NO158680B - ORGANIC ALFA, OMEGA ALKYLENTITANATE FOR USE IN TREATMENT OF FINE CORN INORGANIC MATERIAL. - Google Patents

ORGANIC ALFA, OMEGA ALKYLENTITANATE FOR USE IN TREATMENT OF FINE CORN INORGANIC MATERIAL. Download PDF

Info

Publication number
NO158680B
NO158680B NO763097A NO763097A NO158680B NO 158680 B NO158680 B NO 158680B NO 763097 A NO763097 A NO 763097A NO 763097 A NO763097 A NO 763097A NO 158680 B NO158680 B NO 158680B
Authority
NO
Norway
Prior art keywords
group
organic
titanate
groups
inorganic material
Prior art date
Application number
NO763097A
Other languages
Norwegian (no)
Other versions
NO763097L (en
NO158680C (en
Inventor
Salvatore J Monte
Gerald Sugerman
Original Assignee
Kenrich Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/677,980 external-priority patent/US4087402A/en
Application filed by Kenrich Petrochemicals filed Critical Kenrich Petrochemicals
Publication of NO763097L publication Critical patent/NO763097L/no
Priority to NO820741A priority Critical patent/NO158875C/en
Publication of NO158680B publication Critical patent/NO158680B/en
Publication of NO158680C publication Critical patent/NO158680C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/70Chelates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

Foreliggende oppfinnelse angår en ny og forbedret klasse av organiske titanatforbindelser. Mere spesielt angår oppfinnelsen organiske titanatchelater som er spesielt brukbare for behandling av finkornede uorganiske stoffer. The present invention relates to a new and improved class of organic titanate compounds. More particularly, the invention relates to organic titanate chelates which are particularly useful for the treatment of fine-grained inorganic substances.

Uorganiske stoffer har i lang tid vært brukt som fyllstoffer, pigmenter, forsterkninger og kjemiske reaktanter i polymerer. De er i det vesentlige hydrofile, det vil si lett fuktet av vann og i stand til å absorbere vann. Imidlertid er deres forenelighet med polymerer begrenset. Derfor har de dårlig kunnet utnyttes som potensielle forsterkere, farvestoffer eller opasitetsmidler, eller med henblikk på den kjemiske reaktivitet for det organiske materiale. Inorganic substances have for a long time been used as fillers, pigments, reinforcements and chemical reactants in polymers. They are essentially hydrophilic, that is, easily wetted by water and able to absorb water. However, their compatibility with polymers is limited. Therefore, they have been poorly utilized as potential enhancers, dyes or opacifiers, or with a view to the chemical reactivity of the organic material.

Det har vært foreslått å benytte overflateaktive stoffer for å lette innarbeiding av disse uorganiske stoffer i polymerer. Imidlertid har de kjente materialer hatt mange mangler som for eksempel dårlig stabilitet i nærvær av fritt vann og begrenset evne til helt å dispergere store mengder av fyllmaterialer i det polymere materiale. It has been proposed to use surfactants to facilitate the incorporation of these inorganic substances into polymers. However, the known materials have had many shortcomings such as poor stability in the presence of free water and limited ability to completely disperse large amounts of filler materials in the polymeric material.

Foreliggende oppfinnelse gir muligheter for oppnåelse av en forsterket polymer som har en lavere smelteviskositet, forbedrede fysikalske egenskaper og bedre pigmenteringsegen-skaper enn det som er beskrevet I den kjente teknikk. The present invention provides opportunities for obtaining a reinforced polymer which has a lower melt viscosity, improved physical properties and better pigmentation properties than what is described in the known technique.

For å overvinne de ovenfor nevnte mangler angår foreliggende oppfinnelse et organisk a, a> alkylentitanat for anvendelse ved behandling av finkornet uorganisk materiale som anvendes som fyllstoffer, pigmenter, forsterkninger eller kjemiske reaktanter i polymerer, og disse titanater karakteriseres ved formelen: In order to overcome the above-mentioned shortcomings, the present invention relates to an organic a, a> alkylene titanate for use in the treatment of fine-grained inorganic material used as fillers, pigments, reinforcements or chemical reactants in polymers, and these titanates are characterized by the formula:

hvori A betyr en ikke-hydrolyserbar aroksy-, tioaroksy-,-OCOR'-, -OS02R"-, -OSOR"-, (R"0)2P(0)OP(OH) (0 ) - eller (R"0)2P(0)0-gruppe, B er en R2C-gruppe eller en karbonyl-gruppe; forutsatt at når B er CH2 inkluderer A ikke OCOR"; R er hydrogen eller en alkylgruppe med fra 1-6 karbonatomer; R' og R" er hydrogen eller en alkyl-, alkenyl-, aryl-, aralkyl-eller alkarylgruppe, eller et alkyl-, alkenyl-, aryl-, aralkyl-, alkaryl-, halogen-, amino-, epoksy-, eter-, tioeter-, ester-, cyano-, karbonyl- eller aromatisk nitrosub-stituert derivat derav; og n er 1 eller 2. wherein A means a non-hydrolyzable aroxy-, thioaroxy-, -OCOR'-, -OS02R"-, -OSOR"-, (R"0)2P(0)OP(OH) (0 ) - or (R"0 )2P(0)0 group, B is an R2C group or a carbonyl group; provided that when B is CH2, A does not include OCOR"; R is hydrogen or an alkyl group having from 1-6 carbon atoms; R' and R" are hydrogen or an alkyl, alkenyl, aryl, aralkyl or alkaryl group, or a alkyl, alkenyl, aryl, aralkyl, alkaryl, halogen, amino, epoxy, ether, thioether, ester, cyano, carbonyl or aromatic nitro-substituted derivative thereof; and n is 1 or 2.

Aroksygruppen kan være en substituert eller usubstituert fenoksy- eller naftyloksy-gruppe inneholdende opptil 60 karbonatomer. Det kan være substituert med alkyl-, alkenyl-, aryl-, aralkyl-, alkaryl-, halogen-, amino-, epoksy-, eter-, tioeter-, ester-, cyano-, karbonyl- eller aromatiske nitro-gengrupper. The aroxy group can be a substituted or unsubstituted phenoxy or naphthyloxy group containing up to 60 carbon atoms. It may be substituted with alkyl, alkenyl, aryl, aralkyl, alkaryl, halogen, amino, epoxy, ether, thioether, ester, cyano, carbonyl or aromatic nitrogen groups.

Fortrinnsvis er det ikke tilstede mer enn 3 substituenter pr. aromatisk ring. Preferably, no more than 3 substituents are present per aromatic ring.

Tioaroksygruppene er i det vesentlige de samme som de ovenfor nevnte aroksygrupper bortsett fra at det fenoliske oksygen er erstattet med svovel. Av aroksy- og tioaroksygrupper er fenoksy og naftoksy foretrukket. The thioaroxy groups are essentially the same as the above-mentioned aroxy groups except that the phenolic oxygen is replaced by sulphur. Of aroxy and thioaroxy groups, phenoxy and naphthoxy are preferred.

Med ikke-hydrolyserbar er ment en gruppe som ikke spaltes i nøytral vandig oppløsning ved en temperatur under 100°C. Hydrolyse kan bestemmes ved analyse på frigjort syre eller alkohol. By non-hydrolysable is meant a group that does not split in neutral aqueous solution at a temperature below 100°C. Hydrolysis can be determined by analysis of liberated acid or alcohol.

Det skal i denne forbindelse henvises til den avdelte søknad 820 741 som angår en materialblanding inneholdende et som her beskrevet organisk a, w-alkylentitanat. In this connection, reference should be made to the divided application 820 741 which concerns a material mixture containing an organic a, w-alkylene titanate as described here.

Eksempler på spesifikke R'-ligander er: metyl, propyl, cyklopropyl, cykloheksyl, tetraetyloktadecyl, 2,4-diklorben-zyl, l-(3-brom-4-nitro-7-acetylnaftyl)-etyl, 2-cyanofuryl, 3-tiometyl-2-etoksy-l-propyl og metallyl. Examples of specific R' ligands are: methyl, propyl, cyclopropyl, cyclohexyl, tetraethyloctadecyl, 2,4-dichlorobenzyl, 1-(3-bromo-4-nitro-7-acetylnaphthyl)-ethyl, 2-cyanofuryl, 3 -thiomethyl-2-ethoxy-1-propyl and methallyl.

Eksempler på A-ligander som kan brukes er ll-tiopropyl-12-fenyloktadecylsulfonyl, 2-nitrofenylsulfinyl, di(2-co-klorok-tyl)-fenylfosfat, diisonikotinylpyrofosfat, 2-nitro-3-jod-4-fluortiofenoksy, 2-metallylfenoksy, fenylsulfinyl, 4-amino-2-brom-7-naftylsulfonyl, difenylpyrofosfat, dietylheksylpyro-fosfat, di-sek.-heksylfenylfosfat, dilaurylfosfat, metylsul-fonyl, laurylsulfonyl og 3-metoksynaftalensulfinyl. Eksempler på aryloksygrupper er 2,4-dinitro-6-oksyl-7-(2-brom-3-etoksyfenyl)-l-naftoyl og 3-cyan-4-metoksy-6-benzoylfenoksy. Examples of A-ligands that can be used are 11-thiopropyl-12-phenyloctadecylsulfonyl, 2-nitrophenylsulfinyl, di(2-co-chlorooctyl)-phenylphosphate, diisonicotinyl pyrophosphate, 2-nitro-3-iodo-4-fluorothiophenoxy, 2- metallylphenoxy, phenylsulfinyl, 4-amino-2-bromo-7-naphthylsulfonyl, diphenylpyrophosphate, diethylhexylpyrophosphate, di-sec-hexylphenylphosphate, dilaurylphosphate, methylsulfonyl, laurylsulfonyl and 3-methoxynaphthalenesulfinyl. Examples of aryloxy groups are 2,4-dinitro-6-oxyl-7-(2-bromo-3-ethoxyphenyl)-1-naphthoyl and 3-cyano-4-methoxy-6-benzoylphenoxy.

Eksempler på R'-gruppene er tallrike. Disse grupper omfatter rette kjeder, forgrenede kjeder og cykliske alkylgrupper slik som heksyl, heptyl, oktyl, decyl, dodecyl, tetradecyl, pentadecyl, heksadecyl, oktadecyl, nonadecyl, eicosyl, docosyl, tetracosyl, cykloheksyl, cykloheptyl og cyklooktyl. Alkengrupper omfatter heksenyl, oktenyl og dodecenyl. Examples of the R' groups are numerous. These groups include straight chain, branched chain and cyclic alkyl groups such as hexyl, heptyl, octyl, decyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, octadecyl, nonadecyl, eicosyl, docosyl, tetracosyl, cyclohexyl, cycloheptyl and cyclooctyl. Alkenyl groups include hexenyl, octenyl and dodecenyl.

Halogensubstituerte grupper omfatter bromheksyl, kloroktade-cyl, jodtetradecyl og kloroktaheksenyl. Ett eller flere halogenatomer kan være tilstede slik som f. eks. i difluor-heksyl eller tetrabromoktyl. Estersubstituerte aryl- og alkylgrupper omfatter 4-karboksyetylkapryl og 3-karboksyme-tyltoluyl. Aminosubstituerte grupper omfatter aminokaproyl, aminostearyl, aminoheksyl, aminolauryl og diaminooktyl. Halogen-substituted groups include bromohexyl, chlorooctadecyl, iodotetradecyl and chlorooctahexenyl. One or more halogen atoms may be present such as e.g. in difluorohexyl or tetrabromooctyl. Ester substituted aryl and alkyl groups include 4-carboxyethyl capryl and 3-carboxymethyltoluyl. Amino substituted groups include aminocaproyl, aminostearyl, aminohexyl, aminolauryl and diaminooctyl.

I tillegg til de foregående alifatiske grupper kan det også benyttes grupper som inneholder heteroatomer som oksygen, svovel eller nitrogen i kjeden. Eksempler på slike rester er etere av alkoksyaryltypen, inkludert metokeyheksyl og etoksydecyl. Alkyltioalkylgrupper omfatter metyltiododecyl-grupper. Primære, sekundære og tertiære aminer kan også tjene som endedel av den hydrofobe gruppe. Disse omfatter diisopropylamino, metylaminoheksyl og aminodecyl. In addition to the preceding aliphatic groups, groups containing heteroatoms such as oxygen, sulfur or nitrogen in the chain can also be used. Examples of such residues are ethers of the alkoxyaryl type, including methoxyhexyl and ethoxydecyl. Alkylthioalkyl groups include methylthiodecyl groups. Primary, secondary and tertiary amines can also serve as the end part of the hydrophobic group. These include diisopropylamino, methylaminohexyl and aminodecyl.

Arylgrupper omfatter fenyl- og naftylgrupper og substituerte derivater. Substituerte alkylderivater omfatter tolyl, xylyl, pseudocumyl, mesityl, isodurenyl, durenyl, pentametyl-fenyl, etylfenyl, n-propylfenyl, cumyl, 1,3,5-trietylfenyl, styryl, allylfenyl, difenylmetyl, trifenylmetyl, tetrafenyl-metyl, 1,3,5-trifenylfenyl. Nitro- og halogensubstituerte grupper kan eksemplifiseres av klornitrofenyl, klordinitro-fenyl, dinitrotoluol og trinitroxylyl. Aryl groups include phenyl and naphthyl groups and substituted derivatives. Substituted alkyl derivatives include tolyl, xylyl, pseudocumyl, mesityl, isodurenyl, durenyl, pentamethyl-phenyl, ethylphenyl, n-propylphenyl, cumyl, 1,3,5-triethylphenyl, styryl, allylphenyl, diphenylmethyl, triphenylmethyl, tetraphenylmethyl, 1,3 ,5-triphenylphenyl. Nitro- and halogen-substituted groups can be exemplified by chloronitrophenyl, chlorodinitrophenyl, dinitrotoluene and trinitroxylyl.

Aminsubstituerte komponenter omfatter metylaminotoluyl, trimetylaminofenyl, dietylaminofenyl, aminometylfenyl, diaminofenyl, etoksyaminofenyl, kloraminofenyl, bromamino-fenyl og fenylaminofenyl. Halogensubstituerte arylgrupper omfatter fluor-, klor-, brom-, jodfenyl, klortoluyl, bromtol-uyl, metoksybromfenyl, dimetylaminobromfenyl, triklorfenyl, bromklorfenyl og bromjodfenyl. Amine substituted components include methylaminotoluene, trimethylaminophenyl, diethylaminophenyl, aminomethylphenyl, diaminophenyl, ethoxyaminophenyl, chloroaminophenyl, bromoaminophenyl and phenylaminophenyl. Halogen-substituted aryl groups include fluoro, chloro, bromo, iodophenyl, chlorotoluyl, bromotoluene, methoxybromophenyl, dimethylaminobromophenyl, trichlorophenyl, bromochlorophenyl and bromoiodophenyl.

Grupper avledet fra aromatiske karboksylsyrer er også brukbare. Disse omfatter metylkarboksylfenyl, dimetylamino-karboksyltouyl, laurylkarboksyltoluyl, nitrokarboksyltoluyl og aminokarboksylfenyl. Grupper avledet fra substituerte alkylestere og amider av benzosyre kan også benyttes. Disse omfatter aminokarboksylfenyl og metoksykarboksyfenyl. Groups derived from aromatic carboxylic acids are also useful. These include methylcarboxylphenyl, dimethylaminocarboxyltouyl, laurylcarboxyltoluyl, nitrocarboxyltoluyl and aminocarboxylphenyl. Groups derived from substituted alkyl esters and amides of benzoic acid can also be used. These include aminocarboxyphenyl and methoxycarboxyphenyl.

Titanater der R' er en epoksygruppe inkluderer talloljeepok-syder (en blanding av alkylgrupper med 6-22 karbonatomer) inneholdende gjennomsnitlig en epoksygruppe pr. molekyl og glycidoletere av lauryl- og stearylalkohol. Titanates where R' is an epoxy group include tall oil epoxies (a mixture of alkyl groups with 6-22 carbon atoms) containing on average one epoxy group per molecule and glycidoethers of lauryl and stearyl alcohol.

Substituerte naftylgrupper inkluderer nitronaftyl-, klornaf-tyl-, aminonaftyl- og karboksynaftylgrupper. Organititanchelatene ifølge oppfinnelsen kan fremstilles ved å omsette estere med formelen (0R)2Ti(A)2 med en ekvimolar mengde av 2-hydroksypropionsyre eller hydroksyeddiksyre eller deres karbonsubstituerte derivater. Når det benyttes oksoderivater (B - R2C), omsettes titanatesteren med et 1,2-eller 1,3-glykol slik som etylenglykol eller 1,3-butandiol. Substituted naphthyl groups include nitronaphthyl, chloronaphthyl, aminonaphthyl and carboxynaphthyl groups. The organotitanium chelates according to the invention can be prepared by reacting esters with the formula (OR)2Ti(A)2 with an equimolar amount of 2-hydroxypropionic acid or hydroxyacetic acid or their carbon-substituted derivatives. When oxoderivatives (B - R2C) are used, the titanium ester is reacted with a 1,2- or 1,3-glycol such as ethylene glycol or 1,3-butanediol.

(OR ^Ti (A ^-forbindelsene kan lett fremstilles som angitt i US-PS 3 660 134, 3 697 494 og 3 697 495. (OR ^Ti (A ^ compounds can be readily prepared as disclosed in US-PS 3,660,134, 3,697,494 and 3,697,495.

De uorgaiske materialer kan være partikkelformige eller fibrøse og av varierende form og størrelse så lenge over-flatene er reaktive med de hydrolyserbare grupper i organo-titanforbindelsen. Eksempler på uorganiske forsterknings-stoffer er metaller, leire, sot, kalsiumkarbonat, bariumsul-fat, silisiumdioksyd, mica, glass og asbest. Reaktive uorganiske stoffer omfatter metalloksyder av zink, magnesium og bly samt kalsium og aluminium, jernfilspon o.l., samt svovel. Eksempler på uorganiske pigmenter omfatter titandi-oksyd, jernoksyder, sinkkromat og ultramarinblått. Av praktiske grunner bør partikkelstørrelsen for de uorganiske stoffer ikke være mer enn 1 mm, fortrinnsvis fra 0,1 pm til 500 pm. The inorganic materials can be particulate or fibrous and of varying shape and size as long as the surfaces are reactive with the hydrolyzable groups in the organo-titanium compound. Examples of inorganic reinforcing substances are metals, clay, carbon black, calcium carbonate, barium sulphate, silicon dioxide, mica, glass and asbestos. Reactive inorganic substances include metal oxides of zinc, magnesium and lead as well as calcium and aluminium, iron filings etc., as well as sulphur. Examples of inorganic pigments include titanium dioxide, iron oxides, zinc chromate and ultramarine blue. For practical reasons, the particle size of the inorganic substances should not be more than 1 mm, preferably from 0.1 pm to 500 pm.

Det er viktig at titanatet blandes grundig med det uorganiske materiale for å tillate at overflaten av det sistnevnte reagerer tilstrekkelig. Den optimale mengde av alkoksytita-nat som benyttes, er avhengig av den effekt som ønskes oppnådd, det tilgjengelige overflateareal av og mengden bundet vnan i det uorganiske materiale. It is important that the titanate is thoroughly mixed with the inorganic material to allow the surface of the latter to react sufficiently. The optimum amount of alkoxy titanate used depends on the desired effect, the available surface area and the amount of bound water in the inorganic material.

Reaksjonen lettes ved blanding under egnede betingelser. Optimale resultater avhenger av egenskapene for alkoksytitan-atet, nemlig hvorvidt det er et flytende eller fast stoff, samt dekomponeringspunkt og flammepunkt. Partikkelstørrel-sen, partiklenes geometri, den spesifikke vekt, den kjemiske sammensetning og andre ting må også tas med i betraktning. I tillegg må det behandlede uorganiske materiale blandes grundig med polymermediet. De egnede blandebetingelser avhenger av typen polymer, hvorvidt det er termoplastisk eller termoherdende, den kjemiske struktur osv. slik det er åpenbart for fagmannen. The reaction is facilitated by mixing under suitable conditions. Optimum results depend on the properties of the alkoxy titanate, namely whether it is a liquid or solid, as well as the decomposition point and flash point. The particle size, the geometry of the particles, the specific weight, the chemical composition and other things must also be taken into account. In addition, the treated inorganic material must be thoroughly mixed with the polymer medium. The suitable mixing conditions depend on the type of polymer, whether it is thermoplastic or thermosetting, the chemical structure, etc., as will be obvious to those skilled in the art.

Når det uorganiske materiale er gjennomtrengt med organisk titanat, kan det blandes i en hvilken som helst egnet type intensivblander slik som blandere av typen Henschel eller Hobart, eller i en Waring-blander. Også håndblanding kan benyttes. Optimal tid og temperatur bestemmes for å oppnå vesentlig reaksjon mellom det uorganiske materiale og det organiske titanat. Blandingen gjennomføres under betingelser ved hvilke det organiske titanat foreligger i flytende fase ved temperaturer under dekomponeringstemperaturen. Mens det er ønskelig at hovedmassen av de hydrolyserbare grupper er omsatt i dette trinn, er dette ikke vesentlig når materialene senere skal blandes med en polymer fordi den vesentlige fullføring av reaksjonen kan inntre i dette senere blande-trinn. Once the inorganic material is permeated with organic titanate, it can be mixed in any suitable type of intensive mixer such as Henschel or Hobart type mixers, or in a Waring mixer. Hand mixing can also be used. Optimum time and temperature are determined to achieve significant reaction between the inorganic material and the organic titanate. The mixture is carried out under conditions in which the organic titanate is present in liquid phase at temperatures below the decomposition temperature. While it is desirable that the main mass of the hydrolyzable groups is reacted in this step, this is not essential when the materials are later to be mixed with a polymer because the substantial completion of the reaction can occur in this later mixing step.

Polymerbehandling, det vil si blanding under høy skjærkraft, gjennomføres generelt ved en temperatur godt over polymerens andre-ordens omdanningstur, fortrinnsvis ved en temperatur der polymeren har en lav smelteviskositet. For eksempel behandles lavdensitets polyetylen fortrinnsvis ved et temperaturområde 170-230"C; høydensitetspolyetylen fra 200-245"C; polystyren fra 230-260°C; og polypropylen fra 230-290°C. Polymer processing, i.e. mixing under high shear, is generally carried out at a temperature well above the polymer's second-order transformation cycle, preferably at a temperature where the polymer has a low melt viscosity. For example, low density polyethylene is preferably processed at a temperature range of 170-230"C; high density polyethylene from 200-245"C; polystyrene from 230-260°C; and polypropylene from 230-290°C.

Temperaturer for blanding av andre polymerer er kjent for fagmannen og kan bestemmes under henvisning til den eksister-ende litteratur. Det kan benyttes et stort spektrum av blandeutstyr, f. eks. to-valsemøller, Banbury-blandere, dobbelkonsentriske skruer, mot- eller medroterende tvillings-skruer og ZSK-typer av Werner-, Pfaulder- og Busse-blandere. Når det organiske titanat og de uorganiske stoffer tørrbland-es, oppnås ikke så lett en grundig blanding og/eller reaksjon, og reaksjonen føres til fullføring når det behandlede fyllstoff blandes med polymeren. I dette sistnevnte trinn kan det organiske titanat også reagere med polymermaterialet hvis en eller flere av R'-gruppene er reaktive med polymeren. Temperatures for mixing other polymers are known to those skilled in the art and can be determined by reference to the existing literature. A wide range of mixing equipment can be used, e.g. twin roll mills, Banbury mixers, double concentric screws, counter or co-rotating twin screws and ZSK types of Werner, Pfaulder and Busse mixers. When the organic titanate and the inorganic substances are dry-mixed, a thorough mixing and/or reaction is not easily achieved, and the reaction is brought to completion when the treated filler is mixed with the polymer. In this latter step, the organic titanate can also react with the polymer material if one or more of the R' groups are reactive with the polymer.

De behandlede fyllstoffer kan innarbeides i et hvilket som helst av de konvensjonelle polymaterialer, uansett om dette er termoplastiskt eller termoherdende, gummi eller plast. De er beskrevet i detalj i de tre ovenfor angitte US-patenter. Mengden av fyllstoff avhenger av det spesielle polymermater-iale, fyllstoff og egenskapskravene for det ferdige produkt. Generelt kan fra 10-500 deler fyllstoff benyttes pr.100 deler polymer, fortrinnsvis fra 20-250 deler. Den optimale mengde kan lett bestemmes av fagmannen. The treated fillers can be incorporated into any of the conventional polymaterials, regardless of whether this is thermoplastic or thermosetting, rubber or plastic. They are described in detail in the three US patents cited above. The amount of filler depends on the particular polymer material, filler and the property requirements for the finished product. In general, from 10-500 parts of filler can be used per 100 parts of polymer, preferably from 20-250 parts. The optimum amount can be easily determined by the person skilled in the art.

Mens forbindelsene ifølge oppfinnelsen kan benyttes med et hvilket som helst av de ovenfor angitte fyllstoffer, er det spesielt overraskende at de forblir ekstremt aktive også i nærvær av store mengder fritt vann. Av denne grunn kan de benyttes sammen med våtprosess-silisiumdioksyd, myke eller harde leirer, talkum, aluminiumsilikat, hydratisert alumini-umoksyd og fiberglass. Mens det ikke er helt ut forstått hvordan chelatforbindelsene beholder sin aktivitet, er de klart overlegne andre titanater, slik som f. eks. beskreveti de ovenfor angitte US-patenter, i nærvær av fuktighet. While the compounds according to the invention can be used with any of the above-mentioned fillers, it is particularly surprising that they remain extremely active even in the presence of large amounts of free water. For this reason, they can be used together with wet-process silicon dioxide, soft or hard clays, talc, aluminum silicate, hydrated aluminum oxide and fiberglass. While it is not fully understood how the chelate compounds retain their activity, they are clearly superior to other titanates, such as e.g. described in the above cited US patents, in the presence of moisture.

De følgende eksempler er typiske for fremstilling av forbindelser ifølge oppfinnelsen. The following examples are typical for the preparation of compounds according to the invention.

Eksempel A Example A

Fremstilling av di( dioktvlfosfatletvlentitanat. Preparation of di(dioctyl phosphate lettyl titanate.

Til en 1 liters reaktor av den ovenfor beskrevne type tilsettes 1,0 ml tetraisopropyltitanat. Enheten settes for tilbakeløpskoking ved atmosfærisk trykk. Deretter tilsettes 1,0 ml etylenglykol, fulgt av 2,0 mol dioktylhydrogenfosfat, begge deler i løpet av en halv time. Begrenset varmeutvik-ling bemerkes ved tilsetning av hver reagens. Etter at tilsetningen er ferdig, kokes reaksjonsblandingen under tilbakeløp i 1 time ved atmosfærisk trykk. Reaksjonsblandingen avkjøles deretter til under 50"C og biproduktet isopropanol fjernes ved destillasjon under redusert trykk til en sumptemperatur på omkring 150°C ved 10 mm Hg. Den flyktig-gjorte isopropanol gjenvinnes via oppfanging i en mottaker, avkjølt med flytende nitrogen. Gjenvinning av isopropanol er ca. 3,7 ml, det vil si 9056 av det teoretiske. Det oppnås som rest et pastalignende hvitt produkt i en mengde på over 90% av den teoretiske. Rensning gjennomføres ved omkrystalliser-ing fra ligroin og det oppnås hvite krystaller med smeltepunkt 41-43°C. 1.0 ml of tetraisopropyl titanate is added to a 1 liter reactor of the type described above. The unit is set to reflux at atmospheric pressure. 1.0 ml of ethylene glycol is then added, followed by 2.0 mol of dioctyl hydrogen phosphate, both parts within half an hour. Limited heat development is noted upon addition of each reagent. After the addition is complete, the reaction mixture is refluxed for 1 hour at atmospheric pressure. The reaction mixture is then cooled to below 50°C and the by-product isopropanol is removed by distillation under reduced pressure to a sump temperature of about 150°C at 10 mm Hg. The volatilized isopropanol is recovered via capture in a receiver, cooled with liquid nitrogen. Recovery of isopropanol is approximately 3.7 ml, i.e. 9056 of the theoretical. A paste-like white product is obtained as a residue in an amount of more than 90% of the theoretical. Purification is carried out by recrystallization from ligroin and white crystals with a melting point are obtained 41-43°C.

Eksempel B. Example B.

Ved å følge den generelle fremgangsmåte som er angitt ovenfor ble det fremstilt ytterligere forbindelser som ligger Innenfor rammen av oppfinnelsen. Den følgende tabell beskriver den spesielle forbindelse under henvisning til den chelaterende ligand og de enverdige ligander A og A' og angir fysikalsk beskrivelse, smeltepunkt og viskositet for produkt-et . For å vise brukbarheten av forbindelsene ifølge oppfinnelsen gis følgende eksempler. By following the general procedure indicated above, further compounds were prepared which are within the scope of the invention. The following table describes the particular compound with reference to the chelating ligand and the monovalent ligands A and A' and indicates the physical description, melting point and viscosity of the product. To show the usability of the compounds according to the invention, the following examples are given.

Eksempel I Example I

Dette eksempel viser viktigheten av chelatstrukturen for viskositetskontroll for våt silisiumdioksyd i organiske dispersjoner. Det ble laget en dlspersjon ved å blande 20 deler av en 0,8 pm våtprosess-silisiumdioksyd i en oppløsning av 0,2 deler titanat i 80 deler tung mineralolje (flammepunkt ca. 105°C) i en Waring-blander. This example demonstrates the importance of the chelate structure for viscosity control for wet silica in organic dispersions. A dlspersion was made by mixing 20 parts of a 0.8 µm wet process silica in a solution of 0.2 parts titanate in 80 parts heavy mineral oil (flash point about 105°C) in a Waring mixer.

De første tre kjente titanater som er angitt i tabellen, The first three known titanates listed in the table,

var mens de bevirket en vesentlig viskositetsreduksjon sammenlignet med kontrollen ikke desto mindre vesentlig underlegne de tre acetylforbindelser i slutten av tabellen. Det antas at dette skyldes at forbindelsene ifølge oppfinnelsen beholder sin aktivitet i nærvær av fuktigheten i den tilstedeværende silisiumdioksyd. while causing a significant viscosity reduction compared to the control, were nevertheless significantly inferior to the three acetyl compounds at the end of the table. It is believed that this is because the compounds according to the invention retain their activity in the presence of the moisture in the silicon dioxide present.

Eksempel II Example II

Virkningen av utvalgte titanater på strekkfastheten av polypropylen fylt med 3 pm vannvasket leire og talkum i system som benytter 50 vekt-* fyllstoff og 0,5 vekt-* titanat er vist i følgende tabell: The effect of selected titanates on the tensile strength of polypropylene filled with 3 pm water-washed clay and talc in a system using 50 wt-* filler and 0.5 wt-* titanate is shown in the following table:

Dette eksempel viser økningen av strekkfastheten både i talkum- og leirefylt polypropylen med to av forbindelsene ifølge oppfinnelsen. This example shows the increase of the tensile strength in both talc- and clay-filled polypropylene with two of the compounds according to the invention.

Eksempel III Example III

Virkningen av utvalgte titanater på "Dart Impact"-styrken for nylon 6 fylt med 50 vekt-* vannvasket 3 pm leire. Fyll-stoffet var forbehandlet med 2 vekt-* titanat før innarbeid-ning i polymermatriksen. The effect of selected titanates on the "Dart Impact" strength of nylon 6 filled with 50 wt-* water-washed 3 pm clay. The filler was pre-treated with 2 wt* titanate before incorporation into the polymer matrix.

I hvert tilfelle hadde det behandlede materiale en forbedret bøyestyrke og en markert forbedring av slagstyrken. In each case, the treated material had an improved flexural strength and a marked improvement in impact strength.

Eksempel IV Example IV

Virkningen av utvalgte titanater ifølge oppfinnelsen på egenskapene for polyuretan fylt med 0,8 pm våtprosess-sillsiumdioksyd. Formuleringen inneholdt 20 vekt-* fyllstoff forbehandlet med 2,0 vekt-* titanat før innarbeiding. The effect of selected titanates according to the invention on the properties of polyurethane filled with 0.8 pm wet process silicon dioxide. The formulation contained 20 wt-* filler pre-treated with 2.0 wt-* titanate before incorporation.

Alle de behandlede forbindelser viste forbedret strekkfasthet sammenlignet med kontrollen. Fosfatderivatet viste også forbedret forlengelse. Strukturen av den ikke-hydrolyserbare A-gruppe er vist å være viktig ved bestemmelse av egenskaps-forbedringer. All the treated compounds showed improved tensile strength compared to the control. The phosphate derivative also showed improved elongation. The structure of the non-hydrolyzable A group has been shown to be important in determining property improvements.

Den kjemiske struktur for de foregående forbindelser ble primært bestemt ved en betraktning av reaktantene og de dannede biprodukter. I utvalgte tilfeller ble det gjennom-ført elementanalyse, IR-analyse og analyse med henblikk på frie hydroksylgrupper. Disse verifiserte de postulerte kjemiske strukturer. The chemical structure of the foregoing compounds was primarily determined by a consideration of the reactants and the by-products formed. In selected cases, elemental analysis, IR analysis and analysis with a view to free hydroxyl groups were carried out. These verified the postulated chemical structures.

Eksempel V Example V

Dette eksempel viser virkningen av titanatchelater på ikke-fylt epoksy. To epoksyherdeblandinger ble fremstilt inneholdende 80 deler "Epon 828" og 20 deler av et alifatisk aminherdemiddel, "Celanese 874". Til en av disse nylig fremstilte prøver ble det tilsatt to deler 2-acetyldi(dode-cylbenzensulfonyl)titanat. Begge blandinger ble omrørt i 2 min. og viskositeten målt på et Brookfield-viskosimeter. De oppnådde resultater er vist i tabellen. This example shows the effect of titanium chelates on unfilled epoxy. Two epoxy curing compounds were prepared containing 80 parts "Epon 828" and 20 parts of an aliphatic amine curing agent, "Celanese 874". Two parts of 2-acetyldi(dodecylbenzenesulfonyl)titanate were added to one of these newly prepared samples. Both mixtures were stirred for 2 min. and the viscosity measured on a Brookfield viscometer. The results obtained are shown in the table.

Disse angitte data viser at den siste sammensetningen har en vesentlig høyere viskositet enn den andre prøve. These given data show that the last composition has a significantly higher viscosity than the second sample.

Eksempel VI Example VI

Dette eksempel viser bruken av et etylendi(dioktylfosfat)titanat for å øke fargingsvirkningen av pigmenter i en vann-basert akrylmaling. Malingen som ble benyttet var en kommersiell "SRW30X White" og pigmentpastadispersjonen This example shows the use of an ethylene di(dioctyl phosphate) titanate to increase the coloring effect of pigments in a water-based acrylic paint. The paint used was a commercial "SRW30X White" and the pigment paste dispersion

("Tint-Ayd nr. WD-2228, Aqueous Tinting Coloor, Phtalo Blue") ("Tint-Ayd No. WD-2228, Aqueous Tinting Color, Phtalo Blue")

inneholdt 32* pigmenter og 39* totale faststoffer. Etylendi-(dioktylfosfat)titanat ble først blandet med pigmentet for å danne blandinger inneholdende 0,3, 0,6, 0,9, 1,2 og 1,5* titanat, basert på vekten av pastadispersjonen. Til 100 deler maling ble det tilsatt 0,2 deler av hver av de behandlede pastadispersjoner. Observasjon viste sammenlignet med kontrollen, sågar ved 0,3*-nivået, at det ble oppnådd øket dispersjon og flyt. Mens det ble oppnådd økede fargingsre-sultater i alle tilfelle, var økningen av blåfarge optimal med 0,9*-prøven. contained 32* pigments and 39* total solids. Ethylene di-(dioctyl phosphate) titanate was first mixed with the pigment to form mixtures containing 0.3, 0.6, 0.9, 1.2 and 1.5* titanate, based on the weight of the paste dispersion. To 100 parts of paint was added 0.2 parts of each of the treated paste dispersions. Observation showed that compared to the control, even at the 0.3* level, increased dispersion and flow were achieved. While increased staining results were obtained in all cases, the increase in blue color was optimal with the 0.9* sample.

Claims (1)

Organisk a, u alkylentitanat for anvendelse ved behandling av finkornet uorganisk materiale som anvendes som fyllstoffer, pigmenter, forsterkninger eller kjemiske reaktanter i polymerer, karakterisert ved formelen:Organic a, u alkylene titanate for use in the treatment of fine-grained inorganic material used as fillers, pigments, reinforcements or chemical reactants in polymers, characterized by the formula: hvori A betyr en ikke-hydrolyserbar aroksy-, tioaroksy-,-OCOR'-, -OS02R"-, -OSOR<»->, (R"0)2P(0)0P(0H)(0) - eller (R"0)2P(0)0-gruppe, B er en R2C-gruppe eller en karbonyl-gruppe; forutsatt at når B er CH2 inkluderer A ikke 0C0R"; R er hydrogen eller en alkylgruppe med fra 1-6 karbonatomer; R<* >og R" er hydrogen eller en alkyl-, alkenyl-, aryl-, aralkyl-eller alkarylgruppe, eller et alkyl-, alkenyl-, aryl-, aralkyl-, alkaryl-, halogen-, amino-, epoksy-, eter-, tioeter-, ester-, cyano-, karbonyl- eller aromatisk nitrosub-stituert derivat derav; og n er 1 eller 2.wherein A means a non-hydrolyzable aroxy-, thioaroxy-, -OCOR'-, -OS02R"-, -OSOR<»->, (R"0)2P(0)0P(0H)(0) - or (R "0)2P(0)0 group, B is an R2C group or a carbonyl group; provided that when B is CH2, A does not include 0C0R"; R is hydrogen or an alkyl group with from 1 to 6 carbon atoms; R<* >and R" are hydrogen or an alkyl, alkenyl, aryl, aralkyl or alkaryl group, or an alkyl, alkenyl, aryl, aralkyl, alkaryl, halogen, amino, epoxy , ether, thioether, ester, cyano, carbonyl or aromatic nitro substituted derivative thereof; and n is 1 or 2.
NO763097A 1975-09-30 1976-09-09 ORGANIC ALFA, OMEGA ALKYLENTITANATE FOR USE IN TREATMENT OF FINE CORN INORGANIC MATERIAL. NO158680C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO820741A NO158875C (en) 1975-09-30 1982-03-09 MATERIAL MIXTURE CONTAINING AN ORGANIC ALFA, OMEGA-ALKYLENTITANATE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61822275A 1975-09-30 1975-09-30
US05/677,980 US4087402A (en) 1975-09-30 1976-04-19 Organo-titanate chelates and their uses

Publications (3)

Publication Number Publication Date
NO763097L NO763097L (en) 1977-03-31
NO158680B true NO158680B (en) 1988-07-11
NO158680C NO158680C (en) 1988-10-19

Family

ID=27088182

Family Applications (1)

Application Number Title Priority Date Filing Date
NO763097A NO158680C (en) 1975-09-30 1976-09-09 ORGANIC ALFA, OMEGA ALKYLENTITANATE FOR USE IN TREATMENT OF FINE CORN INORGANIC MATERIAL.

Country Status (13)

Country Link
JP (1) JPS5242878A (en)
AU (1) AU502645B2 (en)
CH (1) CH616429A5 (en)
DE (1) DE2623472A1 (en)
FR (1) FR2326425A1 (en)
GB (1) GB1519685A (en)
IN (1) IN157348B (en)
IT (1) IT1069114B (en)
LU (1) LU75899A1 (en)
MX (2) MX147960A (en)
NL (1) NL186176C (en)
NO (1) NO158680C (en)
SE (2) SE435623B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2640335A1 (en) * 1973-12-04 1978-03-09 Ppg Industries Inc COATED SUBSTRATE AND METHOD FOR MANUFACTURING IT
CA1099045A (en) * 1975-09-30 1981-04-07 Salvatore J. Monte Filled polyesters containing organic titanate esters
US4251436A (en) * 1978-12-29 1981-02-17 Stauffer Chemical Company Inorganic filler material and polymer composition containing the same
US4257430A (en) * 1979-02-21 1981-03-24 Liggett Group Inc. Tobacco composition including palladium
IL61383A (en) * 1979-11-03 1984-02-29 Raychem Ltd Polymeric compositions having improved water stability and alumina-antimony compound fillers for use therein
FR2478839B1 (en) * 1980-03-20 1987-07-17 Bull Sa POWDER FOR THE DEVELOPMENT OF LATENT IMAGES AND ITS MANUFACTURING METHOD
GB2176490B (en) * 1981-06-09 1988-09-28 Robert Andy High strength flame resistant poly-olefins and methods of making the same
US4622073A (en) * 1983-12-06 1986-11-11 Toyo Aluminium Kabushiki Kaisha Metal powder pigment
GB8418517D0 (en) * 1984-07-20 1984-08-22 Tioxide Group Plc Titanium compositions
GB2174998B (en) * 1985-03-20 1989-01-05 Dainichi Nippon Cables Ltd Flame-retardant resin compositions
GB9117766D0 (en) * 1991-08-16 1991-10-02 Ciba Geigy Ag Process for improving storage stability

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920089A (en) * 1955-07-14 1960-01-05 Kendall & Co Organo-metallic titanium compounds and method of making the same
GB797391A (en) * 1955-08-17 1958-07-02 Nat Lead Co Organotitanium compounds
US2898356A (en) * 1955-09-06 1959-08-04 Nat Lead Co Organotitanium compounds and process of preparation
US2913469A (en) * 1956-08-07 1959-11-17 Nat Lead Co Organotitanium compounds and process of preparation
US3032570A (en) * 1959-02-13 1962-05-01 Du Pont Organic titanium compounds
US3415781A (en) * 1966-07-06 1968-12-10 Pennsalt Chemicals Corp Titanium phosphinate polymers
US3856839A (en) * 1971-01-06 1974-12-24 Gen Electric Alkanedioxy titanium chelates

Also Published As

Publication number Publication date
NL186176B (en) 1990-05-01
AU1395476A (en) 1977-11-17
FR2326425A1 (en) 1977-04-29
AU502645B2 (en) 1979-08-02
MX147960A (en) 1983-02-14
NL7610802A (en) 1977-04-01
DE2623472C2 (en) 1987-10-22
JPS5242878A (en) 1977-04-04
CH616429A5 (en) 1980-03-31
LU75899A1 (en) 1977-05-11
NL186176C (en) 1990-10-01
NO763097L (en) 1977-03-31
JPS613796B2 (en) 1986-02-04
FR2326425B1 (en) 1982-07-09
IT1069114B (en) 1985-03-25
DE2623472A1 (en) 1977-04-07
SE450708B (en) 1987-07-20
GB1519685A (en) 1978-08-02
SE7609928L (en) 1977-03-31
SE435623B (en) 1984-10-08
SE8402395D0 (en) 1984-05-03
NO158680C (en) 1988-10-19
MX163052B (en) 1991-08-09
IN157348B (en) 1986-03-08

Similar Documents

Publication Publication Date Title
US4087402A (en) Organo-titanate chelates and their uses
US4094853A (en) Alkoxy titanate salts useful as coupling agents
NO158680B (en) ORGANIC ALFA, OMEGA ALKYLENTITANATE FOR USE IN TREATMENT OF FINE CORN INORGANIC MATERIAL.
US4069192A (en) Liquid thermosetting resins containing titanate salts
NO150917B (en) MATERIAL MIXTURE FOR USE AS FILLING POLYMERS, A PROCEDURE FOR PREPARING THEREOF AND A MIXTURE OF ORGANOTITANATES FOR USE IN THE PROCEDURE
US4192792A (en) Atactic polypropylene
DE2141159B2 (en) Organosilicon compounds containing sulfur
NO148817B (en) PLASTIC MIXING FOR COATING OR CASTING CONTAINING TITANATE PHOSPHITE ADDITIONS.
CN101942153A (en) Single-component chlorosulfonated polyethylene anticorrosive paint and preparation method thereof
CN108250233A (en) The method that one kind prepares silane coupling agent-Si-69 in water phase
JPS6025437B2 (en) Organic titanate-containing composition
CN1328335C (en) Negative ion type internal-wall later paint for health-care building and preparing method thereof
CN107746535A (en) A kind of lead-acid accumulator high intensity plastic housing
CN102838563A (en) Synthesis method of rubber vulcanization accelerator TBBS (N-tert-butyl-2-benzothiazolesulfenamide)
FR2618445A1 (en) EMULSION PAINT AND PROCESS FOR PREPARING THE SAME
NO158875B (en) MATERIAL MIXTURE CONTAINING AN ORGANIC ALFA, OMEGA-ALKYLENTITANATE.
CN105949958A (en) Waterborne epoxy modified polyamine curing agent and waterborne epoxy anti-corrosion primer coating
KR810000205B1 (en) Process for preparing alpha-omega-alkylene titanate
CA2200872A1 (en) Process for the preparation of 1,2-benzisothiazolin-3-ones
CN108359366A (en) A kind of water-repellent paint and preparation method thereof
CN103834221A (en) Fluoroalkyl phosphonic acid salt/ ester composition
CN110092935A (en) A kind of chemical pump inner wall waterproof material and preparation method thereof
CN104650723A (en) Mildew-proof anti-static waterproof paint and preparation method thereof
CN107163697A (en) A kind of building water-proof anticorrosive paint and preparation method
CN110105184A (en) A kind of method of Dry synthesis zinc acetylacetonate under normal pressure