NO155540B - NEW TRIPEPTID DERIVATIVES, AND USE THEREOF FOR QUANTITATIVE DETECTION OF PROTEOLYTIC ENZYMES. - Google Patents

NEW TRIPEPTID DERIVATIVES, AND USE THEREOF FOR QUANTITATIVE DETECTION OF PROTEOLYTIC ENZYMES. Download PDF

Info

Publication number
NO155540B
NO155540B NO811510A NO811510A NO155540B NO 155540 B NO155540 B NO 155540B NO 811510 A NO811510 A NO 811510A NO 811510 A NO811510 A NO 811510A NO 155540 B NO155540 B NO 155540B
Authority
NO
Norway
Prior art keywords
cha
chg
group
phe
arg
Prior art date
Application number
NO811510A
Other languages
Norwegian (no)
Other versions
NO811510L (en
NO155540C (en
Inventor
Lars Gundro Svendsen
Original Assignee
Pentapharm Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentapharm Ag filed Critical Pentapharm Ag
Publication of NO811510L publication Critical patent/NO811510L/en
Publication of NO155540B publication Critical patent/NO155540B/en
Publication of NO155540C publication Critical patent/NO155540C/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Hydrogenated Pyridines (AREA)

Description

Foreliggende oppfinnelse vedrører nye tripeptidderivater som The present invention relates to new tripeptide derivatives which

er anvendelige som substrater for kvantitativ bestemmelse åv proteolytiske enzymer, spesielt enzymer fra klassen E.C. 3.4.21., f.eks. organ-eller kjertelkallikréin,trombin og plasmin. are applicable as substrates for the quantitative determination of proteolytic enzymes, especially enzymes from the class E.C. 3.4.21., e.g. organ or gland kallikrein, thrombin and plasmin.

Såkalt organkallikrein eller kjertelkallikréin fremstilles So-called organ kallikrein or glandular kallikrein is produced

av forskjellige organer og kjertler, f.eks. bukspyttkjertelen, spyttkjertel, nyre, slimet i fordøyelsestrakten etc, og ut-skilles i form av et proenzym eller i en aktiv form. Disse organ eller kjertelkallikreiner adskiller seg kjemisk og fysiologisk fra plasmakallikrein. I visse patologiske til-stander faller organkallikreinutskillelsesnivået under eller stiger over den normale verdi. Således faller f.eks. kallikreinutskillelsen i urin betydelig under den normale verdi hos pasienter som lider av nyresykdommer. Hos pasienter som lider av cirrhose i nyre er kallikreinutskillelsen nesten fullstendig opphørt. Hos pasienter som lider av betydelig hypertensjon er kallikreinsekresjonen i 24 timers urin betydelig redusert, som regel med ca. 30% gjennomsnittlig av den normale verdi (kfr. f.eks. H.S. Margolius i "Chemistry andBiology of the Kallikrein-Kinin System in Health and Disease", 1974 , side .399-409. Derfor er det viktig å ha til-gjengelig enkle metoder for rask kvantitativ bestemmelse av organkallikrein. Det er kjent f.eks. å måle urinkållikrein ved esterolyse av visse argininestere, f.eks. tosyl-argininmetylester (TAME). I en forbedret esterolytisk metode anvendes tosyl-argininmetylester merket med tritium og radioaktiviteten til metanolen som frigjøres ved esterolyse måles. Disse esterolytiske metoder lider av den ulempe at de er ikke biologiske for så vidt som kallikreinene er proteolytiske enzymer som spalter naturlige peptidkjeder amidolytisk men ikke esterolytisk. Videre har estersubstratene den ulempe at de spaltes av mange andre enzymer, dvs., spaltes uspesifikt av kallikrein. Metoden som anvender TAME merket med tritium er kompleks for så vidt som metanol før målingen av radioaktiviteten i metanolen som er merket med tritium må ekstraheres fra esterolyseblandingen med en væske som ikke er blandbar med vann fordi resten av TAME merket med tritium of various organs and glands, e.g. the pancreas, salivary gland, kidney, the mucus in the digestive tract, etc., and is secreted in the form of a proenzyme or in an active form. These organ or glandular kallikreins differ chemically and physiologically from plasma kallikrein. In certain pathological conditions, the level of organ kallikrein secretion falls below or rises above the normal value. Thus falls, e.g. kallikrein secretion in urine significantly below the normal value in patients suffering from kidney diseases. In patients suffering from cirrhosis of the kidney, kallikrein secretion has almost completely ceased. In patients suffering from significant hypertension, kallikrein secretion in 24-hour urine is significantly reduced, usually by approx. 30% average of the normal value (cf. e.g. H.S. Margolius in "Chemistry and Biology of the Kallikrein-Kinin System in Health and Disease", 1974, pages 399-409. Therefore, it is important to have available simple methods for rapid quantitative determination of organ kallikrein. It is known, for example, to measure urinary cabbage kallikrein by esterolysis of certain arginine esters, e.g. tosyl-arginine methyl ester (TAME). In an improved esterolytic method, tosyl-arginine methyl ester labeled with tritium and the radioactivity of the methanol released by esterolysis is measured. These esterolytic methods suffer from the disadvantage that they are not biological insofar as the kallikreins are proteolytic enzymes that cleave natural peptide chains amidolytically but not esterolytically. Furthermore, the ester substrates have the disadvantage that they are cleaved by many other enzymes, i.e. ., is non-specifically cleaved by kallikrein. The method using TAME labeled with tritium is complex as far as methanol before the measurement of the radioactivity in the methanol which e r labeled with tritium must be extracted from the esterolysis mixture with a liquid immiscible with water because the remainder of TAME labeled with tritium

som ennå er tilstede i esterolyseblandingen ellers ville inhibere målingen. which is still present in the esterolysis mixture would otherwise inhibit the measurement.

I DOS nr. 25 27 932 er substrater med formelen R<1->Pro-X-Arg-2 1 2 NH-R beskrevet hvori R betyr en blokkerende gruppe, -NH-R betyr en kromogen gruppe og X betyr en fenylalanyl, 3-cykloheksylalanyl, fenylglycyl eller tyrosylgruppe. Disse substrater spaltes meget lett av plasmakallikrein og gir et farget spaltningsprodukt R 2-NH2 hvis mengde kan måles ved fotometriske, spektrofotometriske eller fluoresensfotomet-riske metoder. Et forsøk ble foretatt på også In DOS No. 25 27 932, substrates with the formula R<1->Pro-X-Arg-2 1 2 NH-R are described in which R means a blocking group, -NH-R means a chromogenic group and X means a phenylalanyl, 3-cyclohexylalanyl, phenylglycyl or tyrosyl group. These substrates are very easily cleaved by plasma kallikrein and give a colored cleavage product R 2 -NH2 whose quantity can be measured by photometric, spectrophotometric or fluorescence photometric methods. An attempt was also made at

å bruke disse substrater for bestemmelse av organ- eller kjertelkallikreiner. Imidlertid fant man overraskende at disse substrater ikke erømfintlige overfor organ- eller kjertelkallikréin, dvs. spaltes ikke eller spaltes bare i liten grad av sistnevnte. to use these substrates for the determination of organ or glandular kallikreins. However, it was surprisingly found that these substrates are not sensitive to organ or glandular kallikrein, i.e. not cleaved or only to a small extent by the latter.

I DOS nr. 26 29 067 beskrives tripeptidderivater som er anvendelige som substrater for bestemmelser av visse proteolytiske enzymer, f.eks. kjertel- eller organkallikreiner og plasmin. To eksempler nevnes der, nemlig H-D-valyl-leucyl-arginyl-p-nitroaniliddihydroklorid og H-O-valyl-leucyl-lysyl-p-nitroaniliddihydroklorid. Det første tripeptidderivatet er et substrat for kjertelkallikréin, mens det andre tripeptidderivatet er et substrat for plasmin. De to forbind-elser spaltes av disse enzymer og gir p-nitroanilin hvis mengde kan måles fotometrisk eller spektrofotometrisk. Imidlertid når ømfintligheten for H-D-valyl-leucyl-arginyl-p-nitroaniliddihydroklorid bare akkurat terskelverdien som kreves for nøyaktig bestemmelse av urinkallikrein i ukonsen-trert urin. Hvis imidlertid dette amidsubstratet brukes i konsentrert urin, blir den fotometriske måling av p-nitroanilin sterkt forstyrret av urinets iboende farge. In DOS No. 26 29 067, tripeptide derivatives are described which are usable as substrates for the determination of certain proteolytic enzymes, e.g. glandular or organ kallikreins and plasmin. Two examples are mentioned there, namely H-D-valyl-leucyl-arginyl-p-nitroanilide dihydrochloride and H-O-valyl-leucyl-lysyl-p-nitroanilide dihydrochloride. The first tripeptide derivative is a substrate for glandular kallikrein, while the second tripeptide derivative is a substrate for plasmin. The two compounds are split by these enzymes and give p-nitroaniline, the amount of which can be measured photometrically or spectrophotometrically. However, the sensitivity for H-D-valyl-leucyl-arginyl-p-nitroanilide dihydrochloride only just reaches the threshold required for accurate determination of urinary kallikrein in unconcentrated urine. However, if this amide substrate is used in concentrated urine, the photometric measurement of p-nitroaniline is greatly interfered with by the intrinsic color of the urine.

De første to aminosyrer i tripeptidkjeden til de to tripeptidderivater som er nevnt i ovennevnte DOS 26 29 067 har hydrofobe isopropylgrupper i a- eller [3-stilling. Det ble forsøkt å erstatte isopropylgruppene med aromatiske grupper, f.eks. fenylgrupper, under opprettholdelse av grunnstrukturen til dipeptidkjeden for å øke hydrofobisiteten og, følgeligømfintligheten ovenfor kjertelkallikréin. Dette forsøk slo imidlertid feil. Tripeptidsubstratene som erholdtes ved inn-føring av aromatiske grupper spaltes ikke i det hele tatt eller spaltes høyden i meget liten utstrekning av kjertelkallikréin. Disse tripeptidsubstrater med aromatiske grupper har imidlertid en overraskende høyømfintlighet overfor plasmin. Videre fant man overraskende at hydrogeneringen av de aromatiske rester i disse tripeptidplasminsubstratene fører til nye tripeptidsubstrater som har en overraskende høy ømfintlighet overfor organ- eller kjertelkallikreiner. Man hadde antatt at i oppbygningen av tripeptidkjeder kunne bare naturlig forekommende aminosyrer brukes for å gi substrater som ville spaltes av proteolytiske enzymer. Derfor var det overraskende å finne at ved å bruke aminosyrer som inneholder cykloheksylrester og som ikke forefinnes i naturen, kunne man oppnå kromogene substrater som lett spaltes av organ- eller kjertelkallikreiner og andre proteolytiske enzymer, f.eks. plasmakallikrein. The first two amino acids in the tripeptide chain of the two tripeptide derivatives mentioned in the above-mentioned DOS 26 29 067 have hydrophobic isopropyl groups in the a- or [3-position. Attempts were made to replace the isopropyl groups with aromatic groups, e.g. phenyl groups, while maintaining the basic structure of the dipeptide chain to increase hydrophobicity and, consequently, sensitivity to glandular kallikrein. However, this attempt failed. The tripeptide substrates obtained by introducing aromatic groups are not cleaved at all or are cleaved to a very small extent by glandular kallikrein. However, these tripeptide substrates with aromatic groups have a surprisingly high sensitivity to plasmin. Furthermore, it was surprisingly found that the hydrogenation of the aromatic residues in these tripeptide plasmin substrates leads to new tripeptide substrates which have a surprisingly high sensitivity to organ or glandular kallikreins. It had been assumed that in the construction of tripeptide chains only naturally occurring amino acids could be used to provide substrates that would be cleaved by proteolytic enzymes. Therefore, it was surprising to find that by using amino acids that contain cyclohexyl residues and which do not occur in nature, one could obtain chromogenic substrates that are easily cleaved by organ or glandular kallikreins and other proteolytic enzymes, e.g. plasma kallikrein.

Foreliggende oppfinnelse vedrører nye kromogene substrater som har en høy ømfintlighet overfor visse proteolytiske enzymer, spesielt enzymer fra enzymklassen E.C. 3.4.21., f.eks. organ- eller kjertelkallikreiner, plasmin og trombin og derfor er anvendelige som substrater for den kvantitative bestemmelse av disse enzymer. Disse substrater er tripeptidderivater med formelen: The present invention relates to new chromogenic substrates which have a high sensitivity to certain proteolytic enzymes, especially enzymes from the enzyme class E.C. 3.4.21., e.g. organ or gland kallikreins, plasmin and thrombin and are therefore applicable as substrates for the quantitative determination of these enzymes. These substrates are tripeptide derivatives with the formula:

hvor where

a) X representerer en cykloheksylglycyl-, cykloheksyl-alanyl-eller cykloheksyltyrosyl-gruppe, og a) X represents a cyclohexylglycyl, cyclohexyl-alanyl or cyclohexyltyrosyl group, and

Y representerer en alanyl-, a-aminobutyryl-, norvalyl-, Y represents an alanyl, α-aminobutyryl, norvalyl,

leucyl-, norleucyl- eller pipecolin-gruppe eller leucyl, norleucyl or pipecoline group or

b) x representerer en cykloheksylglycyl-, cykloheksylalanyl-, cykloheksyltyrosyl- eller fenylglycyl-gruppe, b) x represents a cyclohexylglycyl, cyclohexylalanyl, cyclohexyltyrosyl or phenylglycyl group,

og and

Y representerer en fenylalanyl- eller fenylglycyl-gruppe, eljler Y represents a phenylalanyl or phenylglycyl group, or

c) X representerer en alanyl-, a-aminobutyryl-, valyl-, norvalyl-, leucyl- eller norleucyl-gruppe, og c) X represents an alanyl, α-aminobutyryl, valyl, norvalyl, leucyl or norleucyl group, and

Y representerer en cykloheksylalanyl-, cykloheksyltyrosyl- eller fenylglycyl-gruppe, eller Y represents a cyclohexylalanyl, cyclohexyltyrosyl or phenylglycyl group, or

d) X representerer en fenylalanyl- eller fenylglycyl-gruppe , og d) X represents a phenylalanyl or phenylglycyl group, and

Y representerer en cykloheksylalanyl- eller cykloheksyltyrosyl-gruppe , Y represents a cyclohexylalanyl or cyclohexyltyrosyl group,

Z representerer en arginyl- eller lysyl-gruppe og Z represents an arginyl or lysyl group and

R representerer p-nitrofenylamino, 2-naftylamino, 4-metoksy-2-naftylamino, 4-metyl-cumaryl-7-amino, 1,3-di(metoksykarbo-nyl)fenyl-5-amino, quinonyl-5-amino eller 8-nitroquinonyl-5-amino og salter derav med syrer, med det forbehold at tripeptidderivatet ikke kan være R represents p-nitrophenylamino, 2-naphthylamino, 4-methoxy-2-naphthylamino, 4-methyl-coumaryl-7-amino, 1,3-di(methoxycarbonyl)phenyl-5-amino, quinonyl-5-amino or 8-nitroquinonyl-5-amino and salts thereof with acids, with the proviso that the tripeptide derivative cannot be

H-D-CHG-Phe-Lys-pNA, H-D-Va1-CHA-Arg-MCA, H-D-CHG-Phe-Lys-pNA, H-D-Va1-CHA-Arg-MCA,

H-D-CHG-Phe-Lys-MCA, H-D-Val-CHA-Arg-DPA, H-D-CHG-Phe-Lys-MCA, H-D-Val-CHA-Arg-DPA,

H-D-CHG-Phe-Lys-DPA, H-D-Val-CHA-Arg-2-NA, H-D-CHG-Phe-Lys-DPA, H-D-Val-CHA-Arg-2-NA,

H-D-CHG-Phe-Lys-2-NA, H-D-Val-CHA-Arg-4-MeO-2-NA, H-D-CHG-Phe-Lys-4-MeO-2-NA, H-D-CHG-Leu-Arg-pNA, H-D-Val-CHA-Arg-pNA, H-D-Val-CHA-JLys-pNA, H-D-CHG-Phe-Lys-2-NA, H-D-Val-CHA-Arg-4-MeO-2-NA, H-D-CHG-Phe-Lys-4-MeO-2-NA, H-D-CHG-Leu- Arg-pNA, H-D-Val-CHA-Arg-pNA, H-D-Val-CHA-JLys-pNA,

H-D-CHG-Phe-Arg-pNA, H-D-CHT-Phe-Arg-pNA, H-D-CHG-Phe-Arg-pNA, H-D-CHT-Phe-Arg-pNA,

H-D-Ph'-Gly-CHA-Arg-pNA, H-D-CHG-Leu-Lys-pNA eller H-D-CHT-Pip-Arg-pNA. H-D-Ph'-Gly-CHA-Arg-pNA, H-D-CHG-Leu-Lys-pNA or H-D-CHT-Pip-Arg-pNA.

Tripeptidderivatene med formel I er vanskelige å oppløse i vandige medier og brukes derfor fortrinnsvis i form av salter med syrer, spesielt saltene med mineralsyrer, f.eks- HC1, HBr, H2S04, H3P04 etc, eller organiske syrer, f. eks. maur syre, eddiksyre, propionsyre, trimetyleddiksyre, metoksyeddiksyre, halogenerte eddiksyrer såsom triklor- eller trifluoreddiksyre, aminoeddiksyre, melkesyre, oksalsyre, malonsyre, sit ronsyre, benzosyre, aromatiske syrer som er substituert i kjernen såsom toluensyrer, klor- eller brombenzosyrer, met-oksybenzosyrer og aminobenzosyrer, ftalsyre etc. Denne syres natur er ikke kritisk fordi syren ikke deltar i reaksjonen mellom substratene og enzymene. The tripeptide derivatives of formula I are difficult to dissolve in aqueous media and are therefore preferably used in the form of salts with acids, especially the salts with mineral acids, e.g. HC1, HBr, H2SO4, H3PO4 etc., or organic acids, e.g. formic acid, acetic acid, propionic acid, trimethylacetic acid, methoxyacetic acid, halogenated acetic acids such as trichloro or trifluoroacetic acid, aminoacetic acid, lactic acid, oxalic acid, malonic acid, citric acid, benzoic acid, aromatic acids substituted in the nucleus such as toluene acids, chloro- or bromobenzoic acids, methoxybenzoic acids and aminobenzoic acids, phthalic acid etc. The nature of this acid is not critical because the acid does not participate in the reaction between the substrates and the enzymes.

Substratene med formel I og deres salter med syrer spaltes hydroly tisk., ved påvirkning av visse proteolytiske enzymer, spesielt enzymer fra klassen 3.4.21. (krf. "Enzyme Nomencla-ture", Elsevier Scientific Publishing Company, Amsterdam 1973, side 238 ff), f.eks. organ- og kjertelkallikreiner, plasmin og trombin, og som et resultat dannes et farget eller fluoreserende spaltningsprodukt med formel R-NH2 hvis mengde kan måles ved fotometriske, spektrofotometriske, fluoreserende spektrofotometriske eller elektrokjemiske metoder. Derfor er de nye substrater anvendelige for kvantitativ bestemmelse av proteolytiske enzymer, spesielt enzymer fra klassen E.C. 3.4.21., hvilke spalter naturlige peptidkjeder på karboksylsiden av arginin såvel som lysin, f.eks. organ- eller kjertelkallikreiner, plasmin, plasmakallikrein, trombin samt deres inhibitorer og proenzymer, og også andre faktorer som deltar i dannelsen eller inhiberingen av disse enzymer. The substrates of formula I and their salts with acids are hydrolytically cleaved under the action of certain proteolytic enzymes, especially enzymes of the class 3.4.21. (cf. "Enzyme Nomenclature", Elsevier Scientific Publishing Company, Amsterdam 1973, page 238 ff), e.g. organ and glandular kallikreins, plasmin and thrombin, and as a result a colored or fluorescent cleavage product of the formula R-NH2 is formed whose quantity can be measured by photometric, spectrophotometric, fluorescent spectrophotometric or electrochemical methods. Therefore, the new substrates are applicable for the quantitative determination of proteolytic enzymes, especially enzymes from the class E.C. 3.4.21., which cleaves natural peptide chains on the carboxyl side of arginine as well as lysine, e.g. organ or gland kallikreins, plasmin, plasma kallikrein, thrombin as well as their inhibitors and proenzymes, and also other factors that participate in the formation or inhibition of these enzymes.

Tripeptidderivatene som er beskrevet i de følgende eksempler 1, 2, 4, 6, 7, 8, 9, 10, 23, 29 og 30 kan anvendes spesielt som substrater for bestemmelse av urinkalli- The tripeptide derivatives described in the following examples 1, 2, 4, 6, 7, 8, 9, 10, 23, 29 and 30 can be used in particular as substrates for the determination of urinary potassium

krein. crazy.

For bestemmelse av kallikrein i humansputum kan tripeptidderivatene som er beskrevet i de følgende utførelseseksemp-pler 1, 2, 4, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30, 32, 33 og 34 brukes. For the determination of kallikrein in human sputum, the tripeptide derivatives described in the following embodiment examples 1, 2, 4, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 23, 25, 26 , 27, 28, 29, 30, 32, 33 and 34 are used.

Tripeptidderivatene som er beskrevet i de følgende eksempler 1, 3, 5, 6, 7, 9, 13, 14, 21, 22, 25, 26, 29, 30 og 31 utgjør en gruppe substrater som kan brukes for å bestem-me plasmin. The tripeptide derivatives described in the following examples 1, 3, 5, 6, 7, 9, 13, 14, 21, 22, 25, 26, 29, 30 and 31 form a group of substrates that can be used to determine plasmin .

Tripeptidderivatene som er beskrevet i de følgende eksempler 11, 12, 13, 14, 18, 19, 20, 23, 24, 26, 27, 28, 32, 33 og 34 er meget ømfintlige substrater for bestemmelse av trombin. The tripeptide derivatives described in the following examples 11, 12, 13, 14, 18, 19, 20, 23, 24, 26, 27, 28, 32, 33 and 34 are very sensitive substrates for the determination of thrombin.

Oppfinnelsen vedrører også anvendelse av tripeptidderivatet for kvantitativ bestemmelse av proteolytiske enzymer fra enzymklassen E.C. 3.4.21., som spalter naturlige peptidkjeder på karboksylsiden av arginin samt lysin, f.eks. organ- eller kjertelkallikreiner, plasmin og trombin. Fremgangsmåten ved anvendelsen består i å omsette materialet som inneholder de ovenfor nevnte enzymer eller hvori sistnevnte dannes eller forbrukes med et tripeptidderivat med formel I og måle mengden av farget eller fluoreserende spaltningsprodukt R-NH2som dannes ved den hydrolytiske påvirkning av enzymet på tripeptidderivatet ved fotometriske, spek-trof otometriske, fluoresensspektrofotometriske eller elektrokjemiske metoder. Fremgangsmåten mulig- The invention also relates to the use of the tripeptide derivative for the quantitative determination of proteolytic enzymes from the enzyme class E.C. 3.4.21., which cleaves natural peptide chains on the carboxyl side of arginine as well as lysine, e.g. organ or gland kallikreins, plasmin and thrombin. The method of application consists in reacting the material containing the above-mentioned enzymes or in which the latter is formed or consumed with a tripeptide derivative of formula I and measuring the amount of colored or fluorescent cleavage product R-NH2 which is formed by the hydrolytic action of the enzyme on the tripeptide derivative by photometric, spec -troph otometric, fluorescence spectrophotometric or electrochemical methods. The procedure possible-

gjør bestemmelse av f. eks. enzyminnholdet i enzympreparater eller enzymmengden i menneskers og pattedyrs kroppsvæsker, f.eks. urin, bukspytt, fordøyelsesslimhinner, melkekjertel-sekresjon, svettekjertelsekresjon, spytt og blod. Fremgangsmåten er spesielt anvendelig for kvanti- makes a determination of e.g. the enzyme content in enzyme preparations or the amount of enzyme in the body fluids of humans and mammals, e.g. urine, pancreatic saliva, digestive mucous membranes, mammary gland secretion, sweat gland secretion, saliva and blood. The method is particularly applicable for quantitative

tativ bestemmelse av organ- eller kjertelkallikreiner i de ovenfor nevnte kroppsvæsker og plasmakallikrein. Ved hjelp tative determination of organ or glandular kallikreins in the above-mentioned body fluids and plasma kallikrein. With help

av denne metode kan frie organkallikreiner og slimkallikrei-ner samt kallikreiner som dannes fra prekållikreiner og videre fysiologiske eller ikke fysiologiske inhibitorer for kal- of this method, free organ kallikreins and mucosal kallikreins as well as kallikreins that are formed from pre-kallikreins and further physiological or non-physiological inhibitors for kal-

likreiner og fysiologiske eller ikke-fysiologiske aktivatorer for prekallikreiner bestemmes. likreins and physiological or non-physiological activators of prekallikreins are determined.

Tripeptidderivatene med formel I kan fremstilles ifølge de etterfølgende beskrevne metoder: (1) Den kromogene gruppe R knyttes til karboksylgruppen hos C-terminal arginin eller lysin, hvorved a-aminogruppen beskyttes av en beskyttelsesgruppe, f.eks. en karbobenzoksy eller tert.-butoksykarbonylgruppe, 6 -guanidylgruppen i tilfellet arginin beskyttes ved protonisering, f.eks. med HC1, nitrering eller tosylering, og £-aminogruppen i tilfellet lysin beskyttes med en karbobenzoksygruppe, eller en p-metyl, p-metoksy eller p-klorbenzyloksykarbonylgruppe, eller en tert.-butoksykarbonylgruppe. Den C-terminale R-NH-gruppe tjener også som en beskyttelsesgruppe under den trinnvise syntese av peptidkjeden. De andre beskyttelsesgrupper kan fjernes selektivt etter behov for å knytte de videre amino-syrederivater på inntil den ønskede peptidkjede er fullstendig syntetisert. Eventuelt spaltes de gjenværende beskyttelsesgrupper fullstendig av uten at R-NH-gruppen påvirkes (kfr. f.eks. Miklos Bodansky et al., "Peptide Synthesis", Inter-science Publishers, 1966, side 163-165).. (2) . Først syntetiseres peptidkjeden (ifølge Bodansky et al., loe.eit.) hvorunder imidlertid den c-terminale karboksyl-gruppe i arginin eller lysin beskyttes med en vanlig ester-gruppe, f.eks. en metoksy, etoksy eller benzyloksygruppe i tilfellet arginin, eller en tert.-butoksygruppe i tilfellet lysin. Estergruppene kan fjernes ved alkalisk hydrolyse, bortsett fra tert.-butoksygruppen som avspaltes selektivt, The tripeptide derivatives of formula I can be prepared according to the methods described below: (1) The chromogenic group R is attached to the carboxyl group of C-terminal arginine or lysine, whereby the α-amino group is protected by a protecting group, e.g. a carbobenzoxy or tert.-butoxycarbonyl group, the 6-guanidyl group in the case of arginine is protected by protonation, e.g. with HCl, nitration or tosylation, and the £-amino group in the case of lysine is protected with a carbobenzoxy group, or a p-methyl, p-methoxy or p-chlorobenzyloxycarbonyl group, or a tert-butoxycarbonyl group. The C-terminal R-NH group also serves as a protecting group during the stepwise synthesis of the peptide chain. The other protecting groups can be selectively removed as needed to attach the further amino acid derivatives until the desired peptide chain is completely synthesized. Optionally, the remaining protecting groups are completely cleaved off without affecting the R-NH group (cf. e.g. Miklos Bodansky et al., "Peptide Synthesis", Inter-science Publishers, 1966, pages 163-165).. (2) . First, the peptide chain is synthesized (according to Bodansky et al., loe.eit.) during which, however, the c-terminal carboxyl group in arginine or lysine is protected with a common ester group, e.g. a methoxy, ethoxy or benzyloxy group in the case of arginine, or a tert-butoxy group in the case of lysine. The ester groups can be removed by alkaline hydrolysis, except for the tert.-butoxy group, which is selectively removed,

ved hjelp av trifluoreddiksyre. Hvis &-guanidylgruppen i arginin protoniseres, fjernes denne estergruppen enzymatisk ved hjelp av trypsin, og ingen racemerisering finner sted. Deretter' knyttes den kromogene gruppe R-NH- på. Hvis &-guanidinogruppen i arginin beskyttes med en nitro eller tosyl-gruppe, eller £ -aminogruppen i lysin beskyttes med en karbobenzoksy eller tert.-butoksygruppe, og den N-terminale a-aminogruppe i tripeptidderivatet beskyttes med en karboben- using trifluoroacetic acid. If the &-guanidyl group in arginine is protonated, this ester group is removed enzymatically by trypsin, and no racemerization takes place. The chromogenic group R-NH- is then attached. If the &-guanidino group in arginine is protected with a nitro or tosyl group, or the £-amino group in lysine is protected with a carbobenzoxy or tert.-butoxy group, and the N-terminal α-amino group in the tripeptide derivative is protected with a carboben-

zoksygruppe eller en p-metyl, p-metoksy eller p-klorbenzyloksykarbonylgruppe eller en tert.-butoksygruppe, fjernes alle beskyttelsesgrupper samtidig. Fjerningen kan utføres ved å behandle det beskyttede tripeptidderivatet med vannfritt HF ved romtemperatur, og alle de ovenfor nevnte beskyttelsesgrupper for amino- og & -guanidinogrupper fjernes således. Fjerningen kan også utføres ved behandling med 2N HBr i iseddik ved romtemperatur hvis det beskyttede tripeptidderivatet ikke inneholder noen beskyttende nitro- eller tosyl-gruppe. oxy group or a p-methyl, p-methoxy or p-chlorobenzyloxycarbonyl group or a tert.-butoxy group, all protecting groups are removed simultaneously. The removal can be carried out by treating the protected tripeptide derivative with anhydrous HF at room temperature, and all the above-mentioned protecting groups for amino and & -guanidino groups are thus removed. The removal can also be carried out by treatment with 2N HBr in glacial acetic acid at room temperature if the protected tripeptide derivative contains no nitro or tosyl protecting group.

Fremstillingen av tripeptidderivatene ifølge oppfinnelsen beskrives i detalj i de følgende utførelseseksempler. The preparation of the tripeptide derivatives according to the invention is described in detail in the following examples.

Analysen av eluatene og produktene som erholdes ifølge eksem-plene ble utført ved tynnsjiktkromatografi ved bruk av glass-plate som var belagt med kiselgel (Merck, F 2 541. Tynnsjikt-kromatogrammene ble utviklet med de følgende løsningsmiddel-systemer: The analysis of the eluates and products obtained according to the examples was carried out by thin-layer chromatography using a glass plate coated with silica gel (Merck, F 2 541. The thin-layer chromatograms were developed with the following solvent systems:

A kloroform/metanol (9:1) A chloroform/methanol (9:1)

B n-propanol/etylacetat/vann (7:1:2). B n-propanol/ethyl acetate/water (7:1:2).

C n-butanol/eddiksyre/vann (3:1:1).. C n-butanol/acetic acid/water (3:1:1)..

De følgende forkortelser anvendes: The following abbreviations are used:

AcOH = eddiksyre AcOH = acetic acid

Ala = alanin Ala = alanine

Arg = arginin Arg = arginine

BOC = tert.-butoksykarbonyl BOC = tert-butoxycarbonyl

But = a-aminobutyrsyre But = α-aminobutyric acid

Cbo = karbobenzoksy Cbo = carbobenzoxy

CHA = cykloheksylalanin CHA = cyclohexylalanine

CHG = cykloheksylglycin CHG = cyclohexylglycine

CHT = cyklohéksyltyrosin = p-hydroksycykloheksylalanin DMF = dimetylformamid CHT = cyclohexyltyrosine = p-hydroxycyclohexylalanine DMF = dimethylformamide

DPA = 1,3-di(metoksykarbonyl)-fenyl-(51-amid DPA = 1,3-di(methoxycarbonyl)-phenyl-(51-amide).

TLC = tynnsjiktkromatografi TLC = thin layer chromatography

Et^N = trietylamin Et^N = triethylamine

HCA = p-hydroksycykloheksylalanin HMPTA = fosforsyre N,N,N',N',N",N"-heksametyltriamid Ile = isoleuciri HCA = p-hydroxycyclohexylalanine HMPTA = phosphoric acid N,N,N',N',N",N"-hexamethyltriamide Ile = isoleuciri

Leu = léuciitt Leu = léucite

SS = oppløselige system(er) SS = soluble system(s)

Lys = lysin MCA = 4-metyl-coumaryl-(7)-amid MeOH ' = metanol Lys = lysine MCA = 4-methyl-coumaryl-(7)-amide MeOH ' = methanol

4-MeO-2-NA= 4-metoksy-2-naftylamid Nleu = norleucin 4-MeO-2-NA= 4-methoxy-2-naphthylamide Nleu = norleucine

Nval = norvalin Nval = norvaline

OpNP p-nitrofenoksy OpNP p-nitrophenoxy

Phe = fenylalanin Phe = phenylalanine

Ph'Gly = fenylglycin Ph'Gly = phenylglycine

Pip = pipekolinsyre pNA = p-nitroanilid THF = tetrahydrofuran Pip = pipecolic acid pNA = p-nitroanilide THF = tetrahydrofuran

Tyr = tyrosin Tyr = tyrosine

Val = valin Val = valine

Hvis intet annet er angitt, har aminosyrene i peptidkjedene L-form. Unless otherwise stated, the amino acids in the peptide chains have the L-form.

Eksempel 1 Example 1

H-D-But-CHA-Arg-pNA. 2HBr H-D-But-CHA-Arg-pNA. 2HBr

la. Cfao-Arg-pNA.HC1 let. Cfao-Arg-pNA.HC1

r en 250 ml trehalskolbe ble 16/0 g (47,0 mmol) Cbo-Arg-OH. HC1, som var tørket i vakuum over P2°5'°PP*<*st * 90 ml absolutt HMPTA ved 20°C mens atmosfæren i kolben ble holdt fri for fuktighet. Den resulterende oppløsning ble ved romtemperatur først tilsatt en løsning av 4,74 g (47,0 mmol) Et^N i 10 ml HMPTA og deretter porsjonsvis 16,4 g (100 mmol) p-nitro-fenylisocyanat (100% overskudd). Etter en reaksjonstid på 24 timer ved 20°C ble hoveddelen av HMPTA fjernet ved destillasjon i vakuum. Resten ble ekstrahert flere ganger med 30% AcOH. Resten ble kastet. De samlede sure ekstrakter ble videre renset ved gjennomløp gjennom en kolonne av "Sephadex G-15" (Varemerke) ekvilibrert med 30% AcOH og eluert med 30% AcOH. Den fraksjon av AcOH eluatet som ble spaltet ved behandling med trypsin under frigjøring av p-nitroanilin ble frysetørket. Man fikk derved 12,6 g av et amorft pulver som er homogent i SS C som vist ved TLC. Elementæranalyse og beregning fra den empiriske formel C20<H>25<N6>°5C"''^a de ^^' 3en^ B verdier (verdiene fra den empiriske formel er satt i paren-tes) : C = 51,29% (51,67%), H = 5,48% (5,42%),, N - 17,92% (18, 08%) , Cl = 7,50% (7,63%)_. r a 250 ml three-necked flask was 16.0 g (47.0 mmol) Cbo-Arg-OH. HC1, which had been dried in vacuo over P2°5'°PP*<*st * 90 ml of absolute HMPTA at 20°C while the atmosphere in the flask was kept free of moisture. The resulting solution was first added at room temperature to a solution of 4.74 g (47.0 mmol) of Et^N in 10 ml of HMPTA and then 16.4 g (100 mmol) of p-nitro-phenyl isocyanate (100% excess) in portions. After a reaction time of 24 hours at 20°C, the main part of HMPTA was removed by distillation in vacuum. The residue was extracted several times with 30% AcOH. The rest was thrown away. The combined acidic extracts were further purified by passage through a column of "Sephadex G-15" (Trademark) equilibrated with 30% AcOH and eluted with 30% AcOH. The fraction of the AcOH eluate which was cleaved by treatment with trypsin to release p-nitroaniline was freeze-dried. This resulted in 12.6 g of an amorphous powder which is homogeneous in SS C as shown by TLC. Elemental analysis and calculation from the empirical formula C20<H>25<N6>°5C"''^a the ^^' 3en^ B values (the values from the empirical formula are set in parentheses) : C = 51.29% (51.67%), H = 5.48% (5.42%),, N - 17.92% (18.08%) , Cl = 7.50% (7.63%)_.

Ib. 2HBr. H- Arg- pNA Ib. 2HBr. H-Arg-pNA

4,65 g (10 mmol) av forbindelse la ble behandlet under røring med 40 ml 2NHBr i iseddik i 45 min. ved 20°C i fravær av fuktighet.. Aminosyrederivatet løste seg under CO., utvikling. Reaksjonsløsningen ble satt dråpevis under kraftig røring til 250 ml absolutt eter. Dette resulterte i utfelling av 2HBr. H-Arg-pNA. Eterfasen ble suget fra, hvorpå den faste fase ble vasket 4 ganger med porsjoner av 100 ml absolutt eter for å fjerne benzylbromid som haddé dannet seg som et biprodukt sammen med overskudd HBr og AcOH. Resten ble oppløst i 30 ml metanol, pH justert til 4,5 véd tilsetning av Et^N, og løsn-ingen ble konsentrert til tørrhet i vakuum ved 3 0°C. Det resulterende produkt ble oppløst i 75 ml MeOH og ført gjennom en kolonne av "Sephadex LH-20" (kryssbundet dekstrangel) ekvilibrert med MeOH. Fra en fraksjon av eluatet fikk man 4.65 g (10 mmol) of compound 1a was treated with stirring with 40 ml of 2NHBr in glacial acetic acid for 45 min. at 20°C in the absence of moisture.. The amino acid derivative resolved under CO., evolution. The reaction solution was added dropwise with vigorous stirring to 250 ml of absolute ether. This resulted in precipitation of 2HBr. H-Arg-pNA. The ether phase was suctioned off, after which the solid phase was washed 4 times with 100 ml portions of absolute ether to remove benzyl bromide which had formed as a by-product together with excess HBr and AcOH. The residue was dissolved in 30 ml of methanol, pH adjusted to 4.5 by addition of Et₂N, and the solution was concentrated to dryness in vacuo at 30°C. The resulting product was dissolved in 75 ml of MeOH and passed through a column of "Sephadex LH-20" (cross-linked dextran) equilibrated with MeOH. From a fraction of the eluate one obtained

4,18 g (91,6% av teoretisk) amorf forbindelse lb som var homogen i SS C som vist ved TLC. Elementæranalyse og beregning fra den empiriske formel ci2H2 0N6°3Br2 ^a ^e f0!9ende verdier: C = 31,15% (31,60%), H = 4,35% (4,42%1, N = 18,84% (18,43%) og Br = 34,81% (35,03%). 4.18 g (91.6% of theory) of amorphous compound 1b which was homogeneous in SS C as shown by TLC. Elemental analysis and calculation from the empirical formula ci2H2 0N6°3Br2 ^a ^e f0!9nding values: C = 31.15% (31.60%), H = 4.35% (4.42%1, N = 18, 84% (18.43%) and Br = 34.81% (35.03%).

lc. Cbo- CHA- Arg- pNA. HBr lc. Cbo-CHA-Arg-pNA. HBr

4,56 g (10 mmol). av forbindelsen lb ble oppløst i 30 ml nydestillert DMF og løsningen ble avkjølt til -10°C. 1,40 ml (10 mmol) Et^N ble satt til løsningen under røring. Det dannede Et.jN.HBr ble fjernet ved filtrering og vasket med en liten mengde kald DMF. 4,6 9 g (11 mmol) Cbo-CHA-OpNP ble satt ved -10°C til filtratet, og reaksjonen fikk fortsette i 2 til 3 timer uten fuktighet, hvorunder temperaturen i reaksjonsløsningen gradvis nådde ca. 20°C. Løsningen ble igjen avkjølt til -10°C, pufret med 0,7 0 ml (5mmol)Et3N og fikk reagere ca. 2 timer ved -10°C og ca. 3 timer ved romtemperatur. Denne prosedyre ble gjentatt med 0,70 ml Et^N, og etter 16 timer ble reaksjonsløsningen konsentrert til tørrhet i vakuum ved 50°C. Resten ble oppløst i 75 ml 50% AcOH og renset ved gelfiltrering på en kolonne av "Sephadex G-15" ekvilibrert med 50% AcOH. Hovedfraksjonen av AcOH-éluatet som ble spaltet ved behandling med trypsin under fri-gjøring av p-nitroanilin ble konsentrert til tørrhet i vakuum ved 40°C. Resten ble oppløst i 150 ml MeOH og igjen konsentrert til tørrhet. Den resulterende rest ble tørket i en vakuumdesikator ved 60°C over P2°5og9a 5'85 g (88,3% av teoretisk utbytte), amorf forbindelse lc som var homogen i SS C som vist ved TLC. Elementæranalyse og beregning fra 4.56 g (10 mmol). of compound 1b was dissolved in 30 ml of freshly distilled DMF and the solution was cooled to -10°C. 1.40 mL (10 mmol) of Et₂N was added to the solution with stirring. The formed Et.jN.HBr was removed by filtration and washed with a small amount of cold DMF. 4.6 9 g (11 mmol) Cbo-CHA-OpNP was added at -10°C to the filtrate, and the reaction was allowed to continue for 2 to 3 hours without moisture, during which the temperature in the reaction solution gradually reached approx. 20°C. The solution was again cooled to -10°C, buffered with 0.70 ml (5 mmol)Et3N and allowed to react for approx. 2 hours at -10°C and approx. 3 hours at room temperature. This procedure was repeated with 0.70 ml Et₂N, and after 16 hours the reaction solution was concentrated to dryness in vacuo at 50°C. The residue was dissolved in 75 ml of 50% AcOH and purified by gel filtration on a column of "Sephadex G-15" equilibrated with 50% AcOH. The main fraction of the AcOH eluate which was cleaved by treatment with trypsin to release p-nitroaniline was concentrated to dryness in vacuo at 40°C. The residue was dissolved in 150 ml of MeOH and again concentrated to dryness. The resulting residue was dried in a vacuum desiccator at 60°C over P2°5og9a 5'85 g (88.3% of theoretical yield), amorphous compound 1c which was homogeneous in SS C as shown by TLC. Elementary analysis and calculation from

den empiriske formel C29H4QN706Br ga de følgende verdier: the empirical formula C29H4QN706Br gave the following values:

C = 52,28% (52,57%), H = 6,16% (6,09%), N = 15,09% (14,80%) og Br = 11,85% (12,06%). C = 52.28% (52.57%), H = 6.16% (6.09%), N = 15.09% (14.80%) and Br = 11.85% (12.06% ).

Id. 2HBr. H- CHA- Arg- pNA Id. 2HBr. H-CHA-Arg-pNA

5,30 g (8 mmol) av forbindelse lc ble behandlet under røring med 32 ml 2N HBr i iseddik i 40 min. ved 20°C. Dipeptidderi-vatet oppløstes etterhvert under C02utvikling. Reaksjons-løsningen ble satt dråpevis under kraftig røring til 250 ml absolutt eter. Dette resulterte i utfelling av 2HBr.H-CHA- 5.30 g (8 mmol) of compound 1c was treated with stirring with 32 ml of 2N HBr in glacial acetic acid for 40 min. at 20°C. The dipeptide derivative eventually dissolved during CO2 evolution. The reaction solution was added dropwise with vigorous stirring to 250 ml of absolute ether. This resulted in precipitation of 2HBr.H-CHA-

Arg-pNA. Eterfasen ble suget fra, hvoretter den faste fase ble vasket fire ganger med porsjoner på 100 ml absolutt eter for å fjerne benzylbromid som var dannet som biprodukt sammen med et overskudd HBr og AcOH. Resten ble oppløst i 50 ml MeOH. pH ble justert til 4,5 ved hjelp av Et^N, og løs-ningen ble konsentrert til tørrhet i vakuum ved 3 0°C. Den resulterende rest ble oppløst i 50 ml MeOH og renset på en kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Den fraksjon av MeOH eluatet som ble spaltet ved behandling med trypsin under frigjøring av p-nitroanilin ble konsentrert til tørrhet i vakuum ved 30°C. Den resulterende rest ble tørket i en vakuumdesikator ved 40°C over P2°5hvilket ga 4,48 g (91,9% av teoretisk) amorf forbindelse ld som var homogen i SS C. Elementæranalyse og beregning fra den empiriske formel C21<H>35<N>7<0>4<B>r ga de følgende resultater: C = 41,80% (41, 39%), H = 5,86% (5,79%), N =16,31% ,(16,09%) og Br = 25,85% Arg pNA. The ether phase was suctioned off, after which the solid phase was washed four times with 100 ml portions of absolute ether to remove benzyl bromide which had formed as a by-product together with an excess of HBr and AcOH. The residue was dissolved in 50 mL of MeOH. The pH was adjusted to 4.5 using Et₂N, and the solution was concentrated to dryness in vacuo at 30°C. The resulting residue was dissolved in 50 ml of MeOH and purified on a column of "Sephadex LH-20" equilibrated with MeOH. The fraction of the MeOH eluate which was cleaved by treatment with trypsin to release p-nitroaniline was concentrated to dryness in vacuo at 30°C. The resulting residue was dried in a vacuum desiccator at 40°C over P2°5 to give 4.48 g (91.9% of theory) of amorphous compound 1d which was homogeneous in SS C. Elemental analysis and calculation from the empirical formula C21<H> 35<N>7<0>4<B>r gave the following results: C = 41.80% (41.39%), H = 5.86% (5.79%), N = 16.31% ,(16.09%) and Br = 25.85%

(26,23%). (26.23%).

le. Cbo- D- But- CHA- Arg- pNA. HBr laugh. Cbo-D-But-CHA-Arg-pNA. HBr

3,05 g (5 mmol) av forbindelse ld ble oppløst i 20 ml nydestillert DMF og løsningen ble avkjølt til -10°C. 0,70 ml 3.05 g (5 mmol) of compound 1d was dissolved in 20 ml of freshly distilled DMF and the solution was cooled to -10°C. 0.70 ml

(5 mmol) Et^N ble satt til løsningen under røring. Det dannede Et^N.HBr ble fjernet ved filtrering og vasket med en liten mengde kald DMF. 1,97 g (5,5 mmol) Cbo-D-But.OpNP ble satt til filtratet ved -10°C under røring. Reaksjonsblandingen fikk reagere i 2 til 3 timer uten fuktighet, hvorunder temperaturen i reaksjonsløsningen gradvis nådde ca. 20°C. Løsningen ble igjen avkjølt til -10°C og bufret med 0,35 ml (2,5 mmol).Et^N og fikk reagere ca. 2 timer ved -10°C og videre 3 timer ved romtemperatur. Denne fremgangsmåte ble gjentatt med 0,35 ml Et^N, bg etter 16 timer ble reaksjons-løsningen konsentrert til tørrhet i vakuum ved 50 C. Resten ble oppløst i 50 ml 50% AcOH og grenset ved gelfiltrering på en kolonne av "Sephadex G-15" ekvilibrert med 50% AcOH.Hovedfraksjonen av AcOH eluatet som ble spaltet ved behandling med trypsin under frigjøring av p-nitroanilin ble konsentrert til tørrhet i vakuum i 40°C. Resten ble oppløst i 100 ml MeOH og løsningen ble igjen konsentrert til tørrhet. Den resulterende rest ble behandlet i en vakuumdesikator ved (5 mmol) Et^N was added to the solution with stirring. The formed Et^N.HBr was removed by filtration and washed with a small amount of cold DMF. 1.97 g (5.5 mmol) of Cbo-D-But.OpNP was added to the filtrate at -10°C with stirring. The reaction mixture was allowed to react for 2 to 3 hours without moisture, during which the temperature in the reaction solution gradually reached approx. 20°C. The solution was again cooled to -10°C and buffered with 0.35 ml (2.5 mmol).Et^N and allowed to react approx. 2 hours at -10°C and a further 3 hours at room temperature. This procedure was repeated with 0.35 ml Et^N, bg after 16 hours the reaction solution was concentrated to dryness in vacuo at 50 C. The residue was dissolved in 50 ml 50% AcOH and concentrated by gel filtration on a column of "Sephadex G -15" equilibrated with 50% AcOH. The main fraction of the AcOH eluate which was cleaved by treatment with trypsin releasing p-nitroaniline was concentrated to dryness in vacuo at 40°C. The residue was dissolved in 100 ml of MeOH and the solution was again concentrated to dryness. The resulting residue was treated in a vacuum desiccator at

60°C over P205 hvilket ga 3,27g (87.5% av det teoretiske) 60°C over P205 which gave 3.27g (87.5% of the theoretical)

av den amorfe forbindelse le som var homogen i SS C som vist ved TLC. Elementæranalyse og beregning fra den empiriske formel C33H47<Ng0>7Br ga de følgende verdier: C = 52.88% (53.01%) , H = 6,40%(6,34%), N = 15,28% (14,99%) og Br =10,53% of the amorphous compound 1e which was homogeneous in SS C as shown by TLC. Elemental analysis and calculation from the empirical formula C33H47<Ng0>7Br gave the following values: C = 52.88% (53.01%) , H = 6.40% (6.34%), N = 15.28% (14.99% ) and Br =10.53%

(10,69%). (10.69%).

lf. 2HBr. H- D- CHG- But- Arg- pNA lf. 2HBr. H-D-CHG-But-Arg-pNA

2,24 g (3 mmol) av forbindelse le ble under røring behandlet med 12 ml 2N HBr i iseddik i 40 min. ved 20°C uten fuktighet. Tripeptidderivatet løste seg gradvis under dekarboksylering 2.24 g (3 mmol) of compound 1e was treated with 12 ml of 2N HBr in glacial acetic acid for 40 min while stirring. at 20°C without humidity. The tripeptide derivative gradually resolved during decarboxylation

og C02utvikling. Reaksjonsløsningen ble satt dråpevis til 120 ml absolutt eter. Dette førte til utfelling av 2HBr.H-D-But-»CHA-Arg-pNA. Eterfasen ble suget fra gjennom en filterstav og deretter ble den faste fase vasket 4 ganger med porsjoner av 50 ml absolutt eter. Den resulterende rest ble opp-løst i 40 ml MeOH. pH ble justert til 4,5 ved hjelp av Et3N, og løsningen ble konsentrert til tørrhet i vakuum ved 30°C. Resten ble oppløst i 30 ml MeOH og renset på en kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Den fraksjon av MeOH eluatet som ble spaltet ved behandling med trypsin under fri-gjøring av p-nitroanilin ble konsentrert til tørrhet i vakuum med 30°C. For videre rensing ble den forrensede rest oppløst i 30 ml 33% AcOH og renset ved gelfiltrering på en kolonne av "Sephadex G-15" ekvilibrert med 33% AcOH. Hovedfraksjonen av AcOH eluatet som ble spaltet ved behandling med trypsin under frigjøring av p-nitroanilin ble konsentrert til tørrhet i vakuum ved 40°C. Den resulterende rest ble tørket i en vakuumdesikator ved 40°C over ^ 2Q5 hvilket ga.1,71 g (82,1%) and C02 evolution. The reaction solution was added dropwise to 120 ml of absolute ether. This led to precipitation of 2HBr.H-D-But-»CHA-Arg-pNA. The ether phase was sucked off through a filter rod and then the solid phase was washed 4 times with portions of 50 ml of absolute ether. The resulting residue was dissolved in 40 ml of MeOH. The pH was adjusted to 4.5 using Et 3 N, and the solution was concentrated to dryness in vacuo at 30°C. The residue was dissolved in 30 ml of MeOH and purified on a column of "Sephadex LH-20" equilibrated with MeOH. The fraction of the MeOH eluate which was cleaved by treatment with trypsin to liberate p-nitroaniline was concentrated to dryness in vacuo at 30°C. For further purification, the prepurified residue was dissolved in 30 ml of 33% AcOH and purified by gel filtration on a column of "Sephadex G-15" equilibrated with 33% AcOH. The major fraction of the AcOH eluate which was cleaved by treatment with trypsin to release p-nitroaniline was concentrated to dryness in vacuo at 40°C. The resulting residue was dried in a vacuum desiccator at 40°C over ^2Q5 to yield 1.71 g (82.1%)

av teoretisk) amorf forbindelse lf som var homogen i SS C som vist ved TLC. Elementæranalyse og beregning fra sumforme- of theory) amorphous compound 1f which was homogeneous in SS C as shown by TLC. Elementary analysis and calculation from summation

len C25H42N8°5Br2 ^a de *$ l9en& e verdier: C = 43,18% (43,24%), len C25H42N8°5Br2 ^a de *$ l9en& e values: C = 43.18% (43.24%),

H = 6,16% (6,10%), N = 16,27% (16,14% ) og Br = 22,73% (23,01%). H = 6.16% (6.10%), N = 16.27% (16.14%) and Br = 22.73% (23.01%).

Aminosyreanalysen bekreftet tilstedeværelsen av de ventede aminosyrer i de riktige forhold: The amino acid analysis confirmed the presence of the expected amino acids in the correct ratios:

Arg: 1,01 - CHA: 0,98 - D-But: 1,00. Arg: 1.01 - CHA: 0.98 - D-But: 1.00.

Eksempel 2 Example 2

2HBr. H- D- But~ CHA- Lys- pNA 2HBr. H- D- But~ CHA- Lys- pNA

2a. BOC- Lys( f- Cbo)- pNA 2a. BOC- Lys( f- Cbo)- pNA

38,05 g (0,1 mol) tørket olje av BOC-Lys(£-Cbo)-OH ble opp-løst i en 500 ml trehålskdlbe i 150 ml absolutt HMPTA ved 20°C uten fuktighet. Til denne resulterende løsning satte man ved romtemperatur først en løsning av 10,12 g (0,1 mol) Et3N i 25 ml HMPTA og så porsjonsvis 24,62 g (0,15 mol), p-nitrofenylisocyanat (50% overskudd) hvorved sterk C02 utvikling fant sted hver gang. Etter en reaksjonstid på 24 timer ved 20°C ble hoveddelen HMPTA fjernet ved destillasjon i vakuum. Resten ble ekstrahert flere ganger med 2% NaHCO^løs-ning og så behandlet med destillert H20. Denne resulterende rest blé tørkét i vakuum ved 40 C og så ekstrahert flere ganger med varm' MeOH inntil resten bare inneholdt det tungt-løselige biprodukt N,N'-bis(p-nitrofenyllurea. MeOH ekstrak-tene ble konsentrert til 300 ml, hvorunder, noen forurens-inger dannet en flokket felling. Etter filtrering ble filtratet (330 ml) renset på eri kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Hbvedfraksjonén av MeOH eluatet ble konsentrert i vakuum ved 30°C til et' lite volum, hvorunder en nålelignendé substans krystallierte. De ; erholdte krys-taller ble filtrert fra og vasket porsjonsvis med 5 0 ml is-kald MeOH. Etter tørking'i en vakuumdesikator ved 40°C over. P205fikk man 31,1 g (62,1% av teoretisk utbytte) krystallinsk forbindelse 2a med smp. som var homogen i SS A og B som vist ved TLC. Moderluten ga et videre utbytte på 5,8 g (11,6% av teori) av substans 2a med smp. som var homogen i SS A og B som vist ved TLC. Elementæranalyse og beregning fra sumformelen C25<H>32<N>4°7 ^a de ^Øl9ende verdier: C = 60,23% (59,99%), H = 6,50% (6,44%). og N = 11,38% (11,19%). 38.05 g (0.1 mol) of dried oil of BOC-Lys(£-Cbo)-OH was dissolved in a 500 ml three-well flask in 150 ml of absolute HMPTA at 20°C without moisture. To this resulting solution was first added at room temperature a solution of 10.12 g (0.1 mol) Et3N in 25 ml HMPTA and then 24.62 g (0.15 mol), p-nitrophenyl isocyanate (50% excess) in portions, whereby strong C02 evolution took place each time. After a reaction time of 24 hours at 20°C, the main part of HMPTA was removed by distillation in vacuum. The residue was extracted several times with 2% NaHCO 3 solution and then treated with distilled H 2 O. This resulting residue was dried in vacuo at 40 C and then extracted several times with hot MeOH until the residue contained only the sparingly soluble by-product N,N'-bis(p-nitrophenylurea). The MeOH extracts were concentrated to 300 ml, during which , some impurities formed a flocculent precipitate. After filtration, the filtrate (330 ml) was purified on a column of "Sephadex LH-20" equilibrated with MeOH. The second fraction of the MeOH eluate was concentrated in vacuo at 30°C to a small volume , during which a needle-like substance crystallized. The crystals obtained were filtered off and washed in portions with 50 ml of ice-cold MeOH. After drying in a vacuum desiccator at 40°C above. P2O5 31.1 g (62.1 % of theoretical yield) crystalline compound 2a with m.p. which was homogeneous in SS A and B as shown by TLC The mother liquor gave a further yield of 5.8 g (11.6% of theory) of substance 2a with m.p. which was homogeneous in SS A and B as shown by TLC Elemental analysis and calculation from the sum formula C25<H>32<N>4°7 ^a de ^Øl9e nth values: C = 60.23% (59.99%), H = 6.50% (6.44%). and N = 11.38% (11.19%).

2b. CF3 COOH. H- Lys( E- Cbo)- pNA 2b. CF3 COOH. H- Lys (E- Cbo)- pNA

25,03 g (50 mmol) av forbindelse 2a ble under kraftig røring behandlet med 50 ml nydestillert vannfri trifluoreddiksyre ved 2 0°C i 60 min. i fravær av fugtighet. BOC gruppen ble selektivt avspaltet under C02utvikling og frigjøring av iso-butylen. Reaksjonsløsningen ble satt dråpevis under kraftig røring til 7 50 ml absolutt eter hvorunder fnokket CF3COOH.H- 25.03 g (50 mmol) of compound 2a was treated under vigorous stirring with 50 ml of freshly distilled anhydrous trifluoroacetic acid at 20°C for 60 min. in the absence of moisture. The BOC group was selectively cleaved during CO2 evolution and release of iso-butylene. The reaction solution was added dropwise with vigorous stirring to 750 ml of absolute ether, during which the CF3COOH.H-

Lys (£-Cbo).-pNA utf eltes. Eterfasen ble suget fra gjennom en filterstav. Den faste fasen ble behandlet 4 ganger med porsjoner på 100 ml absolutt eter. Den resulterende rest ble oppløst i 200 ml MeOH. pH ble justert til 4,5 ved hjelp av Et^N, og løsningen ble konsentrert til tørrhet i vakuum ved 30 C. Resten ble oppløst i 200 ml MeOH og renset på en kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Hovedfraksjonen av MeOH eluatet som var homogent i SS C som vist ved TLC ble konsentrert i vakuum ved 30°C. Den resulterende rest ble tørket i en vakuumdesikator ved 4 0°C over ^ 2°^ °9 ga 22,64 g (88,0% av teoretisk utbyttel amorf forbindelse 2b. Elementæranalyse og beregning fra sumformelen C22H25N40?F3ga de følgende verdier: C = 51,66% (51,36%1, H = 4,88% Light (£-Cbo).-pNA is precipitated. The ether phase was sucked off through a filter rod. The solid phase was treated 4 times with 100 ml portions of absolute ether. The resulting residue was dissolved in 200 mL of MeOH. The pH was adjusted to 4.5 with Et^N and the solution was concentrated to dryness in vacuo at 30 C. The residue was dissolved in 200 ml of MeOH and purified on a column of "Sephadex LH-20" equilibrated with MeOH. The major fraction of the MeOH eluate which was homogeneous in SS C as shown by TLC was concentrated in vacuo at 30°C. The resulting residue was dried in a vacuum desiccator at 40°C over ^ 2°^ °9 gave 22.64 g (88.0% of theoretical yield amorphous compound 2b. Elemental analysis and calculation from the general formula C22H25N40?F3 gave the following values: C = 51.66% (51.36%1, H = 4.88%

(4,90%) og N = 11,08% (10,89%). (4.90%) and N = 11.08% (10.89%).

2 c. BOC- CHA- Lys(€- Cbo)- pNA 2 c. BOC- CHA- Lys(€- Cbo)- pNA

7,72 g (15mmol) forbindelse 2b ble oppløst i 50 ml nydestillert DMF og avkjølt til -10°C. Til løsningen satte man under røring 6,48 g (16,5 mmol) BOC-CHA-OpNP og 2,09 ml (15 mmol) Et^N. Blandingen fikk reagere 3 timer i fravær av fuktighet, hvorved reaksjonstearperaturen gradvis nådde romtemperatur. Løsningen ble igjen avkjølt til -10°C og bufret med 1,05 ml (7,5 mmol) Et3N. Etter en reaksjonstid på 5 timer ble denne prosedyre gjentatt med 1,05 ml Et^N. Etter en reaksjonstid på 16 timer ved 20°C ble reaksjonsløsningen konsentrert til tørrhet i vakuum ved 50°C. Resten ble oppløst i 150 ml MeOH og renset ved gelfiltrering på en kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Den første fraksjonen av MeOH eluatet som var homogen i SS A og B som vist ved TLC,ble konsentrert til tørrhet i vakuum ved 30°C. Etter tørking i en vakuumdesikator ved 40°C over P2°5fikk man 8,26 g (84,2% av teori) forbindelse 2c som var homogen i SS A og B som vist ved TLC. Elementæranalyse og beregning fra sumformelen C34H47<N>5<0g>ga de følgende verdier: C = 63,05% (62,46%), 7.72 g (15 mmol) of compound 2b was dissolved in 50 ml of freshly distilled DMF and cooled to -10°C. 6.48 g (16.5 mmol) BOC-CHA-OpNP and 2.09 ml (15 mmol) Et^N were added to the solution with stirring. The mixture was allowed to react for 3 hours in the absence of moisture, whereby the reaction temperature gradually reached room temperature. The solution was again cooled to -10°C and buffered with 1.05 ml (7.5 mmol) Et 3 N. After a reaction time of 5 hours, this procedure was repeated with 1.05 ml of Et^N. After a reaction time of 16 hours at 20°C, the reaction solution was concentrated to dryness in vacuo at 50°C. The residue was dissolved in 150 ml of MeOH and purified by gel filtration on a column of "Sephadex LH-20" equilibrated with MeOH. The first fraction of the MeOH eluate which was homogeneous in SS A and B as shown by TLC was concentrated to dryness in vacuo at 30°C. After drying in a vacuum desiccator at 40°C over P2°5, 8.26 g (84.2% of theory) of compound 2c was obtained which was homogeneous in SS A and B as shown by TLC. Elemental analysis and calculation from the sum formula C34H47<N>5<0g>gave the following values: C = 63.05% (62.46%),

H = 7,35% (7,25%) og N = 10,98% (10,71%). H = 7.35% (7.25%) and N = 10.98% (10.71%).

2d. CF3 COOH. H- CHA- Lys( £- Cb6)- pNA 2d. CF3 COOH. H- CHA- Lys( £- Cb6)- pNA

3,27 g (5 mmol) forbindelse 2c ble under kraftig røring behandlet med 10 ml nydestillert vannfritt trifluoreddiksyre 60 min. ved 20°C i fravær av fuktighet. Reaksjonen ble tilsatt dråpevis under kraftig røring.til 100 ml absolutt eter, hvorved amorf CF3COOH.H-CHA-Lys (C-Cbo)-pNA utfeltes. Eterfasen ble suget fra. Den faste resten ble vasket 3 ganger med porsjoner av 30 ml absolutt eter. Den resulterende resten ble oppløst i 50 ml MeOH. pH ble justert til 4,5 ved hjelp av Et3N og løsningen ble konsentrert til tørrhet i vakuum ved 30°C. Resten ble oppløst i 75 ml MeOH og renset på en kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Hovedfraksjonen av MeOH eluatet som var homogent i SS C som vist ved TLC ble konsentrert i vakuum ved 30°C. Etter tør-king av resten i en vakuumdesikator ved 4 0°C.og P2°5 fi^k man 3,06 g (91,6% av teori) amorf forbindelse 2d. Elementæranalyse og beregning fra sumformelen C3lH4oN5°8F3 ^a de følgende verdier: C = 56,08% (55,77%), H = 6,15%.(6,04%) og N = 11,01% (10,49%)• 3.27 g (5 mmol) of compound 2c was treated under vigorous stirring with 10 ml of freshly distilled anhydrous trifluoroacetic acid for 60 min. at 20°C in the absence of moisture. The reaction was added dropwise with vigorous stirring to 100 ml of absolute ether, whereby amorphous CF3COOH.H-CHA-Lys (C-Cbo)-pNA precipitated. The ether phase was suctioned off. The solid residue was washed 3 times with 30 ml portions of absolute ether. The resulting residue was dissolved in 50 mL of MeOH. The pH was adjusted to 4.5 using Et 3 N and the solution was concentrated to dryness in vacuo at 30°C. The residue was dissolved in 75 ml of MeOH and purified on a column of "Sephadex LH-20" equilibrated with MeOH. The major fraction of the MeOH eluate which was homogeneous in SS C as shown by TLC was concentrated in vacuo at 30°C. After drying the residue in a vacuum desiccator at 40°C and P2°5, 3.06 g (91.6% of theory) of amorphous compound 2d are obtained. Elemental analysis and calculation from the sum formula C3lH4oN5°8F3 ^a the following values: C = 56.08% (55.77%), H = 6.15%.(6.04%) and N = 11.01% (10, 49%)•

2e. Cbd- D- But- CHA- Lys ( £- Cbo).- pNA 2nd. Cbd- D- But- CHA- Lys ( £- Cbo).- pNA

2,00 g (3 mmol) forbindelse 2d ble oppløst i 15 ml nydestillert DMF avkjølt til -10°C. Til løsningen satte man under røring 1,3 6 g (3,3 mmol) Cbo-D-But-OpNP og 0,42 ml (3 mmol)Et3N.Blandingen fikk reagere 3 timer i fravær av fuktighet, hvorunder temperaturen gradvis nådde 20 C. Reaksjonsløs-ningen ble igjen avkjølt til -10°C og bufret med 0,21 ml 2.00 g (3 mmol) of compound 2d was dissolved in 15 ml of freshly distilled DMF cooled to -10°C. 1.36 g (3.3 mmol) Cbo-D-But-OpNP and 0.42 ml (3 mmol) Et3N were added to the solution while stirring. The mixture was allowed to react for 3 hours in the absence of moisture, during which the temperature gradually reached 20 C. The reaction solution was again cooled to -10°C and buffered with 0.21 ml

(1,5 mmol) Et3N. Etter en reaksjonstid på 5 timer ved -10°C nådde temperaturen i reaksjonsblandingen etterhvert romtemperatur. Denne prosedyren ble gjentatt med 0,21 ml Et3N hvorunder reaksjonen tok ca. 16 timer. Reaksjonsblandingen ble konsentrert til tørrhet i vakuum ved 50°C og resten ble opp-løst til 50 ml MeOH og renset ved gelfiltrering på en kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Den første hovedfraksjonen av MeOH eluatet som var homogen i SS A og B som vist ved TLC ble konsentrert til tørrhet i vakuum ved 30 C. Resten ble tørket i en vakuumdesikator ved 40 C overP^O^og ga 2,12 g (91,4% av teoril delvis krystallinsk forbindelse 2e. Elementæranalyse og beregning fra sumformelen (1.5 mmol) Et 3 N. After a reaction time of 5 hours at -10°C, the temperature in the reaction mixture eventually reached room temperature. This procedure was repeated with 0.21 ml of Et3N during which the reaction took approx. 16 hours. The reaction mixture was concentrated to dryness in vacuo at 50°C and the residue was dissolved in 50 ml of MeOH and purified by gel filtration on a column of "Sephadex LH-20" equilibrated with MeOH. The first major fraction of the MeOH eluate which was homogeneous in SS A and B as shown by TLC was concentrated to dryness in vacuo at 30 C. The residue was dried in a vacuum desiccator at 40 C over P^O^ to give 2.12 g (91, 4% of theoretical partially crystalline compound 2e.Elementary analysis and calculation from the sum formula

<C>41H52N6°9ga de f^ 1Sende verdier: C = 63,48% (63,71%), H = 6,82% (6,78%) og N = 10,99% (10,87%). <C>41H52N6°9ga de f^ 1Sending values: C = 63.48% (63.71%), H = 6.82% (6.78%) and N = 10.99% (10.87%) .

2f. 2HBr. H- D- But- CHA- Lys- pNA 2 f. 2HBr. H- D- But- CHA- Lys- pNA

1,55 g (2 mmol). forbindelse 2e ble behandlet under røring med 12 ml 2NHBr i iseddik i 40 min. og 20°C i fravær av fuktighet. Tripeptidderivatet oppløstes gradvis under samtidig avspaltning av de to beskyttelsesgrupper Cbo og BOC og CC^utvikling. Reaksjonsløsningen ble satt dråpevis under kraftig røring til 100 ml absolutt eter hvorved fnokket 2HBr.H-D-But-CHA-Lys-pNA utfeltes. Eterfasen ble suget fra etter 30 minutter og den faste fasen ble vasket 4 ganger med porsjoner av 25 ml absolutt eter. Den resulterende rest ble oppløst i 40 ml MeOH. pH ble justert til 4,5 ved hjelp av Et^N og løsningen ble konsentrert til tørrhet i vakuum ved 30 C. Resten ble oppløst i 30 ml MeOH og renset på en kolonne av "Sephadex LH-20" ekvilibrert med MeOH. Hovedfraksjonen av MeOH eluatet som ble avspaltet ved behandling med trypsin under frigjøring av p-nitroanilin ble konsentrert til tørrhet i vakuum ved 30°C. For videre rensing ble det forrensede produktet oppløst i 25 ml 33% AcOH og renset ved gelfiltrering på en kolonne av "Sephadex G-15" ekvilibrert med 33% AcOH. Den fraksjonen av AcOH eluatet som ble spaltet ved behandling med trypsin under frigjøring av p-nitroanilin ble konsentrert til tørrhet i vakuum ved 40°C. Den resulterende rest ble tørket i en vakuumdesikator ved 40°C over P-jOj. og ga 0,99 g (74,3% av teori) amorf substans 2f som var homogen i SS C som vist ved TLC. Elementæranalyse og beregning fra sumformelen C ^H^Ng*^*^ ga de følgende verdier: C = 44,75% (45,05%), H = 6,39% (6,35%), N = 12,67% (12,61%) og Br = 23,68% (23,98%).. 1.55 g (2 mmol). compound 2e was treated with stirring with 12 ml of 2NHBr in glacial acetic acid for 40 min. and 20°C in the absence of moisture. The tripeptide derivative was gradually dissolved with simultaneous cleavage of the two protective groups Cbo and BOC and CC^ development. The reaction solution was added dropwise with vigorous stirring to 100 ml of absolute ether, whereby the 2HBr.H-D-But-CHA-Lys-pNA precipitated. The ether phase was sucked off after 30 minutes and the solid phase was washed 4 times with portions of 25 ml of absolute ether. The resulting residue was dissolved in 40 mL of MeOH. The pH was adjusted to 4.5 using Et^N and the solution was concentrated to dryness in vacuo at 30 C. The residue was dissolved in 30 ml of MeOH and purified on a column of "Sephadex LH-20" equilibrated with MeOH. The main fraction of the MeOH eluate which was cleaved by treatment with trypsin to liberate p-nitroaniline was concentrated to dryness in vacuo at 30°C. For further purification, the pre-purified product was dissolved in 25 ml of 33% AcOH and purified by gel filtration on a column of "Sephadex G-15" equilibrated with 33% AcOH. The fraction of the AcOH eluate which was cleaved by treatment with trypsin to liberate p-nitroaniline was concentrated to dryness in vacuo at 40°C. The resulting residue was dried in a vacuum desiccator at 40°C over P-jOj. and gave 0.99 g (74.3% of theory) of amorphous substance 2f which was homogeneous in SS C as shown by TLC. Elemental analysis and calculation from the sum formula C ^H^Ng*^*^ gave the following values: C = 44.75% (45.05%), H = 6.39% (6.35%), N = 12.67 % (12.61%) and Br = 23.68% (23.98%).

Aminosyreanalysen bekreftet nærværet av de forventede aminosyrer i de riktige forhold: The amino acid analysis confirmed the presence of the expected amino acids in the correct ratios:

CHA: 0,98 - Lys: 1,00 - D-But: 1,02. CHA: 0.98 - Light: 1.00 - D-But: 1.02.

Eksempel 35 Example 35

2AcOH.H-D-Nval-CHA-Arg-pNA 2AcOH.H-D-Nval-CHA-Arg-pNA

7,09 g (10 mmol) 2HBr.H-D-Nval-CHA-Arg-pNA (fremstilt ifølge eksempel 38) ble oppløst i 75 ml 60% vandig MeOH. Løsningen ble bragt på en kolonne av "Amberlite" (Varemerke) JRA-401 7.09 g (10 mmol) of 2HBr.H-D-Nval-CHA-Arg-pNA (prepared according to Example 38) was dissolved in 75 ml of 60% aqueous MeOH. The solution was applied to a column of "Amberlite" (Trademark) JRA-401

i acetatform. Kolonnen ble eluert med 60% vandig MeOH hvorved HBr ble erstattet av AcOH ved ionebytte. Eluatet ble konsentrert til tørrhet i vakuum ved 40°C. Etter tørking in acetate form. The column was eluted with 60% aqueous MeOH whereby HBr was replaced by AcOH by ion exchange. The eluate was concentrated to dryness in vacuo at 40°C. After drying

i vakuumdesikator ved 40°C over ?2Q5^iklc man 6,33 g brom-fritt 2Ac0H.H-D-Nval-CHA-Arg-pNA (98,5% av teori). in a vacuum desiccator at 40°C over ?2Q5^iklc one 6.33 g of bromine-free 2AcOH.H-D-Nval-CHA-Arg-pNA (98.5% of theory).

Ifølge denne metode kan andre salter med organiske syrer, f.eks. maursyre, propionsyre, oksalsyre, vinsyre, sitronsyre, melkesyre, benzosyre, klorbenzosyre, salisylsyre eller ftalsyre fremstilles fra det ovenfor nevnte tripeptidderivat. According to this method, other salts with organic acids, e.g. formic acid, propionic acid, oxalic acid, tartaric acid, citric acid, lactic acid, benzoic acid, chlorobenzoic acid, salicylic acid or phthalic acid are produced from the above-mentioned tripeptide derivative.

En ionebytter, f.eks. "Amberlite" JRA-401 i hydrokloridform kan brukes og overføres i den ønskede syresaltform ved over-føring av denne ionebytter i den basiske OH-form gjennom behandling med kaustiksodaløsning og deretter behandle den basiske ionebytter med en løsning av en 1:1 blanding av den ønskéde organiske syre og dens natriumsålt i 60% vandig MeOH. An ion exchanger, e.g. "Amberlite" JRA-401 in hydrochloride form can be used and transferred into the desired acid salt form by transferring this ion exchanger into the basic OH form through treatment with caustic soda solution and then treating the basic ion exchanger with a solution of a 1:1 mixture of the desired organic acid and its sodium salt in 60% aqueous MeOH.

Den kvantitative enzymbestemmelse ved hjelp av tripeptidsubstratene ifølge oppfinnelsen kan utføres som følger: The quantitative enzyme determination using the tripeptide substrates according to the invention can be carried out as follows:

1. Bestemmelse av urinkallikrein. 1. Determination of urinary kallikrein.

1 ml urin og 1 ml TRIS-imidazolbuffer med en pH på 7,9 og en ionestyrke på 1,0 innkuberes ved 37°C i 5 min. og sentrifugeres så for å fjerne sedimenter. 1 ml of urine and 1 ml of TRIS-imidazole buffer with a pH of 7.9 and an ionic strength of 1.0 are incubated at 37°C for 5 min. and then centrifuged to remove sediments.

1,4 ml destillert vann oppvarmet til 37°C og 0,4 ml sentrifugat blandes godt i en plastkuvette. Til denne blandingen 1.4 ml of distilled water heated to 37°C and 0.4 ml of centrifuged are mixed well in a plastic cuvette. For this mixture

-3 -3

settes 0,2 ml av en 2 x 10 molar vandig substratløsning, og bestanddelene blandes raskt. Denne blandingen innkuberes i nøyaktig 15 min. ved 37°C. Reaksjonsblandingen blandes så med 0,2 ml iseddik for å stoppe den enzymatiske reaksjon. For fargemåling bruker man en blindprøve som består av de 0.2 ml of a 2 x 10 molar aqueous substrate solution is added, and the components are mixed quickly. This mixture is incubated for exactly 15 min. at 37°C. The reaction mixture is then mixed with 0.2 ml of glacial acetic acid to stop the enzymatic reaction. For color measurement, a blank sample is used which consists of the

samme bestanddeler, men med iseddiken tilsatt før tilset-ningen av substratet for å forhindre den enzymatriske reaksjon. Deretter bestemmes mengden av farget R-NH^ som dannes fotometrisk eller spektrofotometrisk ved 405 nm fra for-skjellen mellom blindprøven og forsøksprøvén. Fra den erholdte verdi beregnet urinkallikreinaktiviteten i urin ifølge den følgende formel: same ingredients, but with the glacial acetic acid added before the addition of the substrate to prevent the enzymatic reaction. The amount of colored R-NH^ which is formed photometrically or spectrophotometrically at 405 nm is then determined from the difference between the blank sample and the test sample. From the value obtained, the urinary kallikrein activity in urine was calculated according to the following formula:

Z^ OD = økning i optisk densitet ved 405 nm i løpet av 15 min. V = totalt volum av forsøksblandingen = 2,2 ml Z^ OD = increase in optical density at 405 nm during 15 min. V = total volume of test mixture = 2.2 ml

1000 = overføringsfaktor for overføring av U i mU 1000 = transfer factor for transfer of U in mU

F = fortynningsfaktor av urin (2i F = dilution factor of urine (2i

v = volum av prøven = 0,4 ml v = volume of the sample = 0.4 ml

= ekstinksjonskoeffisient dividert med 1000 = 10,4 = extinction coefficient divided by 1000 = 10.4

Beregningen av urinkallikreininnholdet i urinen kan også ut-føres ved kontinuerlig måling av produktet R-NH^(f.eks. p-nitroanilin) som dannes. Metoden er beskrevet heretter som anvendt for måling av kjertelkallikréin i spytt. The calculation of the urinary kallikrein content in the urine can also be carried out by continuous measurement of the product R-NH^ (e.g. p-nitroaniline) which is formed. The method is described hereafter as used for measuring glandular kallikrein in saliva.

I tillegg til urinkållikrein inneholder urin også urokinase som et protolytisk enzym som også kan spalte substrater ifølge foreliggende oppfinnelse, om enn i liten utstrekning. In addition to urinary lycraine, urine also contains urokinase as a protolytic enzyme which can also cleave substrates according to the present invention, albeit to a small extent.

I bestemmelsesmetoden som er beskrevet ovenfor måles summen av aktivitetene til urinkållikrein og urokinase. For å oppnå den nøyaktige verdi for urinkallikreinaktiviteten, må urokinaseaktiviteten trekkes fra. Den sistnevnte kan bestemmes i en sammenligningsprøve ved å tilsette 0,075 enhet trypsininhibitor (trypsininhibitor fra storfelunge) pr. ml buffer for fullstendig å inhibere urinkallikreinaktiviteten og bare måle urokinaseaktiviteten. In the determination method described above, the sum of the activities of urinary cabbage likrein and urokinase is measured. To obtain the exact value for urinary kallikrein activity, the urokinase activity must be subtracted. The latter can be determined in a comparison sample by adding 0.075 units of trypsin inhibitor (trypsin inhibitor from young cattle) per ml of buffer to completely inhibit urinary kallikrein activity and only measure urokinase activity.

2. Bestemmelse av kjertelkallikréin i spytt: 2. Determination of glandular kallikrein in saliva:

0,5 ml spytt blandes med 2 ml TRIS-imidazolpuffer (ionestyrke 1,0) og blandingen for innkuberes ved 37<0>gji 5 min. 0.5 ml of saliva is mixed with 2 ml of TRIS-imidazole buffer (ionic strength 1.0) and the mixture is incubated at 37<0>g for 5 min.

Innkubatet sentrifugeres. En prøvekuvette fylles med 1,5 ml destillert vann ved 37°C og 0,25 ml sentrifugat tilsettes.Bestanddelene blandes godt. Deretter tilblandes 0,2 ml av The incubate is centrifuged. A sample cuvette is filled with 1.5 ml of distilled water at 37°C and 0.25 ml of centrifuge is added. The ingredients are mixed well. Then 0.2 ml of

-3 -3

en 2 x 10 molar vandig substratløsning. Forandringen i ekstinksjonen ved 4 05 nm følges så kontinuerlig i 5 til 10 min. ved hjelp av en registrering. Fra de målte verdier for A OD pr. min. beregnes kallikreinaktiviteten pr. ml spytt a 2 x 10 molar aqueous substrate solution. The change in extinction at 405 nm is then monitored continuously for 5 to 10 min. by means of a registration. From the measured values for A OD per my. the kallikrein activity is calculated per ml of saliva

i mU ved hjelp av følgende formel: in mU using the following formula:

F = 5 F = 5

V = 1,95 V = 1.95

v = 0,25 v = 0.25

1U (enhet) = enzymmengde som kan spalte 1 ^umole substrat i 1U (unit) = amount of enzyme that can cleave 1 µmole of substrate i

1 min. under optimale eller på annen måte defi-nerte betingelser av pH, ionestyrke, tempera-tur og substratkonsentrasjonv 1 min. under optimal or otherwise defined conditions of pH, ionic strength, temperature and substrate concentrationv

I bukspytt foreligger bukspyttkallikrein hovedsakelig i form av prekallikrein og kan først bestemmes etter aktivering, f.eks. ved hjelp av trypsin. Etter aktivering av prekallikrein inhiberes trypsinet ved hjelp av soyabønnetrypsinin-hibitor (SBTI).Kallikreininnholdet i denne aktiverings-blanding kan bestemmes ved en av de ovenfor beskrevne metoder . In pancreatic saliva, pancreatic kallikrein is present mainly in the form of prekallikrein and can only be determined after activation, e.g. using trypsin. After activation of prekallikrein, the trypsin is inhibited using soybean trypsin inhibitor (SBTI). The kallikrein content in this activation mixture can be determined by one of the methods described above.

3. Bestemmelse av plasmin: 3. Determination of plasmin:

1,7 ml TRIS-imidazolbuf f er (pH. 7,5, ionestyrke 0,2). blandes med 0,1 ml av en løsning av plasmin i 25% glycerol ved 37°C og blandingen innkuberes ved 37°C i et min.. 0,2 ml av en vandig 2 x 10 3 molar substratløsning på 37°C tilsettes blandingen, og bestanddelene blandes raskt. Mengden av det spaltede produkt R-NH2som frigjøres fra substratet pr. tidsenhet måles deretter kontinuerlig. Fra den verdi som bestemmes pr. min. beregnet plasminaktiviteten pr. ml prøve i mU fra følgende formel: 1.7 ml of TRIS-imidazole buffer (pH. 7.5, ionic strength 0.2). is mixed with 0.1 ml of a solution of plasmin in 25% glycerol at 37°C and the mixture is incubated at 37°C for a min.. 0.2 ml of an aqueous 2 x 10 3 molar substrate solution at 37°C is added to the mixture , and the ingredients are mixed quickly. The amount of the split product R-NH2 that is released from the substrate per time unit is then measured continuously. From the value determined per my. calculated the plasmin activity per ml of sample in mU from the following formula:

/^ E = mengden av spaltet produkt frigjort pr. min. /^ E = amount of split product released per my.

V = totalvolum av prøveblanding V = total volume of sample mixture

v = volum av prøve v = volume of sample

£ = ekstinksjonskoeffisient delt med 1000 £ = extinction coefficient divided by 1000

4.Bestemmelse av antiplasmin i humanplasma: 4. Determination of antiplasmin in human plasma:

0,1 ml plasma fortynnet med TRIS-imidazolbuffer i forholdet 1:20 blandes med 0,02 ml løsning av 1,25 CU humanplasmin (preparat fra firma AB Kabi, Stockholm, Sverige), og 50 ATU hirudin (preparat fra firma Pentapharm A.G., Basel, Sveits) pr. ml i 25% glycerol. Blandingen innkuberes i 9.0 sekunder ved 3 7°C. Innkubatet blandes med 1,7 ml trisimidazolpuffer (pH 7,5, ionestyrke 0,2). på 37°C og deretter med 0,2 ml av 0.1 ml of plasma diluted with TRIS-imidazole buffer in a ratio of 1:20 is mixed with 0.02 ml of a solution of 1.25 CU human plasmin (preparation from the company AB Kabi, Stockholm, Sweden), and 50 ATU hirudin (preparation from the company Pentapharm A.G. , Basel, Switzerland) per ml in 25% glycerol. The mixture is incubated for 9.0 seconds at 37°C. The incubation is mixed with 1.7 ml of trisimidazole buffer (pH 7.5, ionic strength 0.2). at 37°C and then with 0.2 ml of

-3 -3

en 2 x 10 m61ar vandig substratløsning. Mengden av det spaltede produkt R-NH^ total som frigjøres fra substratet pr. tidsenhet måles deretter kontinuerlig. Fra den målte verdi beregnes den resterende plasminaktivitet på den ovenfor nevnte måte. a 2 x 10 m61ar aqueous substrate solution. The amount of the split product R-NH^ total that is released from the substrate per time unit is then measured continuously. From the measured value, the remaining plasmin activity is calculated in the above-mentioned manner.

I eh!blindprøve erstattes plasmaet med den tilsvarende mengde buffer, men forøvrig utføres prøven på den måte som er beskrevet ovenfor. Den målte plasminaktivitet tilsvarer mengden utgangsamin. Antiplasminaktiviteten beregnes fra for-skjellen mellom plasminaktiviteten som måles i blindprøven og den resterende plasminaktivitet som måles i prøven ved bruk av plasma ifølge den følgende formel: In the eh!blind test, the plasma is replaced with the corresponding amount of buffer, but otherwise the test is carried out in the manner described above. The measured plasmin activity corresponds to the amount of starting amine. The antiplasmin activity is calculated from the difference between the plasmin activity measured in the blank sample and the remaining plasmin activity measured in the sample using plasma according to the following formula:

F = fortynningsfaktor fra plasma (20) F = dilution factor from plasma (20)

Substratene ifølge oppfinnelsen kan også brukes for bestem- meise av plasminogen i humanplasma ved å overføre plasmino-genet som foreligger i plasma ved hjelp av urokinase eller streptokinase i et buffersystem og måle mengden av det dannede plasmin ved hjelp av et av substratene ifølge oppfinnelsen i henhold til den ovenfor beskrevne plasminbestemmelses-metode. Mengden av plasminogen som opprinnelig var tilstede i plasmaet utledes fra den verdi som ble bestemt .for plasmin ettersom et molekylplasmin dannes fra et molekylplasminogen ved aktivering. The substrates according to the invention can also be used for the determination of plasminogen in human plasma by transferring the plasminogen present in plasma using urokinase or streptokinase in a buffer system and measuring the amount of plasmin formed using one of the substrates according to the invention according to to the plasmin determination method described above. The amount of plasminogen originally present in the plasma is deduced from the value determined for plasmin as a molecular plasmin is formed from a molecular plasminogen upon activation.

I den følgende tabell 4 angis ømfintligheten for noen av substratene ifølge oppfinnelsen overfor organ- eller kjertelkallikréin, plasmin og trombin. The following table 4 shows the sensitivity of some of the substrates according to the invention to organ or gland kallikrein, plasmin and thrombin.

Målingen av spaltningsproduktet R-NH2dannet ved enzymatisk hydrolyse av substratet er basert på den forutsetning at spaltningsproduktet har et UV spektrum som adskiller seg fra substratet og som er forskjøvet mot høyere bølgelengder. Absor-psjonen av substratet ved 4 05 nm er praktisk talt null. p-Nitroanilin som et spaltningsprodukt viser et absorpsjons-maksimum ved 380 nm og en molar ekstinksjonskoeffisient på 13 200. Ved 405 nm er ekstinksjonskoeffisienten bare litt lavere, dvs. 9650. Graden av enzymatisk hydrolyse av substratet som er proporsjonal med mengden av frigjort p-nitroanilin kan bestemmes ved spektrofotometrisk måling ved 405 nm. Selv i nærvær av overskuddsubstrat forstyrres ikke målingen ved 4 05 nm. The measurement of the cleavage product R-NH2 formed by enzymatic hydrolysis of the substrate is based on the assumption that the cleavage product has a UV spectrum which differs from the substrate and which is shifted towards higher wavelengths. The absorption of the substrate at 405 nm is practically zero. p-Nitroaniline as a cleavage product shows an absorption maximum at 380 nm and a molar extinction coefficient of 13,200. At 405 nm, the extinction coefficient is only slightly lower, i.e. 9650. The degree of enzymatic hydrolysis of the substrate which is proportional to the amount of released p- nitroaniline can be determined by spectrophotometric measurement at 405 nm. Even in the presence of excess substrate, the measurement at 405 nm is not disturbed.

Ved substratene som inneholder en 2-naftylamino-, 4-metoksy-2-naftylamino, 4-metyl-coumaryl-(71-amino eller 1,3-di(metok-sykarbonyl).-f enyl- (5 ).-aminogruppe måles mengden av spaltningsproduktet R-NH2ved fluoresensspektrofotometri. Ved et prøve-system bestående av enzym, buffer og substrat måles det emit-terte lys med lavere energi kontinuerlig ved 400-470 nm etter det dannede fluoreserende spaltningsprodukt er blitt eksi-tert av lys med høyere energi. Mengden av spaltningsprodukt som dannes pr. tidshet er et mål for den eksisterende enzym-aktivitet. Som angitt tilsvarer et ;amol spaltningsprodukt pr. min. 1 enzyménhet basert på et gitt substrat. In the case of the substrates containing a 2-naphthylamino-, 4-methoxy-2-naphthylamino, 4-methyl-coumaryl-(71-amino or 1,3-di(methoxycarbonyl).-phenyl-(5 ).-amino group the quantity of the cleavage product R-NH2 is measured by fluorescence spectrophotometry. With a test system consisting of enzyme, buffer and substrate, the emitted light with lower energy is measured continuously at 400-470 nm after the formed fluorescent cleavage product has been excited by light with higher energy. The amount of cleavage product formed per unit of time is a measure of the existing enzyme activity. As indicated, a ;amol of cleavage product per minute corresponds to 1 enzyme unit based on a given substrate.

Claims (6)

lo Tripeptidderivat,karakterisert vedden generelle formello Tripeptide derivative, characterized by the general formula H-D-X-Y-Z-R, hvor a) X representerer en cykloheksylglycyl-, cykloheksylalanyl- eller cykloheksyltyrosyl-gruppe, og Y representerer en alanyl-, a-aminobutyryl-, norvalyl-, leucyl-, norleucyl- eller pipecolin-gruppe, eller b) X representerer en cykloheksylglycyl-, cykloheksylalanyl-, cykloheksyltyrosyl- eller fenylglycyl-gruppe, og Y representerer en fenylalanyl- eller fenylglycyl-gruppe, eller c) X representerer en alanyl-, a-aminobutyryl-, valyl-, norvalyl-, leucyl- eller norleucyl-gruppe, og Y representerer en cykloheksylalanyl-, cykloheksyltyrosyl- eller fenylglycyl-gruppe, eller d) X representerer en fenylalanyl- eller fenylglycyl-gruppe ogH-D-X-Y-Z-R, where a) X represents a cyclohexylglycyl, cyclohexylalanyl or cyclohexyltyrosyl group, and Y represents an alanyl, α-aminobutyryl, norvalyl, leucyl, norleucyl or pipecoline group, or b) X represents a cyclohexylglycyl -, cyclohexylalanyl, cyclohexyltyrosyl or phenylglycyl group, and Y represents a phenylalanyl or phenylglycyl group, or c) X represents an alanyl, α-aminobutyryl, valyl, norvalyl, leucyl or norleucyl group, and Y represents a cyclohexylalanyl, cyclohexyltyrosyl or phenylglycyl group, or d) X represents a phenylalanyl or phenylglycyl group and Y representerer en cykloheksylalanyl- eller cykloheksyltyrosyl-gruppe , Z representerer en arginyl- eller lysyl-gruppe og R representerer p-nitrofenylamino, 2-naftylamino, 4-metoksy-2-naftylamino, 4-metyl-cumaryl-7-amino, 1,3-di(metoksy-karbonyl)fenyl-5-amino, quinonyl-5-amino eller 8-nitro-quinonyl-5-amino og salter derav med syrer, med det forbehold at tripeptidderivatet ikke kan være H-D-CHG-Phe-Lys-pNA, H-D-Val-CHA-Arg-MCA, H-D-CHG-Phe-Lys-MCA, H-D-Val-CHA-Arg-DPA, H-D-CHG-Phe-Lys-DPA, H-D-Val-CHA-Arg-2-NA,Y represents a cyclohexylalanyl or cyclohexyltyrosyl group, Z represents an arginyl or lysyl group and R represents p-nitrophenylamino, 2-naphthylamino, 4-methoxy-2-naphthylamino, 4-methyl-coumaryl-7-amino, 1, 3-di(methoxy-carbonyl)phenyl-5-amino, quinonyl-5-amino or 8-nitro-quinonyl-5-amino and salts thereof with acids, with the proviso that the tripeptide derivative cannot be H-D-CHG-Phe-Lys -pNA, H-D-Val-CHA-Arg-MCA, H-D-CHG-Phe-Lys-MCA, H-D-Val-CHA-Arg-DPA, H-D-CHG-Phe-Lys-DPA, H-D-Val-CHA-Arg -2-NA, H-D-CHG-Phe-Lys-2-NA, H-D-Val-CHA-Arg-4-MeO-2-NA, H-D-CHG-Phe-Lys-4-MeO-2-NA, H-D-CHG-Leu-Arg-pNA, H-D-Val-CHÅ-Arg-pNA, H-D-Val-CHA-Lys-pNA, H-D-CHG-Phe-Arg-pNA, H-D-CHT-Phe-Arg-pNA, H-D-Ph<1->Gly-CHA-Arg-pNA, H-D-CHG-Leu-Lys-pNA eller H-D-CHT-Pip-Arg-pNA. H-D-CHG-Phe-Lys-2-NA, H-D-Val-CHA-Arg-4-MeO-2-NA, H-D-CHG-Phe-Lys-4-MeO-2-NA, H-D-CHG-Leu- Arg-pNA, H-D-Val-CHÅ-Arg-pNA, H-D-Val-CHA-Lys-pNA, H-D-CHG-Phe-Arg-pNA, H-D-CHT-Phe-Arg-pNA, H-D-Ph<1- >Gly-CHA-Arg-pNA, H-D-CHG-Leu-Lys-pNA or H-D-CHT-Pip-Arg-pNA. 2. Tripeptidderivat ifølge krav 1,karakterisert vedat dipeptidfragmentet bundet til Z er en CHG-Ala-, CHG-But-, CHG-Norval-, CHG-Leu-, CHG-Norleu-, CHG-Pip-, CHA-Ala-, CHA-But-, CHA-Norval-, CHA-Leu-, CHA-Norleu-, CHA-Pip-, HCA-But-, HCA-Leu- eller HCA-Pip-gruppe. 2. Tripeptide derivative according to claim 1, characterized in that the dipeptide fragment bound to Z is a CHG-Ala-, CHG-But-, CHG-Norval-, CHG-Leu-, CHG-Norleu-, CHG-Pip-, CHA-Ala-, CHA-But, CHA-Norval, CHA-Leu, CHA-Norleu, CHA-Pip, HCA-But, HCA-Leu or HCA-Pip group. 3. Tripeptidderivat ifølge krav 1,karakterisert vedat dipeptidfragmentet bundet til Z er en CHG-Phe-, CHG-Ph'Gly-, CHA-Phe-, CHA-Ph'Gly-, HCA-Phe-, HCA-Ph'Gly-, eller Ph'Gly-Phe-gruppe. 3. Tripeptide derivative according to claim 1, characterized in that the dipeptide fragment bound to Z is a CHG-Phe-, CHG-Ph'Gly-, CHA-Phe-, CHA-Ph'Gly-, HCA-Phe-, HCA-Ph'Gly- , or Ph'Gly-Phe group. 4. Tripeptidderivat ifølge krav 1,karakterisert vedat dipeptidfragmentet bundet til Z er en Ala-CHA-, Ala-Ph'Gly-, But-CHA-, Val-CHG-, Val-CHA-, Val-HCA-, Norval-CHA-, Norval-Ph'Gly-, Leu-CHA-, Leu-Ph'Gly-, Norleu-CHA- eller Ile-CHA-gruppe. 4. Tripeptide derivative according to claim 1, characterized in that the dipeptide fragment bound to Z is an Ala-CHA-, Ala-Ph'Gly-, But-CHA-, Val-CHG-, Val-CHA-, Val-HCA-, Norval-CHA -, Norval-Ph'Gly, Leu-CHA, Leu-Ph'Gly, Norleu-CHA or Ile-CHA group. 5. Tripeptidderivat ifølge krav 1,karakterisert vedat dipeptidfragmentet bundet til Z er en Phe-CHA-, Phe-CHG-, Ph'Gly-CHA-, Ph'Gly-CHG-, Ph'Gly-HCA-, CHG-CHA- eller CHG-CHG-gruppe. 5. Tripeptide derivative according to claim 1, characterized in that the dipeptide fragment bound to Z is a Phe-CHA-, Phe-CHG-, Ph'Gly-CHA-, Ph'Gly-CHG-, Ph'Gly-HCA-, CHG-CHA- or CHG-CHG group. 6. An—vendelse av tripeptidderivatene ifølge krav 1 for kvantitativ påvisning av proteolytiske enzymer av enzym-klasse 3.4.21.6. Use of the tripeptide derivatives according to claim 1 for quantitative detection of proteolytic enzymes of enzyme class 3.4.21.
NO811510A 1980-05-06 1981-05-05 NEW TRIPEPTID DERIVATIVES, AND USE THEREOF FOR QUANTITATIVE DETECTION OF PROTEOLYTIC ENZYMES. NO155540C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH351580 1980-05-06

Publications (3)

Publication Number Publication Date
NO811510L NO811510L (en) 1981-11-09
NO155540B true NO155540B (en) 1987-01-05
NO155540C NO155540C (en) 1987-04-15

Family

ID=4257649

Family Applications (1)

Application Number Title Priority Date Filing Date
NO811510A NO155540C (en) 1980-05-06 1981-05-05 NEW TRIPEPTID DERIVATIVES, AND USE THEREOF FOR QUANTITATIVE DETECTION OF PROTEOLYTIC ENZYMES.

Country Status (3)

Country Link
JP (4) JPS572253A (en)
DK (2) DK155051C (en)
NO (1) NO155540C (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1179200B (en) * 1960-01-26 1964-10-08 Hoechst Ag Process for the preparation of N-benzenesulfonyl-N'-methyl-cyclohexylureas
SE380257B (en) * 1972-05-02 1975-11-03 Bofors Ab NEW DIAGNOSTIC OPERATING SUBSTRATES WITH HIGH SPECIFICITY FOR THROMBIN AND OTHER PROTEOLYTIC ENZYMES OF THE PEPTIDYL-PEPTIDE HYDROLASES
JPS4942396A (en) * 1973-05-01 1974-04-20
SE407405B (en) * 1975-07-11 1979-03-26 Kabi Ab NEW CHROMOGENATE THROMBIN SUBSTRATE
SE407571B (en) * 1975-07-11 1979-04-02 Kabi Ab NEW CHROMOGENA ENZYME SUBSTRATE FOR SERINE PROTEASES
CH634662A5 (en) * 1976-05-28 1983-02-15 Pentapharm Ag USE OF TRIPEPTIDE DERIVATIVES FOR THE QUANTITATIVE DETERMINATION OF PLASMINOGEN ACTIVATORS.
CA1161431A (en) * 1979-05-11 1984-01-31 Lars G. Svendsen Tripeptide derivatives

Also Published As

Publication number Publication date
JPS62294695A (en) 1987-12-22
NO811510L (en) 1981-11-09
DK159458C (en) 1991-03-04
JPH0244518B2 (en) 1990-10-04
DK155781A (en) 1981-11-07
JPH0244839B2 (en) 1990-10-05
JPS572253A (en) 1982-01-07
DK509788A (en) 1988-09-13
JPS6257197B2 (en) 1987-11-30
JPS62294696A (en) 1987-12-22
JPS62296899A (en) 1987-12-24
DK155051B (en) 1989-01-30
JPH0244840B2 (en) 1990-10-05
NO155540C (en) 1987-04-15
DK159458B (en) 1990-10-15
DK509788D0 (en) 1988-09-13
DK155051C (en) 1989-07-03

Similar Documents

Publication Publication Date Title
Rick Trypsin
NO151787B (en) TRIPEPTID DERIVATIVES AND THE USE OF THESE BY ENZYMER PROVISIONS
US4457866A (en) Chromogenic compounds and their use as enzyme substrates
EP0110306B1 (en) Chromogene compounds, process for their preparation and their use
NO135245B (en)
DK149333B (en) Tripeptide AND SALTS OF MINERAL organic acids FOR USE AS SUBSTRATES FOR DETERMINATION OF thrombin and thrombin-like ENZYMES ECARINTHROMBIN, plasmin and plasmin ENZYMES AND proenzymes PROENZYMAKTIVATORER, and enzyme inhibitors PURPOSE In LEGEMSVAESKERFRA PEOPLE AND MAMMALS AND IN animal CELL EXTRACTS
NO147212B (en) KORMOGENT H.H.V. FLUORESCING TRIPEPTIDE FOR QUANTITATIVE DETERMINATION OF PROTEOLYTIC ENZYMES
EP0004256A1 (en) Easily split substrates for the quantification of proteases, a process for their production and a method for the quantification of proteases
NO156067B (en) SUBSTRATE FOR DETERMINATION OF PLASMINOGEN ACTIVATORS.
Huseby et al. Synthetic Oligopeptide Substrates Their Diagnostic Application in Blood Coagulation, Fibrinolysis, and Other Pathologic States
US4598043A (en) Method for quantitatively assaying blood coagulation factor XII in human plasma
US4428874A (en) Tripeptide derivatives
US4622389A (en) Novel substrate for determining the activity of blood coagulation factor Xa (Stuart-Prower factor)
Melo et al. Synthesis and hydrolysis by cysteine and serine proteases of short internally quenched fluorogenic peptides
EP0019589B1 (en) Tripeptide derivatives and their use in a process for determining enzymes
US4568636A (en) Tripeptide derivatives
DK168574B1 (en) Peptide derivatives and salts thereof with mineral or organic acids and their use as a substrate for the quantitative determination of C1 esterase
EP0167980B1 (en) Novel substrates for use in measuring the concentration of kallikrein in urine
NO155540B (en) NEW TRIPEPTID DERIVATIVES, AND USE THEREOF FOR QUANTITATIVE DETECTION OF PROTEOLYTIC ENZYMES.
Muramatu et al. Tryptase in rat mast cells: properties and inhibition by various inhibitors in comparison with chymase
JPH0360837B2 (en)
Tervo et al. A rapid fluorometric assay for tear fluid plasmin activity
TWI252234B (en) Novel chromogenic substrates and their use in assaying carboxypeptidase activity
US20140315232A1 (en) Method for dosing the control capacity of c1inh
BRPI0204886B1 (en) “Use of angiotensin-converting enzyme activity monitoring agent i based on abz-peptidyl-k (dnp) p-oh erase fluorescence substrates and disease diagnosis and monitoring kit

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN NOVEMBER 2000