,798, 2,740,698, 2,893,849, 2,893,851 and in the above-mentioned article published in A. I. CU. E. Journal.

Størrelsen av åpriingsarealeit i de hullstyrte elementer kan variere så lenge det er innenfor områdene fra 7,5 til 50 pst. av det totale indre tverrsnittsareal i reaktoren. Flere detaljer angående åpningsarealet i de hullutstyrte elementer som er nyttige ved foreliggende oppfinnelse, fremgår av US-patent nr. 2 433 798, 2 893 849 og 2 893 851. The size of the impingement area in the hole-controlled elements can vary as long as it is within the range from 7.5 to 50 per cent of the total internal cross-sectional area in the reactor. More details regarding the opening area in the hole-equipped elements useful in the present invention can be found in US Patent Nos. 2,433,798, 2,893,849 and 2,893,851.

Som påpekt tidligere er avstanden mellom de hullstyrte elementer 1 reaktoren (uttrykt an-nerledes, den relative størrelse av reaksjonsavdelingene eller -sonene) ikke kritisk trekk. Mange typer av anordningen av de hullstyrte elementer kan anvendes og detaljer angående avstanden m. v. Vil fremgå av US-patent nr. 2 471 085, 2 893 219, 2 893 849 og 2 989 544. Det er imidlertid As pointed out earlier, the distance between the hole-controlled elements 1 the reactor (expressed differently, the relative size of the reaction compartments or zones) is not a critical feature. Many types of the arrangement of the hole-controlled elements can be used and details regarding the distance etc. will appear from US patent no. 2 471 085, 2 893 219, 2 893 849 and 2 989 544. However, it is

å foretrekke at avstanden mellom hvilke som helst to hullstyrte elementer er i det minste 25 mm og ikke større enn ca tre ganger den innven- to prefer that the distance between any two hole-controlled elements is at least 25 mm and no greater than about three times the internal

dlge diameter av reaktoren. Det er mer fordelaktig for en bestemt reaksjonsavdeling at høyden ikke er større enn ca. to diametere av avdelin-gens innvendige tverrsnitt. dlge diameter of the reactor. It is more advantageous for a particular reaction compartment that the height is not greater than approx. two diameters of the department's internal cross-section.

Det er ofte ønskelig og faktisk å foretrekke å anordne varmevekslingslanger eller -rør inne 1 reaksjonsavdelingen for å oppnå en bedre tem-peraturregulering under reaksjonen. Slike anordninger er beskrevet 1 US-patent nr. 2 676 668 og 2 893 851. It is often desirable and actually preferable to arrange heat exchange hoses or pipes inside the reaction compartment in order to achieve a better temperature regulation during the reaction. Such devices are described in US Patent Nos. 2,676,668 and 2,893,851.

Som følge av at katalysatorfrie stoffer i de fleste fluidiseringsreaksjoner ofte har en tendens til å bli elutriert i en viss utstrekning fra toppen av reaktoren i løpet av reaksjonen er det hensiktsmessig å utvide den øvre seksjon av reaktoren slik at den vinker som en frigjørende seksjon og det er ofte ønskelig å anordne i toppen av reaktoren midler som en syklon eller flere sykloner for å gjenvinne mesteparten eller hele mengden av katalysatorfinstoffer, slik som beskrevet i US-patentene 2 494 614, 2 730 556, 2 893 849 og 2 893 851. Foruten gjenvinningen av katalysatorfinstoffene ved toppen av reaktoren er det også ofte hensiktsmessig og i høy grad ønskelig å re-sirkulere de gjenvunne 'katalysatorfinstoffer gjennom reaksjonsavdelingene ved at de innføres påny ved et punkt nær bunnen av reaktoren slik som vist i US-patentene 2 494 614, 2 847 360 og i den ovennevnte artikkel i A. I. Ch. E. Journal. Katalysatorfinstoffene kan gjenvinnes og resirkuleres, f. eks. ved å anvende et filter og en eller flere sykloner eller sentrifuger i den øvre del av reaktoren og en såkalt «dip leg» for pånyinnfør-ing av den gjenvunne katalysator i bunnen eller nær bunnen til reaktoren. As a result of the fact that catalyst-free substances in most fluidization reactions often tend to be elutriated to a certain extent from the top of the reactor during the reaction, it is appropriate to expand the upper section of the reactor so that it waves as a releasing section and the it is often desirable to arrange at the top of the reactor means such as a cyclone or several cyclones to recover most or all of the amount of catalyst fines, as described in US patents 2,494,614, 2,730,556, 2,893,849 and 2,893,851. Besides recovery of the catalyst fines at the top of the reactor, it is also often appropriate and highly desirable to re-circulate the recovered 'catalyst fines' through the reaction sections by reintroducing them at a point near the bottom of the reactor as shown in US patents 2,494,614, 2 847 360 and in the above-mentioned article in A. I. Ch. E. Journal. The catalyst fines can be recovered and recycled, e.g. by using a filter and one or more cyclones or centrifuges in the upper part of the reactor and a so-called "dip leg" for the reintroduction of the recovered catalyst in the bottom or near the bottom of the reactor.

Reaktoren kan bringes til reafcsjonstempera-turen før eller etter innføringen av reaksjonstil-matningsblandingen. I stor-teknisk målestokle er det å foretrekke å utføre fremgangsmåten kontinuerlig og i et slikt system forutsettes resirku-lering av ureagert olefin og ammoniakk hvis dette anvendes. The reactor can be brought to the reaction temperature before or after the introduction of the reaction feed mixture. On a large technical scale, it is preferable to carry out the process continuously and in such a system, recirculation of unreacted olefin and ammonia is assumed if this is used.

Reaktoren er i prinsippet en rekke av flere fluidiserte sjikt med meget begrenset tilbake-strømnlng av damp. Hver reaksjonsavdeling er en nesten fullstendig omrørt reaktor, i hvilken gassene bringes i kontakt i en meget kort kontakttid. Som følge av at denne kontakttid er kort, er også kontakttidfordelingen meget skarp. Virkningen av gjentagelsen av denne korte skarpe kontakttid over flere reaksjonsavdelinger ved foreliggende fremgangsmåte er å tilveie-bringe en total kontakttidfordeling som er meget skarpere enn den som kan oppnåes i en enkelt vanlig fluidiseringsreaktor med det samme totale reaksjonsrom. The reactor is in principle a series of several fluidized beds with very limited back-flow of steam. Each reaction compartment is an almost completely stirred reactor, in which the gases are brought into contact for a very short contact time. As a result of this contact time being short, the contact time distribution is also very sharp. The effect of the repetition of this short sharp contact time over several reaction compartments in the present method is to provide a total contact time distribution which is much sharper than that which can be achieved in a single ordinary fluidization reactor with the same total reaction space.

I overensstemmelse med foreliggende oppfinnelse innføres ikke alle de gassformete reagerende stoffer sammen idet tvertimot det molekylære oksygen (oksygen eller vanligvis luft) innføres nær bunnen og inn i den laveste reaksjonsavdeling 1 reaksjonsområdet, og de andre reagerende stoffer innføres i en reaksjonsavdeling som i strømretningen befinner seg minst én avdeling etter den reaksjonsavdeling i hvilken det molekylære oksygen innføres. En slik fremgangsmåte er langt mer fordelaktig like overfor én hvor alle de reagerende stoffer innføres i den samme reaksjonsavdeling, fordi den normale pe-riodiske regenerering av katalysator som vanligvis er nødvendig 1 sistnevnte, ikke er nødvendig i den førstnevnte. Ved fremgangsmåten ifølge oppfinnelsen opprettholdes katalysatoraktiviteten like godt i ubegrenset lange tidsperioder. Dette er ikke tilfelle når alle de reagerende stoffer innføres i den samme reaksjonsavdeling. Ta-pet av aktivitet av katalysatorene av den art som ér nyttig ved foreliggende fremgangsmåte og særlig katalysatorer som er sammensatt av an-timonoksyd kan bli meget alvorlig, idet en for-lenget bruk av slike katalysatorer uten periodisk regenerering ikke bare forårsaker omdannelser og at utbyttet av det ønskede produkt faller, men forringelsen av katalysatoren kan bli så alvorlig at en videre regenerering ikke er mulig. Den nøy-aktige teoretiske forklaring for de fremragende In accordance with the present invention, not all the gaseous reactants are introduced together, on the contrary, the molecular oxygen (oxygen or usually air) is introduced near the bottom and into the reaction area of the lowest reaction compartment 1, and the other reactants are introduced into a reaction compartment located in the direction of flow at least one compartment after the reaction compartment in which the molecular oxygen is introduced. Such a method is far more advantageous than one where all the reactants are introduced into the same reaction section, because the normal periodic regeneration of catalyst which is usually necessary in the latter is not necessary in the former. With the method according to the invention, the catalyst activity is maintained just as well for unlimited long periods of time. This is not the case when all the reacting substances are introduced into the same reaction compartment. The loss of activity of the catalysts of the kind that are useful in the present process, and in particular catalysts that are composed of antimony oxide, can be very serious, as prolonged use of such catalysts without periodic regeneration not only causes conversions and that the yield of the desired product falls, but the deterioration of the catalyst can become so severe that further regeneration is not possible. The exact theoretical explanation for the outstanding

resultater som oppnåes ved fremgangsmåten results obtained by the method

ifølge oppfinnelsen er ikke kjent, men disse resultater er helt ut overraskende og. uventet like overfor teknikkens nivå. according to the invention is not known, but these results are completely surprising and. unexpectedly equal to the state of the art.

I laboratoriet tole som en nyttig reaktor anvendt et ca. 75 cm langt rør av rustfritt stål nr. In the laboratory tole as a useful reactor used an approx. 75 cm long tube of stainless steel no.

40 med en indre diameter av 7,5 cm og som var 40 with an inner diameter of 7.5 cm and which was

lukket ved bunnen. Når bunnen av den flate bunnreaktor var anordnet en porøs stålplate som tjente både som en katalysatorbærer og som en fordelingsplate for luften som ble innført av reaktoren like under fordelingsplaten og under det punkt hvor propylen og/eller ammoniakk ble innført. Skålene som dannet avdelingene i reaktoren var fjernbare og kunne anbringes i en avstand fra hverandre med variable intervaller langs en sentral ca. 0,6 cm termoelementbrønn. Platene ble anbrakt med mellomrom ved hjelp av ca. 1 cm's hylser eller muffer som anordnes i termoelementbrønnen. En mutter ved bunnen av brønnen holder det hele tett sammen. Skålene var skåret sirkelformet så at de passet inn med en minimumsklaring på innsiden av reaktoren. Midler var anordnet for å innføre propylen og/ eller ammoniakk ved flere punkter i reaksjons-sonene etter den reaksjonssone som oppviste luft-innløpet. Under utførelse av oksydasjonsproses-sen var hele reaktoren neddykket i et tempera-turregulert smeltet saltbad. closed at the bottom. When the bottom of the flat bottom reactor was arranged a porous steel plate served both as a catalyst carrier and as a distribution plate for the air introduced by the reactor just below the distribution plate and below the point where propylene and/or ammonia was introduced. The bowls that formed the compartments in the reactor were removable and could be placed at a distance from each other at variable intervals along a central approx. 0.6 cm thermocouple well. The plates were placed at intervals using approx. 1 cm's sleeves or sleeves which are arranged in the thermocouple well. A nut at the bottom of the well holds it all tightly together. The bowls were cut circular so that they fit in with a minimum clearance on the inside of the reactor. Means were arranged to introduce propylene and/or ammonia at several points in the reaction zones after the reaction zone which had the air inlet. During the oxidation process, the entire reactor was immersed in a temperature-regulated molten salt bath.

Produktene som fåes fra reaksjonen kan gjenvinnes ved hvilke som helst kjente fremgangsmåter. En slik fremgangsmåte går ut på vasking av de bortstrømmende gasser fra reaktoren med koldt vann eller et passende oppløs-ningsmiddel for å fjerne reaksjonsproduktene. Effektiviteten av vaskeprosessen kan forbedres når det anvendes vann som vaskemiddel som er tilsatt et passende fuktningsmiddel. Når molekylært oksygen anvendes som oksyderingsmidlet ved denne fremgangsmåte kan den resulterende produktblanding som forblir etter at nitrilene er fjernet, behandles for å fjerne karbondioksyd, mens resten av blandingen som inneholder ureagert olefin og oksygen, kan resirkuleres gjennom reaktoren. Når luft anvendes som oksyderings-middel i stedenfor molekylært oksygen, kan det gjenværende produkt, etter fraskillelse av nitriler og karbonylprodukter, vaskes med et ikke-polart oppløsningsmiddel, f. eks. en hydrokarbon-fraksjon, for å gjenvinne ureagert olefin eller andre hydrokarboner som kan være blitt innført i tilmatningen eller dannet under reaksjonen og i dette tilfelle kan de gjenværende gasser føres bort som avfall. Tilsetningen av en passende po-lymeriseringsinhibitor for å forhindre eller ned-sette til et minimum polymerisering av de olefinisk umettede produkter under gjenvinnings-trinnene for fremgangsmåten kan også anvendes. The products obtained from the reaction can be recovered by any known methods. Such a method involves washing the gases flowing away from the reactor with cold water or a suitable solvent to remove the reaction products. The efficiency of the washing process can be improved when water is used as detergent to which a suitable wetting agent has been added. When molecular oxygen is used as the oxidizing agent in this process, the resulting product mixture remaining after the nitriles are removed can be treated to remove carbon dioxide, while the remainder of the mixture containing unreacted olefin and oxygen can be recycled through the reactor. When air is used as oxidizing agent instead of molecular oxygen, the remaining product, after separation of nitriles and carbonyl products, can be washed with a non-polar solvent, e.g. a hydrocarbon fraction, to recover unreacted olefin or other hydrocarbons which may have been introduced into the feed or formed during the reaction and in which case the remaining gases may be carried away as waste. The addition of a suitable polymerization inhibitor to prevent or minimize polymerization of the olefinically unsaturated products during the recovery steps of the process may also be used.

I eksempene ble an vendi vanlig hjelpeut- In the examples, the usual auxiliary

styr, innbefattet måleinnretninger, for utførelse av.reaksjonen og alle de her gjengitte dataer er innenfor de vanlige grenser for forsøksnøyaktig-het med en slik apparatur. Reaksjonsproduktene ble gjenvunnet ved vasking av de bortstrøm-mende gasser fra reaktoren med vann eller salt-syreoppløsningene. Produktene ble analysert ved hjelp av vanlige hjelpemidler, innbefattet mas-sespektrografi, gasskromatografi og infrarød spektrometrisk analyse såvel som vanlig titrering når slike analysemetoder kunne anvendes. I beskrivelsen er anvendt følgende definisjoner: control, including measuring devices, for carrying out the reaction and all the data reproduced here are within the usual limits for experimental accuracy with such an apparatus. The reaction products were recovered by washing the gases flowing away from the reactor with water or the hydrochloric acid solutions. The products were analyzed using usual aids, including mass spectrography, gas chromatography and infrared spectrometric analysis, as well as regular titration when such analysis methods could be used. The following definitions are used in the description:

I de følgende eksempler som skal tjene til å klargjøre oppfinnelsen, er mengden av de forskjellige bestanddeler og produkter vektdeler hvis det ikke er anført noe annet. In the following examples which will serve to clarify the invention, the amount of the various components and products are parts by weight unless otherwise stated.

Eksempel 1. Example 1.

Den katalytiske ammoniakk-oksydasjon av propylen til akrylnitril ble utført i en vertikal reaktor av 45 cm og som inneholdt 10 perforerte skåler. Skålene var anbrakt vertikalt i en avstand fra hverandre av 30 cm. Hver skål oppviste ca. 5 mm's hull og et totalt åpent areal av 33 pst. Ho-risontale spiralkjøleslanger var anordnet i hver avdeling. Reaktoren inneholdt en fast partikkelformet katalysator. Luft ble alltid innført i bunnen av reaktoren.gjennom en fordelingsplate som tjente som en skål for katalysatoren og som ikke tillot at noe av katalysatoren eller bare en gan-ske liten mengde av den kunne passere nedover gjennom platen. Propylen og ammoniakk ble innført enten ved bunnen av reaktoren eller i henhold til fremgangsmåten ifølge oppfinnelsen ved et innløp i den tredje katalysator-innehol-dende avdeling fra bunnen av reaktoren. Katalysatorfinstoffer ved toppen av reaktoren ble oppsamlet av en første syklon og ført tilbake til den aller nederste katalysatorinneholdende avdeling i reaktoren via et indre overføringsrør eller en dip leg. The catalytic ammonia oxidation of propylene to acrylonitrile was carried out in a 45 cm vertical reactor containing 10 perforated bowls. The bowls were placed vertically at a distance of 30 cm from each other. Each bowl showed approx. 5 mm holes and a total open area of 33 percent. Horizontal spiral cooling tubes were arranged in each compartment. The reactor contained a solid particulate catalyst. Air was always introduced into the bottom of the reactor through a distribution plate which served as a bowl for the catalyst and which did not allow any of the catalyst or only a very small amount of it to pass down through the plate. Propylene and ammonia were introduced either at the bottom of the reactor or according to the method according to the invention at an inlet in the third catalyst-containing compartment from the bottom of the reactor. Catalyst fines at the top of the reactor were collected by a first cyclone and returned to the very bottom catalyst-containing compartment of the reactor via an internal transfer tube or dip leg.

Katalysatoren ble fremstillet fra antimon-oksyd (Sb203) og uranoksyd (U308). 1935 deler 63 pts.'s salpetersyre ble pumpet fra tromler inn i en tank av rustfrit stål utstyrt med mekaniske rørere og opphetnlngsslanger og 575 deler Sb203 ble tilsatt under kontinuerlig omrøring. Etter ca. The catalyst was produced from antimony oxide (Sb 2 O 3 ) and uranium oxide (U 3 O 8 ). 1935 parts 63 pts. nitric acid was pumped from drums into a stainless steel tank equipped with mechanical stirrers and heating hoses and 575 parts Sb 2 O 3 was added with continuous stirring. After approx.

15 timer ble tilsatt 242 deler U3Og til blandings-tanken av rustfritt stål. Umiddelbart etter tilsetningen av U3Os ble damp innført gjennom opp-hetningsslangen og blandingens temperatur ble brakt opp til ca. 95° C (206° F). Denne temperatur ble opprettholdt i ca. 2y2 time og i løpet av 15 hours, 242 parts of U3Og were added to the stainless steel mixing tank. Immediately after the addition of U3Os, steam was introduced through the heating tube and the temperature of the mixture was brought up to approx. 95°C (206°F). This temperature was maintained for approx. 2y2 hour and during

denne tid ble det utviklet en vesentlig mengde av nitrogenoksyder. Blandingens temperatur ble derpå brakt ned til ca. 40° C og til blandingen ble tilsatt 1250 deler ledningsvann. 680 deler av en silikasol som inneholdt 30 vektprosent kiselsyre . during this time a significant amount of nitrogen oxides was developed. The temperature of the mixture was then brought down to approx. 40° C and 1250 parts of tap water were added to the mixture. 680 parts of a silica sol which contained 30 weight percent silicic acid.

(DuPont Ludox HS) ble derpå tilsatt og blandingen omrørt i 16 timer. Blandingens pH ble derpå regulert omhyggelig under avkjøling til ca. 8,2 ved hjelp av 26 pst.'s vandig ammoniumhydrok-syd. Blandingen ble filtrert og det faste stoff som forble på filteret ble tørket ved ca. 120°C i 13 timer og ved 175° C i to timer og ved 210° C i 1 ti-me og sluttelig ved ca. 425° C i 4 timer. I alt vesentlig alle nitratene ble fjernet fra katalysatoren ved denne behandling. Katalysatoren ble derpå kalsinert ved ca. 940° C i ca. 8 timer og det resulterende materiale ble malt i en kulemølle med vet slam av den 30 pst.ige kiselsyresol. 250 deler av det erholdte faste stoff og 275 deler av kisel-syresolen plus ytterligere 8,3 deler vann ble derpå malt i en kulemølle i en 8 timers periode. Det resulterende materiale ble forstøvningstørket. Det forstøvningstørkete materiale ble kalsinert ved en temperatur av fra ca. 790 til ca. 915° C i en periode av fra 10 til 25 timer. Den erholdte katalysator hadde følgende egenskaper: (DuPont Ludox HS) was then added and the mixture stirred for 16 hours. The pH of the mixture was then regulated carefully while cooling to approx. 8.2 using 26% aqueous ammonium hydroxide. The mixture was filtered and the solid which remained on the filter was dried at approx. 120°C for 13 hours and at 175°C for two hours and at 210°C for 1 hour and finally at approx. 425° C for 4 hours. Substantially all the nitrates were removed from the catalyst by this treatment. The catalyst was then calcined at approx. 940° C for approx. 8 hours and the resulting material was ground in a ball mill with white sludge from the 30% silicic acid sol. 250 parts of the obtained solid and 275 parts of the silicic acid sol plus a further 8.3 parts of water were then ground in a ball mill for an 8 hour period. The resulting material was spray dried. The spray-dried material was calcined at a temperature of from approx. 790 to approx. 915° C for a period of from 10 to 25 hours. The obtained catalyst had the following properties:

Virkningen av katalysatoraktiviteten som forårsakes ved innføring av propylen og ammoniakk i en reaksjonsavdeling over eller under den avdeling i hvilken luften ble innført, ble bestemt ved sammenligning med en reaktor hvor luften, ammoniakken og propylent alle ble tilført i den aller nederste reaksjonsavdeling (tabell 1) og en reaksjon ved hvilken luften ble innført i den aller nederste reaksjonsavdeling for propylen og ammoniakk ble innført i den tredje avdeling som inneholdt katalysator, fra bunnen av reaktoren (tabell 2). Ved hver reaksjon var molforholdet propylen: ammoniakk : luft 1 : 1,1 til ca. 11. Den faktiske mengde av luft i tilmatningen ble regulert fra tid til annen for å opprettholde ca. 2 til 3 pst. oksygen i det som strømmet ut fra reaktoren. Ved hver reaksjon ble opprettholdt en reaksjonstemperatur av ca. 480° C, en kontakttid av ca. 10 sekunder og et reaksjonstrykk av ca. 1,1 kg/cm2. The effect of the catalyst activity caused by the introduction of propylene and ammonia into a reaction compartment above or below the compartment into which the air was introduced was determined by comparison with a reactor where the air, ammonia and propylene were all introduced into the very bottom reaction compartment (Table 1) and a reaction in which air was introduced into the very bottom reaction compartment for propylene and ammonia was introduced into the third compartment containing catalyst, from the bottom of the reactor (Table 2). In each reaction, the molar ratio propylene: ammonia: air was 1:1.1 to approx. 11. The actual amount of air in the feed was regulated from time to time to maintain approx. 2 to 3 percent oxygen in what flowed out of the reactor. For each reaction, a reaction temperature of approx. 480° C, a contact time of approx. 10 seconds and a reaction pressure of approx. 1.1 kg/cm2.

Når forsøk av den type som er vist i tabell 1 ble utvidet til utover 10 timer fortsatte omdan-nelsen av propylen til akrynitril per passering å falle og katalysatoren ble hurtig så inaktivert at den ikke kunne regenereres selv etter lengere tids opphetning i nærvær av luft alene. When experiments of the type shown in Table 1 were extended beyond 10 hours, the conversion of propylene to acrylonitrile per pass continued to drop and the catalyst was rapidly so inactivated that it could not be regenerated even after prolonged heating in the presence of air alone .

Eksempel 2. Example 2.

Fremgangsmåten som er beskrevet i eksempel 1 ble anvendt under anvendelse som reagerende stoffer av en blanding av isobutylen, ammoniakk og luft i molforholdet 1 : 1,2 : 17,5. Det ble anvendt en kontakttid av 4.9 sekunder og en reaksjonstemperatur av ca. 480° C. Ved et forsøk hvor alle de reagerende stoffer ble innført i den laveste avdeling som inneholdt katalysator be-gynte per passeringomdannelsen av isobutylen til methakrylnitril ved ca. 50 pst. Ved slutten av en iy2 times drift var per-passeringsomdannel-sen av Isobutylen til methakrynitril bare 16,2"pst. og det var nødvendig ved den tid å utkoble reaktoren og regenerere katalysatoren, fordi perpas-seringsomdannelsen av isobutylen til methakrylnitril avtok hurtig med strømvarigheten. Ved et annet forsøk hvor de ovennevnte betingelser ble anvendt ble luft innført i bunnavdelingen som inneholdt katalysatoren og Isobutylen og ammoniakk ble innført i den 3. katalysator-innehoi-den avdeling fra bunnen. Start -per-passerings-omdannelsen av isobuthylen til methakrylnitril var større enn 50 pst. Ved slutten av 29,40 og 58 timers perioder kontinuerlig gjennomstrøm-ningstid ved dette forsøk var per-passeringsom-dannelsen av isobuthylen til methakrylnitril 53,8 pst., 56,2 pst. og 54,3 pst. og reaksjonen kunne utføres ved disse omdannelsesnivåer i meget lengere tidsperioder. The method described in example 1 was used using as reactants a mixture of isobutylene, ammonia and air in the molar ratio 1:1.2:17.5. A contact time of 4.9 seconds and a reaction temperature of approx. 480° C. In an experiment where all the reacting substances were introduced into the lowest compartment containing catalyst, the per-pass conversion of isobutylene to methacrylonitrile began at approx. 50 percent. At the end of a 1y2 hour operation, the perpass conversion of isobutylene to methacrylonitrile was only 16.2% and it was necessary at that time to shut down the reactor and regenerate the catalyst, because the perpass conversion of isobutylene to methacrylonitrile decreased rapid with the current duration. In another experiment where the above conditions were used, air was introduced into the bottom compartment containing the catalyst and Isobutylene and ammonia were introduced into the 3rd catalyst-containing compartment from the bottom. The start-per-pass conversion of the isobutylene to methacrylonitrile was greater than 50 percent. At the end of the 29.40 and 58 hour periods of continuous flow-through time in this experiment, the per-pass conversion of isobutylene to methacrylonitrile was 53.8 percent, 56.2 percent, and 54.3 pst. and the reaction could be carried out at these conversion levels for much longer periods of time.

Det skal videre meddeles at det er utført to parallelle forsøk med akrolein under anvendelse av den katalysator som er beskrevet i eksempel 1 i beskrivelsen (Sb-TJ oksyder på kiselsyre) i en liten hvirvelsjiktreaktor bestående av en rustfri stålsylinder med en diameter av ca. 4 cm og som oppviste 11 silskåler og en katalysatorcharge av 400 ml. It should also be announced that two parallel experiments have been carried out with acrolein using the catalyst described in example 1 in the description (Sb-TJ oxides on silicic acid) in a small fluidized bed reactor consisting of a stainless steel cylinder with a diameter of approx. 4 cm and which featured 11 sieve bowls and a catalyst charge of 400 ml.

Tilmatningsforholdet i hvert tilfelle var (på molbasis) propylen : luft : vann — 1 : 2,5 : 4. Ved forsøket hvor det ble anvendt aiitoregenererings-sone ble propylenet innført to avde] inger over re-aktorens bunn og luft og vann ble innført ved bunnen av reaktoren slik at det ble tilveiebragt en autoregenereringssone. The feed ratio in each case was (on a molar basis) propylene : air : water — 1 : 2.5 : 4. In the experiment where an aiator regeneration zone was used, the propylene was introduced two sections above the bottom of the reactor and air and water were introduced at the bottom of the reactor so that an auto-regeneration zone was provided.

Katalysatoren og driftsforholdene var ikke optimale ved disse forsøk og det er sannsynlig at det kan oppnåes meget bedre resultater ved andre forsøk. De følgende data skulle imidlertid være tilstrekkelig til å vise resultatene: The catalyst and operating conditions were not optimal in these trials and it is likely that much better results can be achieved in other trials. However, the following data should be sufficient to show the results:

Det fremgår herav at autoregenereringsso-nen tilveiebringer et fordelaktig resultat særlig It is clear from this that the auto-regeneration zone provides a particularly advantageous result

ved at det opprettholdes selektivitet av propylen in that selectivity of propylene is maintained

til akrolein. to acrolein.

Claims (1)

Fremgangsmåte for katalytisk fremstillingMethod of catalytic production av olefinisk umettede aldehyder og nitriler fra et olefin, oksygen og eventuelt ammoniakk ved å bringe nevnte olefin, oksygen og eventuelt ammoniakk i kontakt med en fluidisert fast kata- lysator ved en forhøyet temperatur i en reak sjonssone som inneholder i det minste 5 kommuniserende avdelinger,. karakterisert v ed at oksygenet innføres først og olefinet og eventuelt ammoniakken deretter og at nevnte olefin har strukturformelen: hvor R er et hydrogenatom eller en metylgruppe.of olefinically unsaturated aldehydes and nitriles from an olefin, oxygen and optionally ammonia by bringing said olefin, oxygen and optionally ammonia into contact with a fluidized solid catalyst at an elevated temperature in a reac sion zone containing at least 5 communicating departments,. characterized by the fact that the oxygen is introduced first and the olefin and possibly the ammonia afterwards and that said olefin has the structural formula: where R is a hydrogen atom or a methyl group.
NO823292A 1981-09-29 1982-09-29 CONNECTOR BEARS FOR CONNECTION OF COATING BEARS OF TWO ISOLATED CONNECTOR ELEMENTS. NO160159C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6269/81A CH657686A5 (en) 1981-09-29 1981-09-29 Pipe connection for pipelines consisting of insulated double pipes
CH7420/81A CH662402A5 (en) 1981-11-18 1981-11-18 Pipe connection for pipelines which are provided with insulation

Publications (3)

Publication Number Publication Date
NO823292L NO823292L (en) 1983-03-30
NO160159B true NO160159B (en) 1988-12-05
NO160159C NO160159C (en) 1989-03-15

Family

ID=25699282

Family Applications (1)

Application Number Title Priority Date Filing Date
NO823292A NO160159C (en) 1981-09-29 1982-09-29 CONNECTOR BEARS FOR CONNECTION OF COATING BEARS OF TWO ISOLATED CONNECTOR ELEMENTS.

Country Status (4)

Country Link
EP (1) EP0075901B1 (en)
DE (3) DE3217820A1 (en)
DK (1) DK432882A (en)
NO (1) NO160159C (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3300943A1 (en) * 1983-01-13 1984-07-19 kabelmetal electro GmbH, 3000 Hannover Electrically heatable strip for producing a sleeve connection for thermally-insulated pipelines
NL8300692A (en) * 1983-02-24 1984-09-17 Ania Bv METHOD FOR ATTACHING A CRIMPING SOCKET ON THE ENDS OF THE INSULATING COAT OF A THERMALLY INSULATED PIPE.
GB8306693D0 (en) * 1983-03-11 1983-04-20 Raychem Sa Nv Reinsulation of pipe joints
SE8402186L (en) * 1984-04-18 1985-10-19 Ernst Hakan Ericsson PROCEDURE AND DEVICE FOR SHARPING OF INSULATED PIPES
EP0171450A1 (en) * 1984-08-14 1986-02-19 Österreichische Salen-Kunststoffwerk Gesellschaft m.b.H. Connection for plastic pipes and method of manufacture
EP0188363A1 (en) * 1985-01-14 1986-07-23 Shaw Industries Ltd. Preinsulated pipeline joint
DK58785D0 (en) * 1985-02-08 1985-02-08 Duerotan Roer A S PROCEDURE FOR THE WELDING OF CONNECTING SUBSTANCES AT THE END OF FORMAL FRUITS, IN PARTICULAR AT COLLECTIONS BETWEEN REMOVAL HEATING LENGTHS
CH671819A5 (en) * 1986-07-31 1989-09-29 Meier Schenk Ag
DE3702726A1 (en) * 1987-01-30 1988-08-11 Kabelmetal Electro Gmbh SOCKET CONNECTION FOR HEAT-INSULATED PIPES
EP0286718A3 (en) * 1987-04-11 1989-05-10 kabelmetal electro GmbH Thermoplastic band for covering a welding zone and method for its fabrication
KR0141363B1 (en) * 1988-06-22 1998-07-01 허버트 지. 버카드 Method and device which make use of conductive polymers to join articles
FR2648077B1 (en) * 1989-06-09 1991-10-18 Boulet D Auria Terlizzi METHOD FOR CONNECTING TWO TUBULAR ELEMENTS IN PLASTIC MATERIAL BY ELECTRO-WELDING AND ELECTRO-WELDING CONNECTION FOR CARRYING OUT SAID METHOD
DE4016048C1 (en) * 1990-05-18 1991-10-24 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
US5470622A (en) * 1990-11-06 1995-11-28 Raychem Corporation Enclosing a substrate with a heat-recoverable article
DE4039279A1 (en) * 1990-12-08 1992-06-11 Hoelter Heinz Double-wall insulated tube mfr. - in which hot outer tube is pulled over cold inner tube and shrinks onto filler between to give firm, uniform bond
FR2673264B1 (en) * 1991-02-26 1994-03-11 Marchel Philippe PIPELINE FOR THE TRANSPORT OF FLUIDS, PARTICULARLY HYDROCARBONS.
ATE155070T1 (en) * 1991-04-19 1997-07-15 Seikisui Chemical Co Ltd COUPLING FOR PIPES
GB9314971D0 (en) * 1993-07-20 1993-09-01 British Gas Plc A method of joining reinforced thermoplastic pipes
GB2284179A (en) * 1993-11-30 1995-05-31 Uponor Aldyl Ltd Electrofusion coupling element
AR002142A1 (en) * 1995-05-31 1998-01-07 Raychem Sa Nv A THERMAL-CONTRACTABLE TUBULAR ARTICLE, A SET OF PARTS INCLUDING IT, A METHOD TO MANUFACTURE IT AND A METHOD TO COVER A JOINT WITH IT.
DE19652712C1 (en) * 1996-12-18 1998-02-05 Bem Gmbh Connection of double tubes with internally located conduit tube
NL1009169C2 (en) 1998-05-14 1999-11-16 Polva Pipelife Bv Welded sleeve connection for high pressure pipe.
DE102006057212A1 (en) * 2006-12-01 2008-06-19 Da-Kunststoff Gmbh Device for connecting two pipes
BRPI0902393A2 (en) * 2009-07-21 2011-04-05 Poly Easy Com Ltda coating element, and service pipeline coating process
DE102009052674B4 (en) * 2009-11-12 2012-10-18 Karl Weinhold Method and device for connecting double-walled pipes
CH704994B1 (en) * 2011-05-20 2016-03-15 Plco Pipelines Construction S A Method of connection of district heating conduits and connecting sleeve for implementing the method.
CN102788219A (en) * 2012-07-17 2012-11-21 山东东宏管业有限公司 Electric smelting plastic pipe fitting for plastic pipeline connection and producing method of electric smelting plastic pipe fitting
WO2016061691A1 (en) 2014-10-24 2016-04-28 Shawcor Ltd. Apparatus and system for electro-fusion of polyethylene pipeline
ES2728050T3 (en) * 2014-12-11 2019-10-22 Fischer G Rohrleitungssysteme Ag Connection piece for insulated electrofusion
FR3051529B1 (en) 2016-05-23 2019-09-13 Saipem S.A. METHOD FOR CONNECTING TWO UNIT UNITS OF FLUID TRANSPORT CONDUIT USING A SLEEVE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2857931A (en) * 1955-03-24 1958-10-28 R W Mfg Co Insulated pipe and method of making the same
CH585367A5 (en) * 1974-12-06 1977-02-28 Meldem Charles Butt-joining exposed ends of lagged pipes - using plastic sleeve including resistances which are heated electrically to shrink sleeve
GB1483143A (en) * 1976-03-03 1977-08-17 Weldwise Installations Ltd Method of joining insulated metal pipes
CH645449A5 (en) * 1980-03-04 1984-09-28 Von Roll Ag ELECTRICALLY WELDABLE SLEEVE FOR CONNECTING PIPE ELEMENTS.

Also Published As

Publication number Publication date
NO823292L (en) 1983-03-30
DE8213761U1 (en) 1984-04-12
DE3217820A1 (en) 1983-04-21
EP0075901B1 (en) 1986-02-26
NO160159C (en) 1989-03-15
DE3269423D1 (en) 1986-04-03
DK432882A (en) 1983-03-30
EP0075901A1 (en) 1983-04-06

Similar Documents

Publication Publication Date Title
NO160159B (en) CONNECTOR BEARS FOR CONNECTION OF COATING BEARS OF TWO ISOLATED CONNECTOR ELEMENTS.
US3230246A (en) Process for preparing olefinically unsaturated nitriles
RU2730518C2 (en) Oxidative dehydrogenation of alkanes (od)
RU2508282C2 (en) Method of producing dehydrogenated hydrocarbon compounds
RU2636077C1 (en) Reactive device for obtaining light olefins from methanol and/or dimethyl ether
EA002261B1 (en) A process for conversion of oxygenates to produce light olefins
CN109476563B (en) Oxidative dehydrogenation of ethane (ODH)
RU2742576C1 (en) Apparatus and method for synthesis of paraxylol and combined synthesis of light olefins from methanol and/or dimethyl ether and benzene
US3429654A (en) Reacting gases or vapors in a fluidized bed
KR20060015596A (en) Fluidized bed reactor with gas cooler
NO772723L (en) PROCEDURES FOR THE PREPARATION OF METHACRYL DERIVATIVES FROM T-BUTYL-CONTAINING COMPOUNDS
RU2172734C2 (en) 3-(methylthio)propanal production process
CN100447116C (en) Preparation of at least one partial oxidation and/or ammoxidation product of a hydrocarbon
EP0407557A1 (en) Reaction processes in a multi-stage fluidized bed.
RU2743135C1 (en) Fluidised bed device and a method of producing para-xylene and co-producing lower olefins from methanol and/or dimethyl ether and benzene
US5274163A (en) Process for the preparation of dialkyl carbonates
US3427343A (en) Process for preparing olefinically unsaturated aldehydes and nitriles
US2604479A (en) Selective oxidation with suspended catalyst
US11760704B2 (en) Oxidative dehydrogenation coproduction
JP5180449B2 (en) Process for producing lower olefins from methanol or dimethyl ether
NO151008B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTICALLY ACTIVE NITROPHANES
EP3095772A1 (en) Method and apparatus for preparing conjugated diene
US3205275A (en) Solid catalyst contacting process and apparatus therefor
US3375291A (en) Process for preparing diolefins
CN114957038B (en) Method for synthesizing nitrile compound by ammoxidation of aromatic hydrocarbon