NO158220B - ORGANOTITANATES OR MIXTURES OF ORGANOTITANATES. - Google Patents

ORGANOTITANATES OR MIXTURES OF ORGANOTITANATES. Download PDF

Info

Publication number
NO158220B
NO158220B NO761634A NO761634A NO158220B NO 158220 B NO158220 B NO 158220B NO 761634 A NO761634 A NO 761634A NO 761634 A NO761634 A NO 761634A NO 158220 B NO158220 B NO 158220B
Authority
NO
Norway
Prior art keywords
parts
inorganic
group
mixture
mixtures
Prior art date
Application number
NO761634A
Other languages
Norwegian (no)
Other versions
NO761634L (en
NO158220C (en
Inventor
Salvatore J Monte
Gerald Sugerman
Original Assignee
Kenrich Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/577,922 external-priority patent/US4094853A/en
Application filed by Kenrich Petrochemicals filed Critical Kenrich Petrochemicals
Publication of NO761634L publication Critical patent/NO761634L/no
Publication of NO158220B publication Critical patent/NO158220B/en
Publication of NO158220C publication Critical patent/NO158220C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

Foreliggende oppfinnelse angår et organotitantat eller blandinger av organotitanater som kan brukes som koblingsmidler mellom uorganiske stoffer og polymerer. The present invention relates to an organotitanate or mixtures of organotitanates which can be used as coupling agents between inorganic substances and polymers.

Uorganiske stoffer har allerede i lang tid vært anvendt som fyllstoffer, pigmenter, forsterkningsmidler, og kjemiske reaksjonskomponenter i polymerer. Generelt er disse uorganiske stoffer hydrofile, dvs. at de lett fuktes av vann eller de kan absorbere vann, men foreneligheten med organiske polymerer er begrenset. På grunn av denne begrensede forenelighet kan de uorganiske stoffers hele potensial av farge, forsterkning eller kjemisk reaktivitet ikke fullt utnyttes. Inorganic substances have already for a long time been used as fillers, pigments, reinforcing agents and chemical reaction components in polymers. In general, these inorganic substances are hydrophilic, ie they are easily wetted by water or they can absorb water, but their compatibility with organic polymers is limited. Because of this limited compatibility, the inorganics' full potential of colour, enhancement or chemical reactivity cannot be fully exploited.

For å unngå disse vanskeligheter har man anvendt fuktemidler for å redusere spenningen i grenseflatene, men fuktemidlet oppviser også alvorlige mangler. Spesielt fordres relativt store mengder for å kunne oppnå en tilstrekkelig fukting av det finkornede, uorganiske materiale. Når fuktemidler anvendes i store mengder, reduserer de merkbart sluttblandingenes egenskaper. For å løse dette problem har man utviklet koblingsmidler. Disse kan oppdeles i to hovedklasser. Stoffer til-hørende den første av disse klasser har den største anvendelse og utgjøres av trialkoksyorganofunksjonelle silaner. Deres aktivitet er basert delvis på den kjemiske reaksjon mellom alkoksydelen og fyllstoffer og dels på reaksjonen mellom den organofunksjonelle del og polymergrunnmassen. Herved frembringes en direkte kjemisk binding mellom polymeren og fyllmidlet. Silaner har imidlertid visse mangler. Således er de i typiske tilfeller meget brennbare, vanskelige å behandle og ikke lette å blande i mange polymersystemer. Når polymerer ikke inneholder funksjonelle grupper eller når fyllmidlet ikke inneholder sure protoner, er silanene ofte ineffektive på grunn av deres manglende evne til å reagere. Således er f.eks. silaner ineffektive for termoplastiske hydrokarboner og fyllstoffer som kjønrøk, og i stor utstrekning også kalsiumkarbonat og svovel. To avoid these difficulties, wetting agents have been used to reduce the tension in the interfaces, but the wetting agent also exhibits serious shortcomings. In particular, relatively large amounts are required in order to achieve sufficient wetting of the fine-grained, inorganic material. When wetting agents are used in large quantities, they noticeably reduce the properties of the final mixture. To solve this problem, coupling means have been developed. These can be divided into two main classes. Substances belonging to the first of these classes have the greatest application and are made up of trialkoxyorganofunctional silanes. Their activity is based partly on the chemical reaction between the alkoxy part and fillers and partly on the reaction between the organofunctional part and the polymer matrix. This creates a direct chemical bond between the polymer and the filler. However, silanes have certain shortcomings. Thus, in typical cases, they are highly flammable, difficult to process and not easy to mix in many polymer systems. When polymers do not contain functional groups or when the filler does not contain acidic protons, the silanes are often ineffective due to their inability to react. Thus, e.g. silanes ineffective for thermoplastic hydrocarbons and fillers such as carbon black, and to a large extent also calcium carbonate and sulphur.

Den andre klassen koblingsmidler omfatter organotitanater, som kan fremstilles ved omsetning av tetraalkyltitanat med alifa-tiske eller aromatiske karboksylsyrer. Av spesiell inter-esse er di- og trialkoksyacyltitanat eller visse alkoksytri-acyltitanater. Disse titaner har imidlertid alvorlige mangler. Således har de f.eks. en tendens til spalting ved temperaturer som ofte anvendes ved fremstilling av mange polymerer. De har videre en tendens til å misfarge visse uorganiske stoffer som anvendes i polymersystemer, og de er videre uforenelige med mange polymersystemer. The second class of coupling agents comprises organotitanates, which can be prepared by reacting tetraalkyl titanate with aliphatic or aromatic carboxylic acids. Of particular interest are di- and tri- and tri- alkoxy acyl titanates or certain alkoxy tri-acyl titanates. However, these titans have serious flaws. Thus, they have e.g. a tendency to split at temperatures often used in the manufacture of many polymers. They also tend to discolor certain inorganic substances used in polymer systems, and they are also incompatible with many polymer systems.

Organotitanat eller blandinger av organotitanter ifølge den foreliggende oppfinnelse er karakterisert ved at forbindelsene enkeltvis tilsvarer formelen: Organotitanate or mixtures of organotitanates according to the present invention are characterized in that the compounds individually correspond to the formula:

der R er en lavere alkyl-, lavere halogenalkyl- eller halogen-substituert benzylgruppe, A er OCOZ der z er en vinyl-, metyl-2 2 vinyl- eller aminofenylgruppe; -OSC^R der R er en fenyl-, aminofenyl-, alkylfenyl- eller vinylkarbonylalkylgruppe; 3 3 -0P(0)(OR >2 der R er en langkjedet alifatisk gruppe; -0P(0)(OH)OP(O)(OR<4>)2 hvor R<4> er en langkjedet alifatisk alkylgruppe; eller OAr der Ar er en cumy1fenylgruppe; x + z er 4; where R is a lower alkyl, lower haloalkyl or halogen substituted benzyl group, A is OCOZ where z is a vinyl, methyl-22 vinyl or aminophenyl group; -OSC₂R where R is a phenyl, aminophenyl, alkylphenyl or vinylcarbonylalkyl group; 3 3 -0P(0)(OR>2 where R is a long-chain aliphatic group; -0P(0)(OH)OP(O)(OR<4>)2 where R<4> is a long-chain aliphatic alkyl group; or OAr where Ar is a cumylphenyl group, x + z is 4;

x og z enkeltvis kan være 1,2 eller 3; forutsatt at, når A er x and z individually can be 1,2 or 3; provided that, when A is

-OS02R<2>; -OP(0)(OR<3>)2 eller -OCOZ må z være 1. -OS02R<2>; -OP(0)(OR<3>)2 or -OCOZ z must be 1.

Eksempler på spesifikke liganer som kan representeres av R er: metyl, propyl, cyklopropyl og cykloheksyl. Examples of specific ligands that can be represented by R are: methyl, propyl, cyclopropyl and cyclohexyl.

Eksempler på A-ligander som kan benyttes ved gjennomføring av oppfinnelsen, inkluderer 11-tiopropy1-12-fenyloktadecylsulfon-, 2-nitrofenylsulfin-, di-2-omega-kloroktylfenylfosfat-, diiso-nikotinylpyrofosfat-, 2-nitro-3-jod-4-fluortiofenoksy-, fenyl-sulfin-, 4-amin-2-bron-7-naftylsulfon-, difenylpyrofosfat-, dietylheksylpyrofosfat-, di-sec.-heksylf enylf osf at-, dilauryl-fosfat-, metylsulfon-, laurylsulfon- og 3-metoksynaftalen-sulfingrupper. Examples of A-ligands that can be used in carrying out the invention include 11-thiopropyl-1-12-phenyloctadecylsulfone-, 2-nitrophenylsulfine-, di-2-omega-chlorooctylphenylphosphate-, diiso-nicotinyl pyrophosphate-, 2-nitro-3-iodo- 4-fluorothiophenoxy-, phenyl-sulfine-, 4-amine-2-bron-7-naphthylsulfone-, diphenylpyrophosphate-, diethylhexylpyrophosphate-, di-sec.-hexylph enylph osph at-, dilauryl-phosphate-, methylsulfone-, laurylsulfone- and 3-methoxynaphthalene-sulfine groups.

Arylgruppene er bl.a. fenyl og substituerte derivater derav. Substituerte arylderivater er bl.a. toluyl, xylyl, pseudokumyl, raesityl, isodurenyl, durenyl, pentametylfenyl, etylfenyl, n-propylfenyl, kumyl. The aryl groups are i.a. phenyl and substituted derivatives thereof. Substituted aryl derivatives are i.a. toluyl, xylyl, pseudocumyl, raesityl, isodurenyl, durenyl, pentamethylphenyl, ethylphenyl, n-propylphenyl, cumyl.

Aminsubstituerte komponenter er bl.a. metylaminotoluyl, tri-metylaminofenyl, dietylaminofenyl, aminometylfenyl, diamino-fenyl. Amine-substituted components are i.a. methylaminotoluene, trimethylaminophenyl, diethylaminophenyl, aminomethylphenyl, diaminophenyl.

Grupper som stammer fra aromatiske karboksylsyrer er også anvendelige. Blant disse skal nevnes metylkarboksylfenyl, dimetylamino-karboksyltoluyl, laurylkarboksyltoluyl, nitrokar-boksyltoluyl og aminokarboksylfenyl. Grupper som stammer fra substituerte alkylestere og amider av benzoesyre kan også anvendes. Blant disse skal nevnes aminokarboksylfenyl og met-oksykarboksyfenyl. Groups derived from aromatic carboxylic acids are also useful. Among these should be mentioned methylcarboxylphenyl, dimethylaminocarboxyltoluyl, laurylcarboxyltoluyl, nitrocarboxyltoluyl and aminocarboxylphenyl. Groups derived from substituted alkyl esters and amides of benzoic acid can also be used. Among these, aminocarboxylphenyl and methoxycarboxyphenyl should be mentioned.

Substituerte natfylgrupper er bl.a. nitronaftyl. Substituted natfill groups are i.a. nitronaphthyl.

En annen materialblanding ifølge foreliggende oppfinnelse omfatter reaksjonsprodukter fra reaksjonen mellom alkoksytitan-salter av ovenfor angitte type og uorganiske stoffer spesielt der x i ovenfor angitte formel er 3. Mengden omsatt titanat er minst 0,01, fortrinnsvis 0,1-5 deler og helst 0,2-2 deler pr. 100 deler uorganisk, fast materiale. Optimale, nødvendige andeler er en funksjon av de valgte komponenter, nemlig det faste, uorganiske materiale og alkoksytitansaltet på samme måte som finfordelingsgraden, dvs.det uorganiske, faste mater-ialets effektive overflateareal. Titanater reagerer på det uorganiske fyllmiddels overflate. Gruppene RO spaltes av og et organisk, hydrofobt yttersjikt dannes på det uorganiske, faste materiale. Det umodifiserte, uorganiske faste materiale er vanskelig å dispergere i et organisk medium på grunn av den hydrofile overflate. Organotitanforbindelsen kan blandes med det uorganiske, faste materiale i et organisk medium (lavmole-kylære væsker eller høyere molekylære polymerer, fast stoff). Alternativt kan organotitanatet først omsettes med det uorganiske, faste materiale i fravær av et organisk medium og deretter blandes med det sistnevnte. Another material mixture according to the present invention comprises reaction products from the reaction between alkoxytitanium salts of the above-mentioned type and inorganic substances, especially where x in the above-mentioned formula is 3. The amount of reacted titanate is at least 0.01, preferably 0.1-5 parts and preferably 0, 2-2 parts per 100 parts inorganic, solid material. Optimum, necessary proportions are a function of the selected components, namely the solid, inorganic material and the alkoxytitanium salt in the same way as the degree of fine distribution, i.e. the effective surface area of the inorganic, solid material. Titanates react on the surface of the inorganic filler. The groups RO are split off and an organic, hydrophobic outer layer is formed on the inorganic, solid material. The unmodified, inorganic solid material is difficult to disperse in an organic medium because of the hydrophilic surface. The organotitanium compound can be mixed with the inorganic solid material in an organic medium (low molecular weight liquids or higher molecular weight polymers, solid matter). Alternatively, the organotitanate can first be reacted with the inorganic solid material in the absence of an organic medium and then mixed with the latter.

Ved hjelp av foreliggende oppfinnelse forbedres dispergeringen av uorganisk materiale i organiske polymere medier, og man oppnår følgende fordeler: (1) forbedret reologi eller høyere innhold av dispergert materiale i det organiske medium, (2) høyere forsterkningsgrad ved anvendelse av fyllmiddel, noe som resulterer i forbedrede fysikalske egenskaper hos den fylte polymer, (3) mer fullstendig utnyttelse av den kjemiske reaktivitet, hvorved den nødvendige mengde av de uorganiske, reaktive, faste materialer reduseres, (4) effektivere anvendelse av pig-ment og opacifiseringsmidler, (5) høyere mengdeforhold mellom uorganisk og organisk materiale i en dispersjon og (6) kortere blandingstider for oppnåelse av dispersjon. By means of the present invention, the dispersion of inorganic material in organic polymeric media is improved, and the following advantages are achieved: (1) improved rheology or higher content of dispersed material in the organic medium, (2) higher degree of reinforcement when using filler, which results in improved physical properties of the filled polymer, (3) more complete utilization of the chemical reactivity, whereby the required amount of the inorganic, reactive, solid materials is reduced, (4) more efficient use of pigment and opacifiers, (5) higher quantity ratio between inorganic and organic material in a dispersion and (6) shorter mixing times for obtaining a dispersion.

Dessuten kan reaksjonen ifølge foreliggende oppfinnelse med RO-grupper gjennomføres uten reaksjonsmedium eller i et organisk medium, slik at man oppnår en væskeformig, fast eller pastalignende fast dispersjon, som kan anvendes for innbland-ing i det endelige polymersystem. Slike dispersjoner er meget stabile, dvs. de har ved oppbevaring en meget liten tendens til å avsette seg, skille seg eller herdne til ikke dispergerbar tilstand. Moreover, the reaction according to the present invention with RO groups can be carried out without a reaction medium or in an organic medium, so that a liquid, solid or paste-like solid dispersion is obtained, which can be used for mixing into the final polymer system. Such dispersions are very stable, i.e. they have very little tendency to settle, separate or harden to a non-dispersible state when stored.

Videre kan nevnes, at oppfinnelsen forenkler fremstillingen It can also be mentioned that the invention simplifies production

av uorganiske dispersjoner i organiske medier ved å tilby et middel for eliminering av oppløsningsmidler, redusere omkost-ningene for utrustningen og å redusere den tid og den energi som er nødvendig for dispergering av et uorganisk fast materiale, i en væske eller et polymert, organisk, fast materiale. of inorganic dispersions in organic media by providing a means of eliminating solvents, reducing equipment costs and reducing the time and energy required for dispersing an inorganic solid, in a liquid or a polymeric, organic, solid material.

Bruk av oppfinnelsens gjenstand resulterer i dannelsen av en forsterket polymer, som har lavere smelteviskositet, forbedrede fysikalske egenskaper og bedre pigmenteringsegenskaper enn tidligere kjente materialer innen dette industriområde. Use of the object of the invention results in the formation of a reinforced polymer, which has lower melt viscosity, improved physical properties and better pigmentation properties than previously known materials in this industrial area.

Det frembringes derved et produkt bestående av naturlige eller syntetiske polymerer, som inneholder partikkelformede eller fibrøse, uorganiske materialer, som forsterker, pigmenterer eller kjemisk reagerer med polymeren til et produkt med forbedrede fysikalske egenskaper, bedre bearbeidingsegenskaper og mer effektiv utnyttelse av pigmentet. A product is thereby produced consisting of natural or synthetic polymers, which contain particulate or fibrous, inorganic materials, which reinforce, pigment or chemically react with the polymer to a product with improved physical properties, better processing properties and more efficient utilization of the pigment.

Blant fordelene som kan oppnås ifølge denne utførelsesform, er muligheten til å unngå flyktige og brannfarlige oppløsnings-midler og dermed tørking av fyllmidlet eller gjenutvinning av oppløsningsmidlet. Videre reduseres dannelsen av flermolekyl-ære sjikt. Tilslutt skal nevnes, at dispersjonene ikke er oksyderende. Among the advantages that can be achieved according to this embodiment, is the possibility to avoid volatile and flammable solvents and thus drying of the filler or recovery of the solvent. Furthermore, the formation of multi-molecular layers is reduced. Finally, it should be mentioned that the dispersions are not oxidising.

De uorganiske materialer kan foreligge i form av partikler eller fibre med forskjellig form og størrelse, forutsatt at partiklenes eller fibrenes flater er reaktive overfor den hydrolyserbare gruppe i organo-titanforbindelsen. Eksempler på uorganiske forsterkningsmaterialer er metaller, leire, kjønrøk, kalsiumkarbonat, bariumsulfat, silisiumdioksyd, glimmer, glass og asbest. Reaktive uorganiske materialer er bl.a. metalloksyder av sink, magnesium, bly og kalsium og alu-minium, jernfilspon og -lignende samt svovel. Eksempler på uorganiske pigmenter er titandioksyd, jernoksyder, sinkkromat, ultramarinblått. I praksis bør de uorganiske materialer ikke ha en partikkelstørrelse på over 1 mm og fortrinnsvis bør partikkelstørrelsen ligge mellom 0,1 og 500 ym. The inorganic materials can be in the form of particles or fibers of different shape and size, provided that the surfaces of the particles or fibers are reactive towards the hydrolyzable group in the organo-titanium compound. Examples of inorganic reinforcement materials are metals, clay, carbon black, calcium carbonate, barium sulphate, silicon dioxide, mica, glass and asbestos. Reactive inorganic materials are i.a. metal oxides of zinc, magnesium, lead and calcium and aluminium, iron filings and the like as well as sulphur. Examples of inorganic pigments are titanium dioxide, iron oxides, zinc chromate, ultramarine blue. In practice, the inorganic materials should not have a particle size of more than 1 mm and preferably the particle size should lie between 0.1 and 500 um.

Det er viktig at alkoksytitansaltet blandes riktig med det uorganiske materiale, slik at det sistnevntes overflate It is important that the alkoxytitanium salt is properly mixed with the inorganic material, so that the latter's surface

reagerer tilstrekkelig. Den optimalt anvendte mengde av alkoksytitansalt beror på den ønskede virkning, det tilgjengelige overflateareal og mengden av i det uorganiske materiale bundet vann. responds adequately. The optimally used amount of alkoxytitanium salt depends on the desired effect, the available surface area and the amount of water bound in the inorganic material.

Reaksjonen lettes ved sammenblanding under egnede betingelser. Optimale resultater beror på alkoksytitansaltets egenskaper, nemlig hvorvidt det er et væskeformet eller fast materiale, og dettes spaltings- og flammepunkter. Man må beakte bl.a. partikkelstørrelsen, partiklenes geometri, den spesifikke vekt og den kjemiske sammensetning. Dessuten må det behandlede uorganiske materiale omhyggelig blandes med det polymere mediet. The reaction is facilitated by mixing under suitable conditions. Optimum results depend on the properties of the alkoxytitanium salt, namely whether it is a liquid or solid material, and its splitting and flash points. One must take into account, among other things, the particle size, the geometry of the particles, the specific gravity and the chemical composition. Also, the treated inorganic material must be carefully mixed with the polymeric medium.

De hensiktsmessige blandingsbetingelser avhenger av polymerens type, dvs. om den er en termoplast eller en herdeplast, polymerens kjemiske struktur etc, hvilket er åpenbart for fagmannen på dette område. The appropriate mixing conditions depend on the type of polymer, i.e. whether it is a thermoplastic or a thermosetting plastic, the chemical structure of the polymer, etc., which is obvious to the person skilled in the art.

Når det uorganiske materiale forbehandles med det organiske titanat, kan sammenblandingen gjennomføres i en hvilken som helst egnet intensivblander, f.eks. en Henschel-blander, en Hobart-blander eller en Waring-blander. Man kan også anvende en hånddrevet blander. Optimal tid og temperatur bestemmes for oppnåelse av vesentlig reaksjon mellom det uorganiske materiale og det organiske titanat. Blandingen gjennomføres under de betingelser under hvilke det organiske titanat foreligger i væskefase ved temperaturer under spaltningstemperaturen. Selv om det er hensiktsmessig at hovedmengden av de hydrolyserbare grupper reagerer i dette trinn, er dette ikke vesentlig i de tilfeller materialene senere skal blandes sammen med en polymer, da reaksjonen i det vesentlige kan sluttføres i dette sistnevnte blandingstrinn. When the inorganic material is pretreated with the organic titanate, the mixing can be carried out in any suitable intensive mixer, e.g. a Henschel mixer, a Hobart mixer or a Waring mixer. You can also use a hand-operated mixer. Optimum time and temperature are determined to achieve substantial reaction between the inorganic material and the organic titanate. The mixture is carried out under the conditions under which the organic titanate is present in liquid phase at temperatures below the decomposition temperature. Although it is appropriate that the main amount of the hydrolyzable groups react in this step, this is not essential in cases where the materials are later to be mixed together with a polymer, as the reaction can essentially be completed in this latter mixing step.

Polymerbearbeiding, f.eks. sammenblanding under sterk kraftpå-virkning, gjennomføres generelt ved en temperatur godt over polymerens andre omdanningstemperatur, hensiktsmessig ved en temperatur der polymeren har en lav smelteviskositet. Som eksempel på optimale bearbeidingstemperaturer skal nevnes følgende: For Ld-polyeten 170-230°C, for HD-polyeten 200-245°C, for polystyren 230-260°C og for polypropen 230-290°C. Fagmannen kjenner til temperaturen for blanding av andre polymerer, og disse temperaturer finnes angitt i litteraturen. Et antall blandere kan anvendes, f.eks. tovalse-verk, Banbury-blandere, blandere med doble konsentriske skruer, mot- og medroterende tvillingskruer og Werner- og Pfaulder- og Busse-blandere av ZSK-typen. Polymer processing, e.g. mixing under strong force is generally carried out at a temperature well above the polymer's second transformation temperature, suitably at a temperature where the polymer has a low melt viscosity. The following should be mentioned as examples of optimal processing temperatures: For Ld polyethylene 170-230°C, for HD polyethylene 200-245°C, for polystyrene 230-260°C and for polypropylene 230-290°C. The person skilled in the art knows the temperature for mixing other polymers, and these temperatures can be found in the literature. A number of mixers can be used, e.g. twin roll mills, Banbury mixers, double concentric screw mixers, counter- and co-rotating twin screws and ZSK-type Werner, Pfaulder and Busse mixers.

Når det organiske titanat og de uorganiske materialer tørrblan-des, oppnås en fullstendig sammenblanding og/eller reaksjon ikke så lett, og reaksjonen kan vesentlig sluttføres når det behandlede fyllmiddel innblandes i polymeren. I dette siste trinn kan det organiske titanatet også reagere med det polymere materiale hvis en eller flere av de tilstedeværende grupper er reaktive overfor polymeren. When the organic titanate and the inorganic materials are dry-mixed, a complete mixing and/or reaction is not easily achieved, and the reaction can be substantially completed when the treated filler is mixed into the polymer. In this last step, the organic titanate can also react with the polymeric material if one or more of the groups present are reactive towards the polymer.

Det behandlede fyllmiddel kan innblandes i et hvilket som helst konvensjonelt polymermateriale, enten dette er en termoplast eller en herdeplast, en gummi eller en harpiks. Fyllmiddel-mengden beror på polymermaterialet, fyllmidlet selv og de egenskaper som ønskes for sluttproduktet. Generelt kan det sies at 10-500, fortrinnsvis 20-250 deler fyllmiddel kan anvendes pr. 100 deler polymer. Optimal mengde kan lett bestemmes av fagmannen. The treated filler can be incorporated into any conventional polymeric material, whether it is a thermoplastic or a thermosetting plastic, a rubber or a resin. The amount of filler depends on the polymer material, the filler itself and the properties desired for the final product. In general, it can be said that 10-500, preferably 20-250 parts of filler can be used per 100 parts polymer. The optimum amount can be easily determined by the person skilled in the art.

For ytterligere å belyse oppfinnelsen gis det nedenfor et To further elucidate the invention, a

antall eksempler. I visse av disse eksempler angis antallet ligander pr. molekyl med en brøkdel. I så fall representerer strukturformelen en blanding av forbindelser, og brøken er gjennomsnittet for antallet ligander i blandingen. number of examples. In some of these examples, the number of ligands per molecule with a fraction. In that case, the structural formula represents a mixture of compounds, and the fraction is the average of the number of ligands in the mixture.

De følgende eksempler skal illustrere oppfinnelsen. The following examples shall illustrate the invention.

Eksempel A: Fremstilling av isooktyloksy-tri(kumylfenoksy)titan Et metallkar fåret med pyrexglass og utrustet med røreverk, indre oppvarmings- og kjøleorganer, en dampkondensator og en destillasjonsfelle beskikkes med 1 mol isooktanol, 3 mol blandet isomer av kumylfenol og 2 liter blandet isomerxylen. Reaksjonsblandingen omrøres, gjennomblåses med nitrogen og 4,2 mol natriumamid tilsettes med en således regulert hastighet under avkjøing at reaksjonsmassens temperatur ikke overstiger ca.lOO°C. Den som biprodukt dannede ammoniakk ble blåst av. Natrium-amidbehandlingen ga en dannelse av en tung oppslemming som ble kokt under tilbakeløp i ca. 10 min. i og for fjerning av deri oppløst ammoniakk. Reaksjonsblandingen ble deretter avkjølt til omtrent 90°C og holdt ved denne temperatur, mens 1 mol TiCl4 ble tilsatt i løpet av 3 timer. Etter TiCl4-tilset-ningen ble blandingen kokt i 2 timer under tilbakeløp, avkjølt til omtrent 100°C og filtrert. Filterkaken ble vasket med omtrent 500 cm 3 xylen og kastet. Vaskevæsken ble kombinert med moderluten og tilsatt til en destillasjonsinnretning. Flyktige bestanddeler ble fjernet, slik at man oppnådde en Example A: Preparation of isooctyloxy-tri(cumylphenoxy)titanium A metal vessel covered with pyrex glass and equipped with a stirrer, internal heating and cooling devices, a steam condenser and a distillation trap is coated with 1 mol of isooctanol, 3 mol of mixed isomers of cumylphenol and 2 liters of mixed isomer xylene . The reaction mixture is stirred, blown through with nitrogen and 4.2 mol of sodium amide are added at such a controlled rate while cooling that the temperature of the reaction mass does not exceed approx.100°C. The ammonia formed as a by-product was blown off. The sodium amide treatment resulted in the formation of a heavy slurry which was refluxed for approx. 10 minutes in and for the removal of ammonia dissolved therein. The reaction mixture was then cooled to approximately 90°C and held at this temperature, while 1 mol of TiCl4 was added over 3 hours. After the TiCl 4 addition, the mixture was refluxed for 2 hours, cooled to about 100°C and filtered. The filter cake was washed with approximately 500 cm 3 xylene and discarded. The wash liquor was combined with the mother liquor and added to a still. Volatiles were removed to give a

rest (bottoms) med et kokepunkt på 10 mm Hg på over 150°C, en rest som veide ca. 800 g (dette er over 95% av det teoretiske). Elementæranalyse av resten, en mørkerød pasta eller en blank, fast substans, ga resultater i overensstemmelse med formelen (i-Cg H170)TiZTOC6H4C(CH3) 2C6H573- residue (bottoms) with a boiling point of 10 mm Hg of over 150°C, a residue weighing approx. 800 g (this is over 95% of the theoretical). Elemental analysis of the residue, a dark red paste or a clear solid, gave results consistent with the formula (i-Cg H170)TiZTOC6H4C(CH3)2C6H573-

Eksempel B: Fremstilling av (o-ClC6H4CH20) 1 2Ti(OS02C6H4NH2)2 8 Example B: Preparation of (o-ClC6H4CH20) 1 2Ti(OS02C6H4NH2)2 8

I en reaksjonsapparatur av den type som er beskrevet i eks. A ble det oppvarmet en oppløsning av 1 mol tetraisopropyltit-anat i 2 liter 2,6-dimetylnaftalen ved 200°C. Mens denne temepratur opprettholdes i 2,5 timer, tilsettes 1,25 mol orto-klorbenzylalkohol og umiddelbart deretter 2,8 mol blandede isomerer av aminobenzensulfonsyre. De som biprodukt dannede flyktige bestanddeler (i hovedsaken metanol) ble uavbrutt fjernet ved destillasjon. Etter at reaksjonsblandingen var av-kjølt, ble den faste, grå substans filtrert av, vasket med cykloheksan og tørket i en vakuumovn, hvorved man oppnådde ca. 565 g (82% utbytte) av en grå, fast substans. Dette produkt viste seg å ha en elementæranalyse og et OH-tall som var i overensstemmelse med den ovenfor angitte formel. In a reaction apparatus of the type described in ex. A, a solution of 1 mol of tetraisopropyl titanate in 2 liters of 2,6-dimethylnaphthalene was heated at 200°C. While this temperature is maintained for 2.5 hours, 1.25 moles of ortho-chlorobenzyl alcohol are added and immediately thereafter 2.8 moles of mixed isomers of aminobenzenesulfonic acid. The volatile components formed as a by-product (mainly methanol) were continuously removed by distillation. After the reaction mixture had cooled, the solid, gray substance was filtered off, washed with cyclohexane and dried in a vacuum oven, whereby approx. 565 g (82% yield) of a gray solid. This product was found to have an elemental analysis and an OH number consistent with the above formula.

For ytterligere å belyse oppfinnelsen gis i det følgende eksempler på fremstillingsmetoder. In order to further illustrate the invention, examples of production methods are given in the following.

Eksempel 1 Example 1

En forrådsbeholdning ble fremstilt av følgende bestanddeler: A stockpile was prepared from the following components:

100 deler klorsulfonert, klorert polyeten ("HYPALON 40"), 4 deler finfordelt magnesiumoksyd, 2 deler lavmolekylær polyeten, 84 deler kalsiumkarbonat, 30 deler av en høyaromatisk olje ("KENPLAST RD"), 3 deler pentaerytritol 200 og 2 deler av en akselerator ("TETRONE A"). Det ble prøvet fire blandinger. Den første besto av ovenstående bestanddeler uten ytterligere tilsetninger og fungerte som kontrollprøve. Til blandingene A, B og C ble det satt 1% (beregnet på fyllstoffmengden) av følgende forbindelse ifølge oppfinnelsen: 100 parts of chlorosulfonated, chlorinated polyethylene ("HYPALON 40"), 4 parts of finely divided magnesium oxide, 2 parts of low molecular weight polyethylene, 84 parts of calcium carbonate, 30 parts of a highly aromatic oil ("KENPLAST RD"), 3 parts of pentaerythritol 200 and 2 parts of an accelerator ("TETRONE A"). Four mixtures were tested. The first consisted of the above ingredients without further additions and served as a control sample. To the mixtures A, B and C, 1% (calculated on the amount of filler) of the following compound according to the invention was added:

Alle blandingene ble vulkanisert ved 152°C i 30 min. I tabell A angis egenskapene for de fire forbindelser, slik de opp-rinnelig ble prøvet og etter en ovnsaldring i 7 dager ved 121°C. De ovenfor angitte data viser blant annet klart at blandingene ifølge oppfinnelsen har en lavere elastisitetsmodul enn kontrollprøven. Dessuten har blandingenC en vesentlig bedre rivestyrke. All the mixtures were vulcanized at 152°C for 30 min. Table A shows the properties of the four compounds, as they were originally tested and after oven aging for 7 days at 121°C. The above-mentioned data clearly show, among other things, that the mixtures according to the invention have a lower modulus of elasticity than the control sample. In addition, the mixture C has a significantly better tear strength.

Dette er en fordel for polyvinylkloridplastisoler, fordi lav viskositet betyr lavt energiforbruk ved bearbeidingen. Den reduserte elastisitetsmodul og hårdheten for blandingen D er av betydning, for tidligere har det vært nødvendig å anvende vesentlige mengder mykningsmiddel for å oppnå slike egenskaper. Dessuten er det ikke mulig med mykningsmiddel kun å redusere hårdheten og elastisitetsmodulen under opprettholdelse av en konstant bruddforlengelse. This is an advantage for polyvinyl chloride plastisols, because low viscosity means low energy consumption during processing. The reduced modulus of elasticity and the hardness of the mixture D are important, because in the past it has been necessary to use significant amounts of plasticizer to achieve such properties. Moreover, it is not possible with a plasticizer only to reduce the hardness and modulus of elasticity while maintaining a constant elongation at break.

Eksempel 2 Example 2

I dette eksempel vises forbindelsenes ifølge oppfinnelsen anvendbarhet for modifisering av egenskapene hos en med kalsiumkarbonat fylt, og bøyelig polyvinylkloridblanding. En kontrollprøve ble fremstilt av 100 deler PVC-harpiks med middelmolekylvekt, 1 del stabilisator ("DS 207"), 67 deler dioktylftalat og 50 deler finfordelt kalsiumkarbonat. Dessuten ble det fremstilt fem ytterligere blandinger med samme sammensetning som kontrollprøven, men hver og en av disse var modifisert ved at de i en blander var bearbeidet ved omtrent 88°C i 3 min. med 0,5 vekt-% (beregnet på kalsium-karbonatet) av følgende forbindelser: In this example, the applicability of the compounds according to the invention for modifying the properties of a flexible polyvinyl chloride mixture filled with calcium carbonate is shown. A control sample was prepared from 100 parts average molecular weight PVC resin, 1 part stabilizer ("DS 207"), 67 parts dioctyl phthalate and 50 parts finely divided calcium carbonate. In addition, five additional mixtures were prepared with the same composition as the control sample, but each of these was modified by being processed in a mixer at approximately 88°C for 3 min. with 0.5% by weight (calculated on the calcium carbonate) of the following compounds:

I følgende tabell er egenskapene hos kontrollprøven og blandingene ifølge oppfinnelsen oppsummert: In the following table, the properties of the control sample and the mixtures according to the invention are summarized:

Av de i tabell C oppsummerte data fremgår fordelene ved blandingene ifølge oppfinnelsen helt tydelig. Blandingen E From the data summarized in table C, the advantages of the mixtures according to the invention appear quite clearly. The mixture E

viser en redusert elastisitetsmodul og en øket bruddforlengelse uten forringelse av strekkbruddgrensen. Blandingen H oppviser en forbedret bruddforlengelse uten tap av elastisitetsmodul eller hårdhet. shows a reduced modulus of elasticity and an increased elongation at break without deterioration of the tensile strength. The mixture H exhibits an improved elongation at break without loss of modulus of elasticity or hardness.

Eksempel 2 Example 2

For å vise oppfinnelsens anvendbarhet for modifisering av egenskapene hos styren-butadien-kopolymergummi inneholdende kjønrøk som fyllstoff, ble det fremstilt fire blandinger. To av disse ble anvendt som kontrollprøver. Den første, nemlig kontrollprøve 1, inneholdt 100 deler styren-butadienpolymer, To demonstrate the applicability of the invention for modifying the properties of styrene-butadiene copolymer rubber containing carbon black as filler, four mixtures were prepared. Two of these were used as control samples. The first, namely control sample 1, contained 100 parts of styrene-butadiene polymer,

50 deler kjønrøk ("HAF"), 4 deler sinkoksyd, 2 deler svovel, 50 parts carbon black ("HAF"), 4 parts zinc oxide, 2 parts sulphur,

1 del akselerator ("SANTOCURE NS"), 1 del stearinsyre, 10 deler aromatisk strekkmiddel i form av olje og 2 deler av en antioksydant ("NEOZONE"). Den andre kontrollprøve stemte i det vesentlige overens med den første, og den eneste forskjell var at kjønrøken var forbehandlet med 1% Ca(OCl)2 ved 38°C i 1 min. for forbedring av kjønrøkens evne til kobling med titanatet. 1 part accelerator ("SANTOCURE NS"), 1 part stearic acid, 10 parts aromatic stretching agent in the form of oil and 2 parts of an antioxidant ("NEOZONE"). The second control sample essentially agreed with the first, and the only difference was that the carbon black was pre-treated with 1% Ca(OCl)2 at 38°C for 1 min. for improving the carbon black's ability to link with the titanate.

Blandingen M var identisk med kontrollprøve 1, men inneholdt dessuten 2 deler (i-C^H^O)^ gTi(OCgH^C(CH^)2^6H5^ 3,0* The mixture M was identical to control sample 1, but also contained 2 parts (i-C^H^O)^ gTi(OCgH^C(CH^)2^6H5^ 3.0*

I tabell D nedenfor angis de fire blandingers fysikalske egenskaper, etter vulkanisering ved 166°C i 30 min. Table D below shows the physical properties of the four mixtures, after vulcanization at 166°C for 30 min.

Oppfinnelsens fordeler fremgår av de ovenfor angitte data. Det er å merke seg at blandingen M oppviser forbedret elastisitetsmodul og vesentlig redusert permanent forlengelse ved brudd. Denne opprettholdelse av dimensjonsstabiliteten ved brudd er en spesielt gunstig egenskap ved anvendelse av materialet f. eks. i støtdempere. The advantages of the invention are apparent from the above data. It is to be noted that the mixture M exhibits improved modulus of elasticity and significantly reduced permanent elongation at break. This maintenance of dimensional stability upon breakage is a particularly favorable property when using the material, e.g. in shock absorbers.

Eksempel 3 Example 3

I dette eksempel vises hvordan forbindelsene ifølge oppfinnelsen beskytter polyeten inneholdende mineralske fyllmiddel mot angrep fra vannholdig syre. This example shows how the compounds according to the invention protect the polyethylene containing mineral fillers against attack by aqueous acid.

To prøvelegemer med dimensjonene 25x75x3 mm ble fremstilt ved formsprøyting på identisk samme måte, den ene av HD-polyeten inneholdende 50 vekt-% magnesiumsilikat som fyllmiddel, og den andre av HD-polyeten inneholdende 50% magnesiumsilikat som var forbehandlet ved ca. 38°C med 1 vekt-% (CH30)x 2Ti(OS02C6 H4C12H25^ 2 8 ^'^ m^- n' ^ en intensivblander. De således oppnådde prøvelegemer ble prøvet med henblikk på deres mot-stand mot syreetsing ved at en dråpe 8%-ig saltsyre ble plassert på hvert av prøvelegemene som deretter ble dekket med hver sin petriskål. Det hele ble aldret i ovn ved 38°C Two specimens with dimensions 25x75x3 mm were produced by injection molding in identically the same way, one of HD polyethylene containing 50% by weight magnesium silicate as filler, and the other of HD polyethylene containing 50% magnesium silicate which had been pre-treated at approx. 38°C with 1% by weight (CH30)x 2Ti(OS02C6 H4C12H25^ 2 8 ^'^ m^- n' ^ an intensive mixer. The thus obtained specimens were tested for their resistance to acid etching by placing a drop 8% hydrochloric acid was placed on each of the specimens which were then covered with a separate petri dish and aged in an oven at 38°C

i 2 4 timer. Ved visuell granskning av de aldrede prøvelegemer viste det seg at den som inneholdt ubehandlet magnesiumsilikat hadde vesentlig kraftigere misfarging enn den andre. Lignende iakttagelser ble gjort ved parallellforsøk, ifølge hvilke plasten ble fylt med samme innhold av et behandlet hhv. ubehandlet, vannfritt kalsiumsulfat i stedet for det behandlede hhv. ubehandlede magnesiumsilikat. for 2 4 hours. On visual inspection of the aged test specimens, it turned out that the one containing untreated magnesium silicate had significantly stronger discoloration than the other. Similar observations were made in parallel experiments, according to which the plastic was filled with the same content of a treated or untreated, anhydrous calcium sulphate instead of the treated or untreated magnesium silicate.

Eksempel 4 Example 4

I dette eksempel vises anvendelsen av følgende forbindelser ifølge foreliggende oppfinnelse, nemlig: (R) (CH30)Ti(OCOCH= CH2)3, (S) (i-C3H70)TiZOCOC(CH3)=CH273, (T) (i-C^O) 2Ti (0S02 CH2CH2COCH=CH2) 2 og (U) (BrCH2CH20) TiZ"(OP (0) (OCH2CH=CH2) ^73 , som middel for modifisering av polyesterharpiksers bøyelighet. In this example, the use of the following compounds according to the present invention is shown, namely: (R) (CH3O)Ti(OCOCH=CH2)3, (S) (i-C3H70)TiZOCOC(CH3)=CH273, (T) (i-C^O ) 2Ti (0S02 CH2CH2COCH=CH2) 2 and (U) (BrCH2CH20) TiZ"(OP (0) (OCH2CH=CH2) ^73 , as means of modifying the flexibility of polyester resins.

Blandingene ble fremstilt av 100 deler av en koboltaktivert polyesterharpiks ("GR 643"), 1 del metyletylketonperoksyd, 60 deler kalsiumkarbonat med stort overflateareal og 0,3 deler alkoksytitansalt, alt ifølge nedenstående tabell. The blends were prepared from 100 parts of a cobalt-activated polyester resin ("GR 643"), 1 part methyl ethyl ketone peroxide, 60 parts high surface area calcium carbonate, and 0.3 part alkoxytitanium salt, all according to the table below.

Prøvelegemer med dimensjonene 13x127x3 mm ble støpt og vulkanisert ved romtemperatur i 30 min. De støpte prøvelegemer ble prøvet, og de derved oppnådde resultater er oppsummert i tabell F. Samples with dimensions 13x127x3 mm were cast and vulcanized at room temperature for 30 min. The cast specimens were tested, and the results obtained are summarized in table F.

Av de ovenfor angitte data fremgår det klart at organotitanatet ifølge oppfinnelsen gir materialet forbedrede bøynings-egenskaper. From the above data it is clear that the organotitanate according to the invention gives the material improved bending properties.

Ved valg av organotitanatforbindelsene må man beakte det uorganiske fyllmidlets vanninnhold. Hvis det i fyllmidlet foreligger fritt eller løst bundet vann (slik det f.eks. er tilfelle med vannvaskede leirer, hydratisert kiseldioksyd, aluminiumoksydgel, magnesiumsilikat, talkum, fiberglass og aluminiumsilikat) foretrekkes pyrofosfatkoblingsmidler. Dette fremgår av følgende eksempel. When choosing the organotitanate compounds, the water content of the inorganic filler must be taken into account. If there is free or loosely bound water in the filler (as is the case, for example, with water-washed clays, hydrated silica, aluminum oxide gel, magnesium silicate, talc, fiberglass and aluminum silicate), pyrophosphate coupling agents are preferred. This is evident from the following example.

Eksempel 5 Example 5

Man fremstilte en blanding av 30 vektdeler kaolin (ukalsin-ert, vannvasket leire) og 70 deler mineralolje. Til porsjoner av slike bladninger ble det satt 0,6 vektdeler av tre organo-titanatf orbindelser . Brookfield-viskositetene for disse dispersjoner sammenlignes i tabell G: A mixture of 30 parts by weight of kaolin (uncalcined, water-washed clay) and 70 parts of mineral oil was prepared. To portions of such leaves, 0.6 parts by weight of three organo-titanate compounds were added. The Brookfield viscosities of these dispersions are compared in Table G:

Av de i ovenstående tabellsammenfattede resultater, der den første forbindelsen representerer kjent teknikk, fremgår det klart at hver av forbindelsene reduserer viskositeten hos dispersjonen av leire i mineralolje. Man skal imidlertid merke seg at isopropyl-tri(dioktylpyrofosfato)titanat helt overraskende gir bedre viskositetsminskning. Dette reduserer betydelig energiforbruket ved blanding av leiren. From the results summarized in the table above, where the first compound represents prior art, it is clear that each of the compounds reduces the viscosity of the dispersion of clay in mineral oil. However, it should be noted that isopropyl tri(dioctylpyrophosphato)titanate quite surprisingly gives a better viscosity reduction. This significantly reduces energy consumption when mixing the clay.

Eksempel 6 Example 6

Isopropyl-tri(dioktylpyrofosfat)titanatet reduserer også viskositeten hos kaolin (ikke-kalsinert, vannvasket, myk leire) dispergert i klorert parafin. For å bevise dette ble det fremstilt en blanding av 30 vektdeler kaolin og 70 vektdeler av en klorert parafin med molekylvekt ca. 580. Brookfield-viskositeten ble bestemt i fravær av organotitanatet og etter tilsetning av 0,3 vektdeler av dette. Resultatene viser at Brookfield-viskositeten i cP ved 25°C ble redusert fra 90.000 til 18.000 ved tilsetning av titanatet. The isopropyl tri(dioctyl pyrophosphate) titanate also reduces the viscosity of kaolin (uncalcined, water-washed, soft clay) dispersed in chlorinated paraffin. To prove this, a mixture of 30 parts by weight of kaolin and 70 parts by weight of a chlorinated paraffin with a molecular weight of approx. 580. The Brookfield viscosity was determined in the absence of the organotitanate and after the addition of 0.3 parts by weight thereof. The results show that the Brookfield viscosity in cP at 25°C was reduced from 90,000 to 18,000 when the titanate was added.

Eksempel 7 Example 7

I dette eksempel vises viskositetsreduksjonen som oppnås In this example, the viscosity reduction achieved is shown

med isopropyl-rtri (dioktylpyrof osf at) titanet i en dispersjon av talkum i en tung mineralolje. Kontrollprøven innehoHt 60 vekt-% talkum og 40 vekt-% av en tung mineralolje (flamme-punkt ca. 105°C). I den titanbehandlede blanding tørrblandes 1,8 deler av den ovenfor nevnte forbindelse ved 85°C i en Waring-blander med talkum (3 vekt-% regnet på talkummengden). with isopropyl-rtri(dioctylpyrophosph at) titanium in a dispersion of talc in a heavy mineral oil. The control sample contained 60% by weight of talc and 40% by weight of a heavy mineral oil (flash point approx. 105°C). In the titanium-treated mixture, 1.8 parts of the above-mentioned compound are dry-mixed at 85°C in a Waring mixer with talc (3% by weight calculated on the amount of talc).

0~ o Kontrollprøven hadde en Brookfield-viskositet ved 25 <- pa 26.500. I motsetning til dette hadde blandingen ifølge oppfinnelsen en viskositet av bare 11.000. Talkum er et annet eksempel på fyllstoff med høyt vanninnhold. 0 ~ o The control sample had a Brookfield viscosity at 25 <- pa 26,500. In contrast, the mixture according to the invention had a viscosity of only 11,000. Talc is another example of a filler with a high water content.

Eksempel 8 Example 8

I dette eksempel vises organotitanatets innvirkning på polyvinylklorids slagfasthet. Den relative slagfasthet ifølge Gardner for en blanding inneholdende 100% stiv PVC, sammenlignes med den for en fylt blanding inneholdende 40% av en finmalt kalsiumkarbonat (partikkelstørrelse 1-2 pm). Prøver av de fylte blandinger ble også blandet sammen med varierende mengder av titanatsaltene, slik det fremgår av tabell H. Alle prøver i denne tabell består av den fylte blanding med unntak av den første, som utgjøres av 100% stiv In this example, the effect of the organotitanate on the impact resistance of polyvinyl chloride is shown. The relative impact strength according to Gardner for a mixture containing 100% rigid PVC is compared to that of a filled mixture containing 40% of a finely ground calcium carbonate (particle size 1-2 pm). Samples of the filled mixtures were also mixed together with varying amounts of the titanate salts, as shown in Table H. All samples in this table consist of the filled mixture with the exception of the first, which consists of 100% stiff

PVC. PVC.

De i ovenstående tabell sammenfattede resultater viser klart at slagfastheten for fylt PVC alltid forbedres ved tilsetning av titanatene. Den mest påfallende forbedring oppnås ved tilsetning av pyrofosfatforbindelsen, som gir materialet en slagfasthet, som overstiger slagfastheten hos den rene harpiks (100% PVC). The results summarized in the above table clearly show that the impact resistance of filled PVC is always improved by the addition of the titanates. The most striking improvement is achieved by the addition of the pyrophosphate compound, which gives the material an impact strength that exceeds the impact strength of the pure resin (100% PVC).

Claims (1)

Organotitanat eller blandinger av slike som kan brukes som koblingsmidler mellom uorganiske stoffer og polymerer,karakterisert ved at forbindelsene enkeltvis tilsvarer formelen; der R er en lavere alkyl-, lavere halogenalkyl- eller halo-gensubstituert benzylgruppe, A er OCOZ der Z er en vinyl-, metylvinyl- eller ammo f enylgruppe; OSO2R 2 der R 2 er en fenyl-, aminofenyl-, alkylfenyl- eller vinylkarbonylalkylgruppe; -OP(0)(OR 3 )2 der R 3 er en langkjedet alifatisk gruppe; -0P(0)(OH)OP(O)(OR<4>)2 hvori R<4> er en langkjedet alifatisk alkylgruppe; eller OAr er Ar er en cumylfenylgruppe; x + z er 4; x og z enkeltvis kan være 1, 2 eller 3; forutsatt at, når A er -OS02R 2 > -0P(0)(OR 3>2 eller -OCOZ må z være 1.Organotitanate or mixtures thereof which can be used as coupling agents between inorganic substances and polymers, characterized in that the compounds individually correspond to the formula; where R is a lower alkyl, lower haloalkyl or halogen substituted benzyl group, A is OCOZ where Z is a vinyl, methyl vinyl or ammo phenyl group; OSO 2 R 2 where R 2 is a phenyl, aminophenyl, alkylphenyl or vinylcarbonylalkyl group; -OP(0)(OR 3 ) 2 where R 3 is a long-chain aliphatic group; -OP(0)(OH)OP(O)(OR<4>)2 wherein R<4> is a long chain aliphatic alkyl group; or OAr is Ar is a cumylphenyl group; x + z is 4; x and z individually can be 1, 2 or 3; provided that, when A is -OS02R 2 > -0P(0)(OR 3>2 or -OCOZ z must be 1.
NO761634A 1975-05-15 1976-05-12 ORGANOTITANATES OR MIXTURES OF ORGANOTITANATES. NO158220C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/577,922 US4094853A (en) 1975-05-15 1975-05-15 Alkoxy titanate salts useful as coupling agents
US05/618,224 US4122062A (en) 1975-05-15 1975-09-30 Alkoxy titanate salts useful as coupling agents

Publications (3)

Publication Number Publication Date
NO761634L NO761634L (en) 1976-11-16
NO158220B true NO158220B (en) 1988-04-25
NO158220C NO158220C (en) 1988-08-03

Family

ID=27077376

Family Applications (1)

Application Number Title Priority Date Filing Date
NO761634A NO158220C (en) 1975-05-15 1976-05-12 ORGANOTITANATES OR MIXTURES OF ORGANOTITANATES.

Country Status (14)

Country Link
JP (1) JPS6025437B2 (en)
AU (1) AU507656B2 (en)
CA (1) CA1103266A (en)
CH (1) CH598305A5 (en)
DE (1) DE2621463A1 (en)
FR (1) FR2311054A1 (en)
GB (1) GB1525418A (en)
IN (1) IN145196B (en)
IT (1) IT1062738B (en)
LU (1) LU74955A1 (en)
MX (2) MX7677E (en)
NL (1) NL186162C (en)
NO (1) NO158220C (en)
SE (1) SE429969B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2640335A1 (en) * 1973-12-04 1978-03-09 Ppg Industries Inc COATED SUBSTRATE AND METHOD FOR MANUFACTURING IT
CA1099045A (en) * 1975-09-30 1981-04-07 Salvatore J. Monte Filled polyesters containing organic titanate esters
FR2449114A1 (en) * 1979-02-19 1980-09-12 Malvern Minerals Cy Filler or pigment prepn. for polymer or ceramic compsns. - by applying silane, titanate or silicone coupling agent to particulate or fibrous solid
FR2478839B1 (en) * 1980-03-20 1987-07-17 Bull Sa POWDER FOR THE DEVELOPMENT OF LATENT IMAGES AND ITS MANUFACTURING METHOD
US4957939A (en) * 1981-07-24 1990-09-18 Schering Aktiengesellschaft Sterile pharmaceutical compositions of gadolinium chelates useful enhancing NMR imaging
US4647447A (en) * 1981-07-24 1987-03-03 Schering Aktiengesellschaft Diagnostic media
JPS58225147A (en) * 1982-06-21 1983-12-27 Sakai Chem Ind Co Ltd Resin composition containing chlorine
JPS60202138A (en) * 1984-03-26 1985-10-12 Sumitomo Electric Ind Ltd Resin composition
ZA856422B (en) * 1984-05-24 1987-09-30
GB8414705D0 (en) * 1984-06-08 1984-07-11 Wiggins Teape Group Ltd Coating substrates
GB8418518D0 (en) * 1984-07-20 1984-08-22 Tioxide Group Plc Compositions incorporating titanium compounds
GB8418517D0 (en) * 1984-07-20 1984-08-22 Tioxide Group Plc Titanium compositions
DE3502994A1 (en) * 1985-01-30 1986-07-31 Obi 6254 Elz Jacobson FUELED FLUORED CARBON POLYMERS
GB8825864D0 (en) * 1988-11-04 1988-12-07 Tioxide Group Plc Curable compositions
RU2515437C2 (en) 2009-06-22 2014-05-10 Бореалис Аг Stabilised composite based on talc-filled polypropylene
US9315636B2 (en) * 2012-12-07 2016-04-19 Az Electronic Materials (Luxembourg) S.A.R.L. Stable metal compounds, their compositions and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1049573A (en) * 1950-11-29 1953-12-30 Titan Co Organo-metallic compounds
US3422126A (en) * 1965-03-19 1969-01-14 Du Pont Preparation of titanium alkylorthophosphates
DE2051924B2 (en) * 1969-10-30 1979-07-12 Freeport Minerals Co., New York, N.Y. (V.St.A.) Inorganic organotitanate composition
US3697474A (en) * 1969-10-30 1972-10-10 Freeport Sulphur Co Organo-clay-polymer compositions

Also Published As

Publication number Publication date
NO761634L (en) 1976-11-16
IN145196B (en) 1978-09-09
AU507656B2 (en) 1980-02-21
MX4930E (en) 1983-01-04
DE2621463A1 (en) 1976-11-25
NL186162B (en) 1990-05-01
SE429969B (en) 1983-10-10
AU1395376A (en) 1977-11-17
NO158220C (en) 1988-08-03
CA1103266A (en) 1981-06-16
NL186162C (en) 1990-10-01
LU74955A1 (en) 1977-12-13
GB1525418A (en) 1978-09-20
MX7677E (en) 1990-08-06
JPS5212134A (en) 1977-01-29
IT1062738B (en) 1984-11-10
DE2621463C2 (en) 1990-06-07
FR2311054A1 (en) 1976-12-10
FR2311054B1 (en) 1981-07-31
CH598305A5 (en) 1978-04-28
JPS6025437B2 (en) 1985-06-18
NL7605242A (en) 1976-11-17
SE7605475L (en) 1976-11-16

Similar Documents

Publication Publication Date Title
NO158220B (en) ORGANOTITANATES OR MIXTURES OF ORGANOTITANATES.
JPS6253517B2 (en)
JP3672926B2 (en) EPDM, HNBR, and butyl rubber compositions containing processed carbon black
NO150917B (en) MATERIAL MIXTURE FOR USE AS FILLING POLYMERS, A PROCEDURE FOR PREPARING THEREOF AND A MIXTURE OF ORGANOTITANATES FOR USE IN THE PROCEDURE
JP2001527599A (en) Methods for rendering particles hydrophobic and their use as fillers in polymer masterbatches
JP2017137512A (en) Treated fillers, compositions containing the same, and articles prepared therefrom
SE443571B (en) SILAN / PERFORMANCE PREPARATION, PROCEDURE FOR ITS PREPARATION AND USE OF THIS
JP2013533907A (en) Hydrotalcite whose sodium content is controlled to a very small amount, its production method, and synthetic resin composition containing the same
TWI301498B (en) Silica - filled elastomeric compounds
CN101516985B (en) Calcium carbonate treated with curing active ingredient
CN104277273A (en) Flame-retardant, abrasion-resistant and tear-resistant rubber containing modified titanium dioxide
CN104311931A (en) High-strength ageing-resistant wear-resisting anti-flaming modified styrene butadiene rubber
PL202707B1 (en) Method of obtaining rubber powders containing siliceous filler and obtained from rubber solutions in organic solvents and their application
CA2921860C (en) Tin-free catalyst-containing composition for a monosil process with optimized process properties
CN101402616A (en) Production method of rubber vulcanizing agent 4, 4&#39; -dimorpholinyl disulfide
US6323260B1 (en) Process for hydrophobicizing particles and their use in dispersions
BRPI0716885A2 (en) FLUORITE FILLING AGENT AND METHOD FOR PREPARING THEREOF.
EP1131381B1 (en) Process for hydrophobicizing particles, and their use in polymer dispersions
CN109836618A (en) Modification method of aluminum oxide
CA2254330A1 (en) Process for hydrophobicizing particles, and their use in dispersions
CN104250314B (en) Viscosity metallocene PE synthesis technique in the high chlorination of water phase suspension
KR790001173B1 (en) Organic titanate salt composition
CN1594375A (en) Chloridized modified acrylic resin and preparation process thereof
KR800001653B1 (en) Process for producing a dispersion of inorganic in polymeric medium
Moustafa et al. Study the Effect of Maleic Anhydride as Compatibilizing Agent on Filler-Rubber Interaction, Rheological and Mechanical Properties of NR/Nanoclay Platelet Nanocomposites