NO157302B - PROCEDURE FOR THE PREPARATION OF A FISH OIL CONCENTRATE. - Google Patents

PROCEDURE FOR THE PREPARATION OF A FISH OIL CONCENTRATE. Download PDF

Info

Publication number
NO157302B
NO157302B NO855147A NO855147A NO157302B NO 157302 B NO157302 B NO 157302B NO 855147 A NO855147 A NO 855147A NO 855147 A NO855147 A NO 855147A NO 157302 B NO157302 B NO 157302B
Authority
NO
Norway
Prior art keywords
fatty acid
urea
adduct
cholesterol
esters
Prior art date
Application number
NO855147A
Other languages
Norwegian (no)
Other versions
NO855147L (en
NO157302C (en
Inventor
Harald Breivik
Bernt Boerretzen
Tore-Erling Joergensen
Original Assignee
Norsk Hydro As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norsk Hydro As filed Critical Norsk Hydro As
Priority to NO855147A priority Critical patent/NO157302C/en
Priority to IE306486A priority patent/IE59171B1/en
Priority to DE8686906964T priority patent/DE3668467D1/en
Priority to AU66211/86A priority patent/AU6621186A/en
Priority to PCT/NO1986/000077 priority patent/WO1987003899A1/en
Priority to IS3159A priority patent/IS1425B6/en
Priority to EP86906964A priority patent/EP0255824B1/en
Priority to AT86906964T priority patent/ATE49774T1/en
Priority to ZA868927A priority patent/ZA868927B/en
Priority to CA000523914A priority patent/CA1303416C/en
Priority to NZ218500A priority patent/NZ218500A/en
Priority to MX004578A priority patent/MX168698B/en
Priority to DD86297792A priority patent/DD261805A1/en
Priority to MA21072A priority patent/MA20840A1/en
Priority to AR86306258A priority patent/AR242111A1/en
Priority to PT83991A priority patent/PT83991B/en
Publication of NO855147L publication Critical patent/NO855147L/en
Publication of NO157302B publication Critical patent/NO157302B/en
Publication of NO157302C publication Critical patent/NO157302C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/001Refining fats or fatty oils by a combination of two or more of the means hereafter

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

Foreliggende oppfinnelse vedrører et raffinert fiskeoljekon-sentrat samt. en fremgangsmåte for fremstilling av samme, hvor det under raffineringen i tillegg til de fremstilte høyere umettede fettsyreforbindelsene også fremkommer kolesterol og nyttbare biprodukter som urea-addukter av fettsyreforbindelser. The present invention relates to a refined fish oil concentrate as well. a method for producing the same, where during refining, in addition to the higher unsaturated fatty acid compounds produced, cholesterol and usable by-products such as urea adducts of fatty acid compounds also appear.

Det er kjent at avfallet fra fiskeforedlingsindustrien har et innhold av nyttbare produkter. Av slike kan nevnes fettsyreforbindelser, kolesterol, proteiner og enzymer. Disse finnes i en fettløselig del og en vannløselige del. Et slikt avfall går under betegnelsen fiskeslo. It is known that the waste from the fish processing industry has a content of usable products. These include fatty acid compounds, cholesterol, proteins and enzymes. These are found in a fat-soluble part and a water-soluble part. Such waste is known as fishing slop.

Ved opparbeiding av fiskeslo kan den vannløselige delen med sitt innhold av proteiner og enzymer separeres fra den fett-løselige delen. Foreliggende oppfinnelse vedrører kun den fett løselige delen av fiskeavfallet, men den kan også anvendes på annet fiskefett slik som dette bl.a. fremkommer i fiskeforedlingsindustrien. I det etterfølgende betegnes dette som uraffinert fiskeolje. When processing fish slime, the water-soluble part with its content of proteins and enzymes can be separated from the fat-soluble part. The present invention only relates to the fat-soluble part of the fish waste, but it can also be applied to other fish fat such as this i.a. appears in the fish processing industry. In what follows, this is referred to as unrefined fish oil.

Det er kjent at visse essensielle fettsyrer som finnes i fiskeoljer har medisinsk virkning og er benyttet til å fore-bygge og lege thrombotiske lidelser, som f.eks. hjerte-infarkt. Dessuten reduserer disse forbindelsene kolesterol-nivået i blodet. It is known that certain essential fatty acids found in fish oils have a medicinal effect and are used to prevent and treat thrombotic disorders, such as e.g. heart attack. Moreover, these compounds reduce the cholesterol level in the blood.

Av ovennevnte essensielle fettsyrer kan bl.a. følgende spesi-fiseres som egnede til nevnte medisinske formål; eicosapentaensyre (EPA) og docosaheksaensyre (DHA). Of the above-mentioned essential fatty acids, i.a. the following are specified as suitable for said medical purposes; eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

Begge fettsyrene er (^3-fettsyrer av henholdsvis C-20 og C-22 syrene. Both fatty acids are (^3-fatty acids of the C-20 and C-22 acids respectively.

Deres strukturbetegnelse i henhold til IUPAC er for eicosapentaensyren (EPA) Their structural designation according to IUPAC is for eicosapentaenoic acid (EPA)

cis- 5, 8, 11, 14, 17-eicosapentaensyre cis-5, 8, 11, 14, 17-eicosapentaenoic acid

og for docosaheksaensyren (DHA) and for docosahexaenoic acid (DHA)

cis- 4, 7, 10, 13, 16, 19-docosaheksaensyre som forkortes til: cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid which is abbreviated to:

eicosapentaensyre 20:5*^ 3 og eicosapentaenoic acid 20:5*^ 3 and

docosaheksaensyre 22:6 tu 3 docosahexaenoic acid 22:6 tu 3

hvor 20 og 22 betegner antall karbonatomer i fettsyremole-kylet, 5 og 6 antall dobbeltbindinger og UJ 3 at den siste dobbeltbindingen sitter i 3 karbonatomers avstand fra CJ -posisjonen. where 20 and 22 denote the number of carbon atoms in the fatty acid molecule, 5 and 6 the number of double bonds and UJ 3 that the last double bond is 3 carbon atoms away from the CJ position.

I det etterfølgende benyttes betegnelsene EPA og 20:5 co 3 for eicosapentaensyren samt DHA og 22:6 to 3 for docosaheksaensyren. In what follows, the designations EPA and 20:5 co 3 are used for eicosapentaenoic acid and DHA and 22:6 to 3 for docosahexaenoic acid.

Den foreliggende fettløselige del av et fiskeavfall stammende fra torsk inneholder vanligvis 10-25 % av de essensielle fettsyreforbindelsene EPA og DHA samt 2-4 % kolesterol. Resten er hovedsakelig fettsyreforbindelser med lavere grad av umettethet så som de rene fettsyrer eller glycerider av disse. The present fat-soluble part of a fish waste originating from cod usually contains 10-25% of the essential fatty acid compounds EPA and DHA as well as 2-4% cholesterol. The rest are mainly fatty acid compounds with a lower degree of unsaturation such as the pure fatty acids or glycerides thereof.

Formålet ved oppfinnelsen er å få skilt de essensielle fettsyreforbindelsene fra kolesterolet og de resterende fettsyreforbindelsene. The purpose of the invention is to separate the essential fatty acid compounds from the cholesterol and the remaining fatty acid compounds.

Videre er det et formål for oppfinnelsen fra en uensartet råvare inneholdende marine fettsyrer og/eller deres estere, samt kolesterol som hovedkomponenter etter omestring med en lavere alkohol, og under basiske betingelser å fremstille et konsentrat av de essensielle cc»3-fettsyreforbindelsene, EPA og DHA, samt å isolere kolesterolet og urea-adduktet av de mettede og lavere umettede fettsyreforbindelsene som derved fremkommer i egne produktfraksjoner. Furthermore, it is an object of the invention from a heterogeneous raw material containing marine fatty acids and/or their esters, as well as cholesterol as main components after transesterification with a lower alcohol, and under basic conditions, to produce a concentrate of the essential cc»3 fatty acid compounds, EPA and DHA, as well as to isolate the cholesterol and urea adduct from the saturated and lower unsaturated fatty acid compounds which thereby appear in separate product fractions.

Det har vært kjent lenge at fettsyrene lettest lar seg separere ved ekstraksjon eller destillasjon når de foreligger i forestret form, f.eks. som metyl- eller etylestere. En behandling av fettholdige avfallsprodukter fra fiskeindu-strien forutsettter derfor som oftest en forutgående omestring og forestring med f.eks. metanol for fremstilling av fettsyremetylesterene. It has been known for a long time that the fatty acids are most easily separated by extraction or distillation when they are in esterified form, e.g. such as methyl or ethyl esters. A treatment of fat-containing waste products from the fishing industry therefore usually requires a prior transesterification and esterification with e.g. methanol for the production of the fatty acid methyl esters.

Dette utgangsmaterialet er velegnet for den videre separasjon av de essensielle fettsyreforbindelsene og kolesterolet fra de resterende mindre viktige fettsyreforbindelsene. 1 US patentskrift nr. 4.145.446 beskrives en metode for felling av fettsyreforbindelsene i en råvare ved hjelp av urea. Hensikten er å oppnå et proteinholdig fettholdig produkt egnet som dyrefor. Fremstillingen av urea-adduktet foregår på den måten at en løsning av smeltet urea ved 60-140 °C tilsettes en smeltet fettsyre- eller fettblanding oppvarmet til 35-105 °C således at forholdet fett/fettsyre til urea utgjør fra 40/60 til 60/40 vektdeler. This starting material is suitable for the further separation of the essential fatty acid compounds and the cholesterol from the remaining less important fatty acid compounds. 1 US patent no. 4,145,446 describes a method for precipitation of the fatty acid compounds in a raw material using urea. The purpose is to obtain a protein-containing fatty product suitable as animal feed. The production of the urea adduct takes place in such a way that a solution of melted urea at 60-140 °C is added to a melted fatty acid or fat mixture heated to 35-105 °C so that the ratio of fat/fatty acid to urea is from 40/60 to 60 /40 parts by weight.

Et annet patent SU 950.393 beskriver en metode for fremstilling av kolesterol fra f.eks. fiskeavfall ved at fett-syreforbindeIsene hydrolyseres og omdannes til seper. Disse underkastes deretter en ekstraksjon med trikloretylen ved romtemperatur hvorved kolesterolet går over i trikloretylenet og opparbeides fra denne i etterfølgende separasjonstrinn. Another patent SU 950,393 describes a method for producing cholesterol from e.g. fish waste by the fatty-acid compounds being hydrolysed and converted into leeches. These are then subjected to an extraction with trichlorethylene at room temperature whereby the cholesterol passes into the trichlorethylene and is processed from this in a subsequent separation step.

GB 1.240.513 vedrører også en urea-separasjonsteknikk hvor råstoffet er de rene metyl- eller etylesterene av C,c-C10GB 1,240,513 also relates to a urea separation technique where the raw material is the pure methyl or ethyl esters of C,c-C10

J-t) 18 fettsyrene. Ureafellingen foregår i nøytralt miljø med et overskudd av den respektive alkohol. Hensikten er å kunne oppkonsentrere /-linolensyren. Ovennevnte fettsyreestere inneholder ikke høyere fettsyrer enn C-18 i form av stearin-syre, oljesyre, linol- og linolensyre, som etter ureafellingen og separering av urea-adduktet fra det øvrige ble oppkonsentrert med hensyn på V-linolensyren ved hjelp av kromatograferingsteknikk. J-t) 18 the fatty acids. The urea precipitation takes place in a neutral environment with an excess of the respective alcohol. The purpose is to be able to concentrate the /-linolenic acid. The above-mentioned fatty acid esters do not contain fatty acids higher than C-18 in the form of stearic acid, oleic acid, linoleic and linolenic acid, which, after the urea precipitation and separation of the urea adduct from the rest, were concentrated with respect to the V-linolenic acid using chromatography techniques.

De høyere umettede fettsyreforbindelsene 20:5 U; 3 og 22:6 U/ 3 kan oppkonsentreres etter en metode beskrevet i J 59-071396 hvor de nevnte fettsyreforbindelsene ekstraheres ved hjelp av polare løsningsmidler, som f.eks. aceton, metyletylketon, metanol, etanol o.l., hvorved fremkommer en løselig del og en uløselig del hvoretter ekstraktet opparbeides for fremstilling av de essensielle fettsyreforbindelsene. The higher unsaturated fatty acid compounds 20:5 U; 3 and 22:6 U/ 3 can be concentrated according to a method described in J 59-071396 where the mentioned fatty acid compounds are extracted using polar solvents, such as e.g. acetone, methyl ethyl ketone, methanol, ethanol etc., which results in a soluble part and an insoluble part, after which the extract is worked up to produce the essential fatty acid compounds.

I Journal of Am. Oil Chem. Soc. 31 (1954), side 16 ff er det beskrevet en metode for adduktdannelse mellom urea og n-alkylestere av fettsyrer. In Journal of Am. Oil Chem. Soc. 31 (1954), page 16 ff, a method for adduct formation between urea and n-alkyl esters of fatty acids is described.

Det påvises at de umettede fettsyreforbindelsene forefinnes i filtratet etter fellingen med urea, mens de mettede og lavere umettede fettsyreforbindelsene danner utfellbare ureaaddukter. It is shown that the unsaturated fatty acid compounds are found in the filtrate after precipitation with urea, while the saturated and lower unsaturated fatty acid compounds form precipitable urea adducts.

Man har imidlertid ikke tatt hensyn til cis-trans transforma-sjonen og overgangen fra isolerte til konjugerte dobbeltbindinger under fremstillingen av alkylesterene idet forsepning og forestering foretas under tilbakeløp med den aktuelle alkanol. Det fremkomne produkt vil derfor ikke være egnet for terapeutiske formål slik som det er. However, no account has been taken of the cis-trans transformation and the transition from isolated to conjugated double bonds during the production of the alkyl esters, since saponification and esterification are carried out under reflux with the relevant alkanol. The resulting product will therefore not be suitable for therapeutic purposes as it is.

Videre skal det påpekes at kolesterolet fjernes ved ekstråksjon allerede i forbindelse med forsepningstrinnet. Dette synes unødvendig da det tilfører prosessen et ekstra og fordyrende prosesstrinn. Furthermore, it should be pointed out that the cholesterol is removed by extraction already in connection with the saponification step. This seems unnecessary as it adds an extra and expensive process step to the process.

Må viser det seg i henhold til oppfinnelsen at man på en for-bausende enkel måte kan optimalisere fremgangsmåten for opp-konsentrasjon av LL>3-fettsyreforbindelsene og kolesterol ved hjelp av en forenklet prosess. Denne er basert på fraksjonert felling av de mindre interessante fettsyreforbindelsene med urea, idet urea fortrinnsvis danner addukt med fettsyrer som ikke tilhører 3-typen. Kolesterol danner ikke addukt med urea. Tidligere har man først isolert fettsyrene og forestret disse for seg og deretter foretatt en fraksjonert felling med urea. Denne fremgangsmåten er unødvendig i henhold til vår oppfinnelse. According to the invention, it should turn out that the process for increasing the concentration of the LL>3 fatty acid compounds and cholesterol can be optimized in a surprisingly simple way by means of a simplified process. This is based on fractional precipitation of the less interesting fatty acid compounds with urea, as urea preferably forms an adduct with fatty acids that do not belong to the 3-type. Cholesterol does not form an adduct with urea. In the past, the fatty acids were first isolated and esterified separately and then fractionally precipitated with urea. This method is unnecessary according to our invention.

Et spesielt kjennetegn ved prosessen er at man således ikke renfremstiller fettsyreforbindelsene før ureafellingen, men feller fra samme uensartede blanding av komponenter som den foreligger i råvaren. A special feature of the process is that the fatty acid compounds are not purified before the urea is precipitated, but are precipitated from the same non-uniform mixture of components as is present in the raw material.

Et annet kjennetegn er at ureafellingen foregår i basisk miljø, og således at det basiske miljø fremkommer ved at den anvendte base kun inngår i katalytiske mengder som katalysator for transesterifiseringen av glycerider til metylestere og ikke som middel til forsepning av fettsyrene. Another characteristic is that the urea precipitation takes place in a basic environment, and so that the basic environment is produced by the fact that the base used is only included in catalytic quantities as a catalyst for the transesterification of glycerides to methyl esters and not as a means for saponification of the fatty acids.

Et tredje kjennetegn er at transesterifiseringen foregår A third characteristic is that transesterification takes place

ved romtemperatur. at room temperature.

Et resultat av at omesteringen foregår ved lav temperatur og i et svakt basisk miljø er at isomerisering av dobbelt-bindingene unngås, hvilket fører til et mer ensartet produkt og hvor produktet heller ikke har toksisk virkning. Likeledes unngås at transkonfigurasjoner oppstår. A result of the transesterification taking place at a low temperature and in a weakly basic environment is that isomerisation of the double bonds is avoided, which leads to a more uniform product and where the product also has no toxic effect. Likewise, transconfigurations are avoided.

Den gjenblivende løsning ekstraheres deretter med nonpolare løsningsmidler, av slike kan f.eks. nevnes heksan, hvorved U)3-fettsyrene samt kolesterolet går over i heksanfasen. The remaining solution is then extracted with nonpolar solvents, of which e.g. hexane is mentioned, whereby the U)3 fatty acids and cholesterol pass into the hexane phase.

Den nonpolare fasen underkastes deretter en avdampning av løsningsmiddel under milde betingelser som f.eks. ved vakuum-destillasjon. Det resterende W 3-konsentratet inneholder nå alt kolesterolet og som det viser seg er kolesterolet lite løselig i dette og kan krystalliseres ut ved avkjøling. Det gjenblivende 3-konsentratet inneholder etter den ifølge oppfinnelsen forenklede fremstillingsprosess 20-30 vekt % EPA og 35-50 vekt % DHA. Den resterende del består hovedsaklig av de for formålet ikke essensielle fettsyreforbindelsene. (Jfr. innledning til krav 1). The nonpolar phase is then subjected to evaporation of solvent under mild conditions such as e.g. by vacuum distillation. The remaining W 3 concentrate now contains all the cholesterol and, as it turns out, the cholesterol is poorly soluble in this and can crystallize out on cooling. The remaining 3-concentrate contains, according to the simplified production process according to the invention, 20-30% by weight EPA and 35-50% by weight DHA. The remaining part mainly consists of the fatty acid compounds which are not essential for the purpose. (Cf. introduction to claim 1).

For bedre forståelse av oppfinnelsen henvises til blokkdia-grammet, fig. 1, hvor hver blokk betyr et prosesstrinn og er markert med et henvisningstall. Materialstrømmene til og fra hver blokk og mellom blokkene er markert med heltrukne og stiplede streker. Hvert materiale er dessuten karakterisert ved en bokstavangivelse. For a better understanding of the invention, reference is made to the block diagram, fig. 1, where each block means a process step and is marked with a reference number. The material flows to and from each block and between the blocks are marked with solid and dashed lines. Each material is also characterized by a letter designation.

Det benyttes i utgangspunktet fett og/eller fettsyrer fra fisk og spesielt slikt fett og/eller fettsyrer som stammer fra fiskeforedlingsindustrien i forbindelse med ensilasje-og/eller autolyseprosesser, men prosessen kan også anvendes på annet marint fett. Det er dette fettråstoff som i kravene blir betegnet som en uraffinert fiskeolje. Basically, fat and/or fatty acids from fish are used, and especially such fat and/or fatty acids that originate from the fish processing industry in connection with silage and/or autolysis processes, but the process can also be used on other marine fats. It is this fatty raw material that is described in the requirements as an unrefined fish oil.

Slikt fett/fettsyrer har et rikt innhold av mettede, umettede og flerumettede fettsyrer med kjedelengde C 18, C 20 og C 22 samt inneholder de visse mengder kolesterol, vitaminer og andre fettløselige produkter av udefinert art, vanligvis karakterisert som uforsepbart, samt fettsyreforbindelser med kortere kjedelengder. Such fat/fatty acids have a rich content of saturated, unsaturated and polyunsaturated fatty acids with chain lengths C 18, C 20 and C 22 and also contain certain amounts of cholesterol, vitamins and other fat-soluble products of an undefined nature, usually characterized as unsaponifiable, as well as fatty acid compounds with shorter chain lengths.

Blokk 1. Block 1.

Fett/fettsyrer (A) fra fisk med et innhold av bl.a. kolesterol, også kalt uraffinert fiskeolje, ble tilført en beholder for omestring med en lavtkokende alkohol (B), f.eks. metanol eller etanol, fortrinnsvis metanol og katalysator samt hjelpestoffer (C) for hurtigere forestring og omestring og for å hindre oksydasjon og misfarving. Som katalysator kan anvendes kaliumhydroksyd, og for å hindre oksydasjon spesielt ved tilstedeværelse av tungmetaller som krom, mangan, jern, kobolt, nikkel og kobber kan det tilsettes små mengder av natriumsaltet av etylendiamintetraeddiksyre (EDTA-Na^)• Forestringen og omestringen foregår under milde betingelser og røring ved ca. 20 °C i noen timer. Alkylesterdannelsen er tilnærmet fullført når esterproduktet har endret utseende fra opak til klar. Den klare løsningen (Dl) inneholder således alkylester av fettsyrene, glycerol, alkanol samt noe vann fra forestringen av de frie fettsyrene. Fat/fatty acids (A) from fish with a content of i.a. cholesterol, also called unrefined fish oil, was added to a container for transesterification with a low-boiling alcohol (B), e.g. methanol or ethanol, preferably methanol and catalyst as well as auxiliaries (C) for faster esterification and transesterification and to prevent oxidation and discolouration. Potassium hydroxide can be used as a catalyst, and to prevent oxidation especially in the presence of heavy metals such as chromium, manganese, iron, cobalt, nickel and copper, small amounts of the sodium salt of ethylenediaminetetraacetic acid (EDTA-Na^) can be added.• The esterification and transesterification takes place under mild conditions and stirring at approx. 20 °C for a few hours. Alkyl ester formation is almost complete when the ester product has changed appearance from opaque to clear. The clear solution (D1) thus contains alkyl esters of the fatty acids, glycerol, alkanol and some water from the esterification of the free fatty acids.

Blokk 2. Block 2.

Den klare løsningen varmes deretter til 65-80 °C, hvoretter det tilsettes urea (E) og alkanol (B) i en avpasset mengde under røring til alt er løst. Urea-mengden er avhengig av fettsyre-sammensetningen slik at hvis råvaren (A) inneholder 6-8 vekt % EPA tilsettes ca. 3 vektdeler urea til 1 vektdel alkylester. For å sikre fullstendig løselighet av kom-ponentene tilsettes dessuten 9 vektdeler alkanol. The clear solution is then heated to 65-80 °C, after which urea (E) and alkanol (B) are added in an appropriate amount while stirring until everything is dissolved. The amount of urea depends on the fatty acid composition so that if the raw material (A) contains 6-8% by weight EPA, approx. 3 parts by weight urea to 1 part by weight alkyl ester. To ensure complete solubility of the components, 9 parts by weight of alkanol are also added.

Når alt er løst avkjøles løsningen langsomt til ca. 20 °C. Det felles ut et addukt av urea-fettsyrealkylester (F) som skilles ut f.eks. gjennom dekantering og filtrering, hvoretter filtratet kjøles til 0 °C for videre utfelling av adduktet (F). Adduktet skilles deretter på kjent måte slik at det gjenværende filtrat (G) vil inneholde de essensielle fettsyrefraksjonene og det uforsepbare. When everything is dissolved, cool the solution slowly to approx. 20 °C. An adduct of urea-fatty acid alkyl ester (F) is precipitated, which is separated e.g. through decantation and filtration, after which the filtrate is cooled to 0 °C for further precipitation of the adduct (F). The adduct is then separated in a known manner so that the remaining filtrate (G) will contain the essential fatty acid fractions and the unsaponifiable matter.

Blokk 3. Block 3.

Det svakt basiske filtratet (G) mettes med nonpolært løsningsmiddel (H) f.eks. heksan, heptan og ekstraheres med nevnte løsningsmiddel ved kjent teknikk, som f.eks. ved en kontinuerlig væske-væske motstrømsprosess, hvoretter ytterligere urea-fettsyre addukt (F) kan fraskilles. Det dannes ved ekstraksjonen to væskefaser bestående av et løsnings-middelekstrakt (I) og et nedre sjikt (K). The weakly basic filtrate (G) is saturated with nonpolar solvent (H), e.g. hexane, heptane and extracted with said solvent by known techniques, such as e.g. by a continuous liquid-liquid countercurrent process, after which further urea-fatty acid adduct (F) can be separated. During the extraction, two liquid phases are formed consisting of a solvent extract (I) and a lower layer (K).

Blokk 4. Block 4.

Løsningsmiddelekstraktet (I), som inneholder alkyl-fettsyreesterene av de polyumettede fettsyrene 18:4 3, 20:5 3 og 22:6 3 samt kolesterol som de vesentligste komponenter, The solvent extract (I), which contains the alkyl fatty acid esters of the polyunsaturated fatty acids 18:4 3, 20:5 3 and 22:6 3 as well as cholesterol as the most important components,

vaskes med fortynnet saltsyre (L) for nøytralisasjon av even-tuelle kaliumseper av de essensielle polyumettede fettsyrene i heksanekstraktet. Vaskevannet (M) dekanteres. washed with dilute hydrochloric acid (L) to neutralize any potassium salts of the essential polyunsaturated fatty acids in the hexane extract. The wash water (M) is decanted.

Løsningsmidlet (H) fjernes deretter ved inndampning av ekstraktet (I) slik at det fremkommer et løsningsmiddelfritt konsentrat (N) inneholdende de for oppfinnelsen essensielle fettsyrekomponentene, EPA og DHA samt kolesterol. The solvent (H) is then removed by evaporation of the extract (I) so that a solvent-free concentrate (N) is produced containing the essential fatty acid components for the invention, EPA and DHA as well as cholesterol.

Det inndampede ekstraktet inneholder vanligvis 20-30 vekt EPA, 35-45 vekt % DHA, 10-20 vekt % av andre polyumettede fettsyrer samt 5-15 vekt % kolesterol og udefinerte forbindelser, men nevnte sammensetning vil avhenge av fiskeslag, årstid for fangst av fisk, råvaretypen og råvarens beskaffenhet. The evaporated extract usually contains 20-30% by weight EPA, 35-45% by weight DHA, 10-20% by weight of other polyunsaturated fatty acids as well as 5-15% by weight cholesterol and undefined compounds, but said composition will depend on the species of fish, season of capture of fish, the type of raw material and the nature of the raw material.

Blokk 5. Block 5.

Alkylfettsyreesterkonsentratet (N) avkjøles deretter til ca. -25 °C, hvoretter kolesterol (O) i krystallinsk form faller ut. Dette sentrifugeres/frafiltreres. The alkyl fatty acid ester concentrate (N) is then cooled to approx. -25 °C, after which cholesterol (O) in crystalline form precipitates. This is centrifuged/filtered off.

Ytterligere forurensninger som er tilstede i konsentratet (N) kan fjernes ved avkjøling til temperaturer lavere enn -25 °C, hvoretter visse udefinerte forbindelser faller ut og frafiltreres på kjent måte. Det gjenblivende U>3-konsentratet (P) inneholder således 20-35 vekt % EPA, 35-50 vekt % DHA og 15-25 vekt % av andre polyumettede IA) 3-fettsyrekomponenter samt ikke essensielle umettede fettsyreforbindelser. Further impurities present in the concentrate (N) can be removed by cooling to temperatures lower than -25 °C, after which certain undefined compounds precipitate and are filtered off in a known manner. The remaining U>3 concentrate (P) thus contains 20-35% by weight EPA, 35-50% by weight DHA and 15-25% by weight of other polyunsaturated IA) 3 fatty acid components as well as non-essential unsaturated fatty acid compounds.

Produkt (P) inneholdende alkylesterene av de tilsvarende U)3-fettsyrene kan benyttes for sitt formål som det er eller oppkonsentreres med hensyn på EPA og DHA. Product (P) containing the alkyl esters of the corresponding U)3 fatty acids can be used for its purpose as is or concentrated with regard to EPA and DHA.

Da produktet bare inneholder små mengder av andre fettsyrer med samme kjede lengde som EPA og DHA, er det velegnet for separasjon av de esssensielle fettsyrene, EPA og DHA ved hjelp av superkritisk fluid ekstraksjon. As the product only contains small amounts of other fatty acids with the same chain length as EPA and DHA, it is suitable for separation of the essential fatty acids, EPA and DHA, using supercritical fluid extraction.

En annen oppkonsentrasjonsform er ved hjelp av preparativ væskekromatografi ved hvilken man oppnår en renhet av de essensielle fettsyrene på over 90 Another form of concentration is by means of preparative liquid chromatography, by which a purity of the essential fatty acids of over 90 is achieved

Blokk 6. Block 6.

Det basiske sjikt (K) surgjøres med konsentrert saltsyre (L) til ph = 2, hvoretter en heksanf raks jon (R) skilles ut i et øvre skikt som separeres fra. Man kan også underkaste den sure løsningen (S) ytterligere ekstråksjon med heksan om dette skulle være nødvendig, hvoretter heksan-ekstraktene samles. Heksanfraksjonene (R) inneholder frie fettsyrer samt noe alkylestere av samme med relativt høye andeler av EPA og DHA, men også en ikke ubetydelig andel av C 18-, C 20- og The basic layer (K) is acidified with concentrated hydrochloric acid (L) to pH = 2, after which a hexane fraction (R) separates out in an upper layer which is separated from. One can also subject the acidic solution (S) to further extraction with hexane if this is necessary, after which the hexane extracts are collected. The hexane fractions (R) contain free fatty acids and some alkyl esters of the same with relatively high proportions of EPA and DHA, but also a not insignificant proportion of C 18-, C 20- and

C 22-fettsyrer med lavere umetthet. Den sure løsningen (S) vil inneholde vann, alkanol, glycerol, urea og andre produkter som kan gjenvinnes i en egen ikke beskrevet prosess. C 22 fatty acids with lower unsaturation. The acidic solution (S) will contain water, alkanol, glycerol, urea and other products that can be recovered in a separate, undescribed process.

Blokk 7. Block 7.

Heksanfraksjonen (R) oppkonsentreres med hensyn på dets innhold av fettsyrekomponenter ved at heksan (H) dampes av i egnet apparatur. The hexane fraction (R) is concentrated with regard to its content of fatty acid components by evaporating the hexane (H) in a suitable apparatus.

Blokk 8. Block 8.

Det gjenværende (T) foresteres med lavere alkanoler, f.eks. metanol eller etanol ved hjelp av egnet katalysator som f.eks. kan være anhydrisk HC1, eddiksyreklorid eller bortri-klorid løst i alkanolen slik at systemet katalysator og alkanol betegnes som (V). The remainder (T) is esterified with lower alkanols, e.g. methanol or ethanol using a suitable catalyst such as can be anhydrous HC1, acetic acid chloride or boron trichloride dissolved in the alkanol so that the system catalyst and alkanol is designated as (V).

Den fremkomne alkylesteren (D2) av fettsyrekomponentene (T) fra blokk 7 kan opparbeides på forskjellig måte, f.eks. til-bakeføres blokk 2 for ureafelling av de lavere umettede fettsyrene . The resulting alkyl ester (D2) of the fatty acid components (T) from block 7 can be worked up in different ways, e.g. is fed back to block 2 for urea precipitation of the lower unsaturated fatty acids.

Eksempel 1. Example 1.

50 kg uraffinert fiskeolje (A) fra torskeavfall (inneholdende ca. 8 vekt % EPA, 11 vekt % DHA og 2,3 vekt % kolesterol) 50 kg of unrefined fish oil (A) from cod waste (containing approx. 8 wt% EPA, 11 wt% DHA and 2.3 wt% cholesterol)

ble tilsatt 400 1 metanol (B) og 10 g EDTA Na3 (C) i en reaktor. Kaliumhydroksyd (C) løst i metanol ble tilsatt for 400 1 of methanol (B) and 10 g of EDTA Na3 (C) were added in a reactor. Potassium hydroxide (C) dissolved in methanol was added for

nøytralisasjon av frie fettsyrer i en mengde som tilsvarer fargereaksjon ved pH 12 på fuktet pH-papir. Deretter ble det tilsatt ytterligere 50 1 metanol (B). neutralization of free fatty acids in an amount corresponding to color reaction at pH 12 on moistened pH paper. A further 50 1 of methanol (B) was then added.

Det bele ble satt under røring ved ca. 20 °C i 15 timer for gjennomføring av omestringen av glyceridene til metylestere og forestring av de frie fettsyrene til metylestere. The bele was stirred at approx. 20 °C for 15 hours to carry out the transesterification of the glycerides to methyl esters and esterification of the free fatty acids to methyl esters.

Da omesteringen var til ende ble temperaturen hevet til 65-68 °C og 140 kg urea (E) samt en avpasset mengde metanol (B) ble tilsatt under røring og oppvarming til alt syntes løst. When the transesterification was finished, the temperature was raised to 65-68 °C and 140 kg of urea (E) and an appropriate amount of methanol (B) were added while stirring and heating until everything seemed dissolved.

Deretter ble løsningen avkjølt langsomt til romtemperatur (ca. 20 °C), hvoretter det ved henstand ble utskilt et fettsyre-urea-addukt (F) inneholdende hovedmengden av de mettede og lavere umettede fettsyremetylesterene. The solution was then cooled slowly to room temperature (approx. 20 °C), after which a fatty acid-urea adduct (F) containing the main amount of the saturated and lower unsaturated fatty acid methyl esters was secreted on standing.

Urea-adduktet ble separert fra løsningen ved dekantering og filtrering etter vanlig kjent teknikk. The urea adduct was separated from the solution by decantation and filtration according to conventional techniques.

Utbytte: 100,1 kg urea-addukt (F). Yield: 100.1 kg urea adduct (F).

Deretter ble løsningen kjølt til 0-4 °C hvorved ytterligere 5,1 kg urea-addukt (F) kunne filtreres fra løsningen. The solution was then cooled to 0-4 °C whereby a further 5.1 kg of urea adduct (F) could be filtered from the solution.

Filtratet (G), som nå inneholder u)3-polyumettede fettsyremetylestere, kolesterol og en rest uønskede fettsyrefrak-sjoner inneholdende lavere umettede C 18, C 20 og C 22-fettsyremetylestere, ble tilført heksan (H) til metning hvorved ytterligere urea-addukt (F) i en mengde av 22 kg kunne frafiltreres. Den heksanmettede løsningen ble ekstrahert i mot-strøm med heksan slik at heksanekstraktet (I) til slutt utgjorde ca. 300 1. Det gjenblivende, uekstraherte betegnes (K)• Heksanekstraktet ble deretter inndampet. Utbytte av U^3-fettsyremetylester konsentrat: 10,2 kg. The filtrate (G), which now contains u)3-polyunsaturated fatty acid methyl esters, cholesterol and a remainder of unwanted fatty acid fractions containing lower unsaturated C 18, C 20 and C 22 fatty acid methyl esters, was added to hexane (H) to saturation whereby further urea adduct (F) in an amount of 22 kg could be filtered off. The hexane-saturated solution was extracted in counter-current with hexane so that the hexane extract (I) finally amounted to approx. 300 1. The remaining, unextracted is designated (K)• The hexane extract was then evaporated. Yield of U^3 fatty acid methyl ester concentrate: 10.2 kg.

Konsentratet (N) som inneholdt 23 vekt t EPA, 41 vekt % DHA og 8 vekt % kolesterol ble deretter avkjølt til -25 °C, hvorved rent kolesterol (O) krystalliserte ut og ble fjernet ved hjelp av sentrifugering hvorunder residiumet i sentri-fugen ble vasket med ytterligere nedkjølt heksan for å befri kolesterolkrystallene for vedheftede fettsyremetylestere. Utbytte: 760 g som ren kolesterol. The concentrate (N) containing 23 wt% EPA, 41 wt% DHA and 8 wt% cholesterol was then cooled to -25 °C, whereby pure cholesterol (O) crystallized out and was removed by centrifugation during which the residue in the centrifuge was washed with further chilled hexane to free the cholesterol crystals from attached fatty acid methyl esters. Yield: 760 g as pure cholesterol.

Det oppkonsentrerte filtratet (P) inneholdt The concentrated filtrate (P) contained

25 vekt % EPA-metylestere, 43 vekt % DHA-metylestere og spor av kolesterol. 25% by weight EPA methyl esters, 43% by weight DHA methyl esters and traces of cholesterol.

Det ovenfor anførte ekstraherte residium (K) ble rengjort med konsentrert saltsyre, hvorved en heksanfase kunne frafiltreres. <y>tterligere heksan ble tilsatt i batch og omrørt og deretter separert fra. Heksanfraksjonene ble samlet og heksan avdampet. 7,7 kg av den gjenblivende fettsyre og metylfettsyreholdige fraksjon ble tilsatt 15 1 2 %-ig bortri-klorid i metanol. The above-mentioned extracted residue (K) was cleaned with concentrated hydrochloric acid, whereby a hexane phase could be filtered off. Additional hexane was added in batch and stirred and then separated from. The hexane fractions were pooled and the hexane evaporated. 7.7 kg of the remaining fatty acid and methyl fatty acid-containing fraction was added to 15 1 2% boron trichloride in methanol.

Utbytte: 6 kg metylfettsyreestere inneholdende Yield: 6 kg methyl fatty acid esters containing

13 vekt % EPA-metylestere, 17 vekt % DHA-metylestere og ca. 2 vekt % kolesterol. 13% by weight EPA methyl esters, 17% by weight DHA methyl esters and approx. 2 wt% cholesterol.

Det metanolholdige metylfettsyrekonsentratet ble returnert til prosessen for behandling med urea. The methanolic methyl fatty acid concentrate was returned to the process for treatment with urea.

Eksempel 2. Example 2.

912 g olje fra torsk ble tilsatt 7000 ml abs. etanol hvori var tilsatt kaliumhydroksyd som i eksempel 1, og det hele ble rørt i 1 time. Deretter ble tilsatt 2000 g urea og blandingen oppvarmet til en temperatur mellom 65 og 80 °C. Slutttemperaturen ble opprettholdt i 2 timer, hvoretter opp-varmingen og røringen ble avbrutt og det hele kjølt til ca. 912 g of oil from cod was added to 7000 ml abs. ethanol to which potassium hydroxide was added as in example 1, and the whole was stirred for 1 hour. 2000 g of urea were then added and the mixture heated to a temperature between 65 and 80 °C. The final temperature was maintained for 2 hours, after which the heating and stirring were interrupted and the whole cooled to approx.

5 °C for utkrystallisasjon av ureaadduktet. 5 °C for crystallization of the urea adduct.

Blandingen ble separert og moderluten oppkonsentrert til The mixture was separated and the mother liquor concentrated to

40 vol. % av opprinnelig mengde. Konsentratet ble deretter tilsatt 0,6 deler aq. dest. og ekstrahert med heptan i en mengde av 1 del heptan til 1 del konsentrat. Heptanfasen ble syrevasket med 650 ml saltsyresurt vann og heptanet avdampet under samtidig fjerning av vann og saltsyreester. 40 volumes % of original quantity. The concentrate was then added to 0.6 parts aq. dest. and extracted with heptane in an amount of 1 part heptane to 1 part concentrate. The heptane phase was acid washed with 650 ml of hydrochloric acid water and the heptane was evaporated while simultaneously removing water and hydrochloric acid ester.

Forøvrig ble kolesterolet fjernet som beskrevet i eksempel 1, og det gjenværende fettsyrekonsentratet utgjorde 139 g. Otherwise, the cholesterol was removed as described in example 1, and the remaining fatty acid concentrate amounted to 139 g.

Gasskromatografisk måling viste at konsentratet inneholdt: Gas chromatographic measurement showed that the concentrate contained:

Man har gjennom oppfinnelsens fremgangsmåte kunnet fremstille et særdeles rent W3- fettsyrealkylesterkonsentrat hvor de essensielle anti-thrombotiske fettsyrekomponentene eicosapentaensyre (EPA) og docosaheksaensyre (DHA) er tilstede i stor konsentrasjon. Through the method of the invention, it has been possible to produce a particularly pure W3 fatty acid alkyl ester concentrate in which the essential anti-thrombotic fatty acid components eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are present in high concentration.

Man har videre gjennom oppfinnelsens fremgangsmåte på en enkel måte funnet en vei til fraskilling av et meget rent og krystallinsk kolesterol. I tillegg foreligger det et urea-addukt av de for oppfinnelsen uinteressante fettsyrekomponenter. Furthermore, through the method of the invention, a way to separate a very pure and crystalline cholesterol has been found in a simple way. In addition, there is a urea adduct of the fatty acid components of no interest to the invention.

En annen fordel ved oppfinnelsen er at man kan fremstille urea-adduktet fra samme arbeidsløsning hvor man har foretatt omestringen fra glycerider til alkanolestere utan å gå den tungvinte veien om først å fremstille fettsyrene, forestre disse med alkanol og deretter skille dem ved den fraksjonerte ureafellingen. Another advantage of the invention is that the urea adduct can be prepared from the same working solution where the transesterification from glycerides to alkanol esters has been carried out without going the cumbersome route of first preparing the fatty acids, esterifying these with alkanol and then separating them by the fractional urea precipitation.

Ved fremgangsmåten i henhold til oppfinnelsen unngår man også emul8jonsdannelsen i fasene og faseseparasjonen lettes derved 1 de senere ekstraksjonstrinn. In the method according to the invention, emulsion formation in the phases is also avoided and phase separation is thereby facilitated in the later extraction steps.

Claims (3)

1. Fremgangsmåte for fremstilling av et fiskeolje-konsentrat inneholdende alkylestere av i det minste 25 vekt % eicosapentaensyre og 35 vekt % docosa-1. Process for producing a fish oil concentrate containing alkyl esters of at least 25% by weight eicosapentaenoic acid and 35% by weight docosa- heksaensyre basert på fettsyreandelen og dessuten en rest av ikke essensielle fettsyrealkylestere ved ureafelling av de mettede og lavere umettede fettsyreesterene i løsning, hvorved hoveddelen av de høyere flereumettede fettsyreesterene adskilles etter en påfølgende fraskiIling av ureaadduktet og even-tuell ekstraksjon med et oppløsningsmiddel,karakterisert ved at det som utgangsmateriale anvendes en uraffinert fiskeolje som interforestres ved pH 12, med en lavere alkohol ved romtemperatur og at blandingen av fettsyreesterene deretter felles med et overskudd av urea etter en forutgående oppvarming til 55-90 °C, hvoretter urea-fettsyrealkylestereadduktet skilles fra etter avkjøling til romtemperatur på en i og for seg kjent måte og at filtratet avkjøles til 0 °C for ytterligere utfelling av ureaadduktet og at de i filtratet gjenblivende 3-fettsyrealkylestere opparbeides på i og for seg kjent måte etter fraskillingen av det utfelte ureaadduktet, med et løsningsmiddel for 10 3-fettsyrealkylesteren og det uforsepbare, hvoretter løsningsmidlet etter forutgående vasking av ekstraktet med en vannløselig fortynnet syre, fjernes ved inndamping og at det inndampede avkjøles til -25 til -50 °C for fraskilling av utfelt kolesterol og andre uforsepbare forbindelser. hexaenoic acid based on the fatty acid proportion and also a residue of non-essential fatty acid alkyl esters by urea precipitation of the saturated and lower unsaturated fatty acid esters in solution, whereby the main part of the higher polyunsaturated fatty acid esters is separated after a subsequent separation of the urea adduct and eventual extraction with a solvent, characterized in that the starting material is an unrefined fish oil that is interesterified at pH 12, with a lower alcohol at room temperature and that the mixture of the fatty acid esters is then combined with an excess of urea after prior heating to 55-90 °C, after which the urea-fatty acid alkyl ester adduct is separated after cooling to room temperature in a manner known per se and that the filtrate is cooled to 0 °C for further precipitation of the urea adduct and that the 3-fatty acid alkyl esters remaining in the filtrate are worked up in a manner known per se after the separation of the precipitated urea adduct, with a solvent for 10 3-fatty acid al the cooling ester and the unsaponifiable, after which the solvent, after previous washing of the extract with a water-soluble dilute acid, is removed by evaporation and that the evaporated is cooled to -25 to -50 °C for separation of precipitated cholesterol and other unsaponifiable compounds. 2. Fremgangsmåte for fremstilling av raffinert fiske-oljekonsentrat i henhold til krav 1, karakterisert ved at fettsyrealkylesterene behandles med urea ved en temperatur fortrinnsvis mellom 60-80 °C, således at urea-fettsyrealkylesteradduktet i alt vesentlig ikke inneholder (f 3-fettsyrekomponentene og uforsepbart. 2. Process for the production of refined fish oil concentrate according to claim 1, characterized in that the fatty acid alkyl esters are treated with urea at a temperature preferably between 60-80 °C, so that the urea fatty acid alkyl ester adduct essentially does not contain (f 3 fatty acid components and unsaponifiable. 3. Fremgangsmåte for fremstilling av raffinert fiske-oljekonsentrat i henhold til krav 1, karakterisert ved at lt>3-fettsyrealkylester konsentratet etter at løsningsmidlet er fjernet avkjøles til en temperatur ikke lavere enn -25 °C, hvorved kolesterol faller ut og deretter til -50 °C hvorved en resterende del av det uforsepbare felles.3. Process for the production of refined fish oil concentrate according to claim 1, characterized in that the lt>3-fatty acid alkyl ester concentrate, after the solvent has been removed, is cooled to a temperature not lower than -25 °C, whereby cholesterol precipitates out and then to - 50 °C whereby a remaining part of the unsaponifiable matter is shared.
NO855147A 1985-12-19 1985-12-19 PROCEDURE FOR THE PREPARATION OF A FISH OIL CONCENTRATE. NO157302C (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
NO855147A NO157302C (en) 1985-12-19 1985-12-19 PROCEDURE FOR THE PREPARATION OF A FISH OIL CONCENTRATE.
IE306486A IE59171B1 (en) 1985-12-19 1986-11-21 A refined fish oil product and the production process for same
DE8686906964T DE3668467D1 (en) 1985-12-19 1986-11-21 A METHOD FOR PRODUCING REFINED FISH OIL CONCENTRATE.
AU66211/86A AU6621186A (en) 1985-12-19 1986-11-21 A refined fish oil concentrate and the production process for sample
PCT/NO1986/000077 WO1987003899A1 (en) 1985-12-19 1986-11-21 A refined fish oil concentrate and the production process for sample
IS3159A IS1425B6 (en) 1985-12-19 1986-11-21 Method of production and purification of fish oil
EP86906964A EP0255824B1 (en) 1985-12-19 1986-11-21 A process for the production of refined fish oil concentrate
AT86906964T ATE49774T1 (en) 1985-12-19 1986-11-21 A PROCESS FOR THE PRODUCTION OF REFINED FISH OIL CONCENTRATE.
ZA868927A ZA868927B (en) 1985-12-19 1986-11-25 A refined fish oil product and the production process for same
CA000523914A CA1303416C (en) 1985-12-19 1986-11-27 Refined fish oil concentrate and the production process for same
NZ218500A NZ218500A (en) 1985-12-19 1986-12-03 Refined fish oil concentrate containing fatty acid esters and their production
MX004578A MX168698B (en) 1985-12-19 1986-12-08 A CONCENTRATE OF REFINED FISH OIL AND PROCEDURE FOR THE PRODUCTION OF THE SAME
DD86297792A DD261805A1 (en) 1985-12-19 1986-12-17 FISH CONCENTRATE AND MANUFACTURING PROCESS THEREFOR
MA21072A MA20840A1 (en) 1985-12-19 1986-12-19 CONCENTRATE OF REFINED FISH OIL AND PROCESS FOR PRODUCING THE SAME
AR86306258A AR242111A1 (en) 1985-12-19 1986-12-19 A procedure for the production of refined concentrates of fish oil, which contain alkyl esters of omega-3 eicosapentaenoic and docosahexaenoic acids.
PT83991A PT83991B (en) 1985-12-19 1986-12-19 PROCESS OF PRODUCTION OF A CONCENTRATE OF REFINED FISH OIL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO855147A NO157302C (en) 1985-12-19 1985-12-19 PROCEDURE FOR THE PREPARATION OF A FISH OIL CONCENTRATE.

Publications (3)

Publication Number Publication Date
NO855147L NO855147L (en) 1987-06-22
NO157302B true NO157302B (en) 1987-11-16
NO157302C NO157302C (en) 1988-02-24

Family

ID=19888637

Family Applications (1)

Application Number Title Priority Date Filing Date
NO855147A NO157302C (en) 1985-12-19 1985-12-19 PROCEDURE FOR THE PREPARATION OF A FISH OIL CONCENTRATE.

Country Status (15)

Country Link
EP (1) EP0255824B1 (en)
AR (1) AR242111A1 (en)
AU (1) AU6621186A (en)
CA (1) CA1303416C (en)
DD (1) DD261805A1 (en)
DE (1) DE3668467D1 (en)
IE (1) IE59171B1 (en)
IS (1) IS1425B6 (en)
MA (1) MA20840A1 (en)
MX (1) MX168698B (en)
NO (1) NO157302C (en)
NZ (1) NZ218500A (en)
PT (1) PT83991B (en)
WO (1) WO1987003899A1 (en)
ZA (1) ZA868927B (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8819110D0 (en) * 1988-08-11 1988-09-14 Norsk Hydro As Antihypertensive drug & method for production
DE69005459T2 (en) * 1990-03-12 1994-04-14 Einar Sola METHOD OF FATIGUATION OF FATS IN POLYUNSATURATED FATTY ACIDS AND PHOSPHOLIPIDES AND USE OF THESE ENRICHED FATS.
SE9303446D0 (en) * 1993-10-20 1993-10-20 Trikonex Ab A novel urea fractionation process
GB9404483D0 (en) * 1994-03-08 1994-04-20 Norsk Hydro As Refining marine oil compositions
TW425285B (en) 1996-06-10 2001-03-11 Viva America Marketing Inc Fish oil and garlic nutritive supplement
EP1004303B1 (en) 1997-06-16 2004-10-13 Nippon Suisan Kaisha, Ltd. Composition having capability of removing risk factor during exercise
NO309795B1 (en) * 1998-07-01 2001-04-02 Norsk Hydro As Method for stabilizing oils and their use, method for stabilizing pigments, and method for preparing for
IT1308613B1 (en) 1999-02-17 2002-01-09 Pharmacia & Upjohn Spa ESSENTIAL FATTY ACIDS IN THE PREVENTION OF CARDIOVASCULAR EVENTS.
NO311041B1 (en) * 1999-12-22 2001-10-01 Norsk Hydro As Stabilization of pigments and polyunsaturated oils and oil concentrates
AU2001232786A1 (en) 2000-01-11 2001-07-24 Monsanto Company Process for making an enriched mixture of polyunsaturated fatty acid esters
AT414205B (en) 2000-06-20 2006-10-15 Vis Vitalis Lizenz & Handels PROCESS FOR PRODUCING UNSATURATED FATTY ACID DRY CONCENTRATE
ITMI20010129A1 (en) 2001-01-25 2002-07-25 Pharmacia & Upjohn Spa ESSENTIAL FATTY ACIDS IN THE THERAPY OF HEART INSUFFICIENCY AND HEART FAILURE
EP2295529B2 (en) 2002-07-11 2022-05-18 Basf As Use of a volatile environmental pollutants-decreasing working fluid for decreasing the amount of pollutants in a fat for alimentary or cosmetic use
SE0202188D0 (en) 2002-07-11 2002-07-11 Pronova Biocare As A process for decreasing environmental pollutants in an oil or a fat, a volatile fat or oil environmental pollutants decreasing working fluid, a health supplement, and an animal feed product
ITMI20032247A1 (en) 2003-11-19 2005-05-20 Tiberio Bruzzese INTERACTION OF POLAR DERIVATIVES OF COMPOUNDS INSATURATED WITH INORGANIC SUBSTRATES
ES2626018T3 (en) 2005-06-07 2017-07-21 Dsm Nutritional Products Ag Eukaryotic microorganisms for the production of lipids and antioxidants
ITMI20051560A1 (en) * 2005-08-10 2007-02-11 Tiberio Bruzzese COMPOSITION OF N-3 FATTY ACIDS WITH HIGH CONCENTRATION OF EPA AND E-O DHA AND CONTAINING N-6 FATTY ACIDS
CN101981201A (en) 2006-08-01 2011-02-23 加拿大海洋营养食品有限公司 Oil producing microbes and methods of modification thereof
EP3865469A3 (en) 2009-12-30 2021-11-17 BASF Pharma (Callanish) Limited Polyunsaturated fatty acid compositions obtainable by a simulated moving bed chromatographic separation process
ITMI20102297A1 (en) 2010-12-15 2012-06-16 Prime Europ Therapeuticals PROCEDURE FOR STABILIZING FAT POLYINSATURED ACIDS BY MEANS OF METAL HYDRATES
EP2673254B1 (en) * 2011-03-08 2017-12-27 Cognis IP Management GmbH A process for the distillation of fatty acid esters
GB201111594D0 (en) 2011-07-06 2011-08-24 Equateq Ltd New improved process
GB201111589D0 (en) 2011-07-06 2011-08-24 Equateq Ltd New modified process
GB201111595D0 (en) 2011-07-06 2011-08-24 Equateq Ltd Improved process
GB201111601D0 (en) 2011-07-06 2011-08-24 Equateq Ltd New process
GB201111591D0 (en) 2011-07-06 2011-08-24 Equateq Ltd Further new process
GB201300354D0 (en) 2013-01-09 2013-02-20 Basf Pharma Callanish Ltd Multi-step separation process
WO2014141098A1 (en) 2013-03-13 2014-09-18 Dsm Nutritional Products Ag Engineering microorganisms
US9428711B2 (en) 2013-05-07 2016-08-30 Groupe Novasep Chromatographic process for the production of highly purified polyunsaturated fatty acids
EP2883860B1 (en) 2013-12-11 2016-08-24 Novasep Process Chromatographic method for producing polyunsaturated fatty acids
EP3092218B1 (en) 2014-01-07 2022-03-09 Novasep Process Solutions Process for the purification of aromatic aminoacids
US9163198B2 (en) * 2014-01-17 2015-10-20 Orochem Technologies, Inc. Process for purification of EPA (eicosapentanoic acid) ethyl ester from fish oil
WO2016028235A1 (en) * 2014-08-18 2016-02-25 Chiang Mai University A system and method for extracting and/or concentrating vitamin e
WO2016150936A1 (en) 2015-03-26 2016-09-29 Tiberio Bruzzese Purified compositions of polyunsaturated fatty acids, their preparation method and their use
AR104042A1 (en) 2015-03-26 2017-06-21 Mara Renewables Corp HIGH-DENSITY PRODUCTION OF BIOMASS AND OIL USING GLUCEROL IN GROSS
EP3789476A1 (en) 2015-05-13 2021-03-10 Epax Norway AS Very long chain polyunsaturated fatty acids from natural oils
CN107849514A (en) 2015-07-13 2018-03-27 玛拉可再生能源公司 Strengthen the microalgae metabolism of xylose
US10851395B2 (en) 2016-06-10 2020-12-01 MARA Renewables Corporation Method of making lipids with improved cold flow properties
CN111315855B (en) 2017-09-14 2023-07-25 发酵生物技术有限公司 Improved method for extracting cholesterol from fish oil waste residue
US10196586B1 (en) * 2018-02-14 2019-02-05 Golden Omega S.A. Feed ingredient

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1176916B (en) * 1984-10-10 1987-08-18 Elvira Pistolesi PHARMACEUTICAL OR DIETETIC COMPOSITION WITH HIGH ANTI-THROMBOTIC AND ANTI-ARTERIOSCLEROTIC ACTIVITY

Also Published As

Publication number Publication date
ZA868927B (en) 1987-08-26
DE3668467D1 (en) 1990-03-01
NO855147L (en) 1987-06-22
EP0255824B1 (en) 1990-01-24
WO1987003899A1 (en) 1987-07-02
NZ218500A (en) 1989-03-29
AR242111A1 (en) 1993-03-31
IS3159A7 (en) 1987-06-20
EP0255824A1 (en) 1988-02-17
IE863064L (en) 1987-06-19
MA20840A1 (en) 1987-07-01
IE59171B1 (en) 1994-01-12
DD261805A1 (en) 1988-11-09
CA1303416C (en) 1992-06-16
PT83991B (en) 1989-01-17
NO157302C (en) 1988-02-24
IS1425B6 (en) 1990-03-28
AU6621186A (en) 1987-07-15
MX168698B (en) 1993-06-04
PT83991A (en) 1987-01-01

Similar Documents

Publication Publication Date Title
NO157302B (en) PROCEDURE FOR THE PREPARATION OF A FISH OIL CONCENTRATE.
US4377526A (en) Method of purifying eicosapentaenoic acid and its esters
DK170227B1 (en) Process for continuous fractionation of a mixture of fatty acids and use of a fraction enriched with gamma-linolenic acid obtained by the process
CA1065303A (en) Process for the separation of sterols
DK164817B (en) PROCEDURE FOR ENHANCING Fatty Acid Mixtures with DELTA6 Fatty Acids
CA2822314C (en) Concentrate of omega 3
US5734071A (en) Process for separating lipophilic compounds
US5243046A (en) Process for the continuous fractionation of a mixture of fatty acids
JP2003506423A (en) Recovery of polyunsaturated fatty acids from urea adduct
RU2649014C1 (en) Method for obtaining the concentrate of unsaturated alkyl glycidyl ethers from sea lipides
EP1226156B1 (en) Process for producing phytosterols by saponification in an alcohol/water solvent
JPH0649480A (en) Separation of unsaturated compound
JP3461378B2 (en) Purification method of eicosapentaenoic acid or its ester
JP3656863B2 (en) Process for producing fats and oils having a high content of highly unsaturated fatty acid residues
JPH035496A (en) Production of cholesterol
SU1581737A1 (en) Method of a concentrate of ethyl esters of eukosapentaenic and decosahexaenic acids
SU1076439A1 (en) Method for processing sulfate soap
JPS60215699A (en) Separation and purification of brassicasterol in rapeseed oil
CA2213112A1 (en) Non-chromatographic process for selective crystallization of vegetable steroids
JPS5921641A (en) Method for concentrating and separating eicosapentaenoic acid and docosahexaenoic acid
CS240645B1 (en) Tocopherol concentrate production method

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees