NO155488B - PROCEDURE FOR CATALYST MIXTURES FOR THE SYNTHESIS OF DIMETYLETS FROM CO, H2 AND EVEN CO2. - Google Patents

PROCEDURE FOR CATALYST MIXTURES FOR THE SYNTHESIS OF DIMETYLETS FROM CO, H2 AND EVEN CO2. Download PDF

Info

Publication number
NO155488B
NO155488B NO821816A NO821816A NO155488B NO 155488 B NO155488 B NO 155488B NO 821816 A NO821816 A NO 821816A NO 821816 A NO821816 A NO 821816A NO 155488 B NO155488 B NO 155488B
Authority
NO
Norway
Prior art keywords
mixture
catalyst
oxides
salts
synthesis
Prior art date
Application number
NO821816A
Other languages
Norwegian (no)
Other versions
NO821816L (en
NO155488C (en
Inventor
Giovanni Manara
Original Assignee
Snam Progetti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snam Progetti filed Critical Snam Progetti
Publication of NO821816L publication Critical patent/NO821816L/en
Publication of NO155488B publication Critical patent/NO155488B/en
Publication of NO155488C publication Critical patent/NO155488C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av dimetyleter fra CO, H_ og eventuelt CO.,, i nærvær av en katalytisk virksom blanding bestående av en silisiumforbindelse og en blanding av oksyder og/eller salter av Cu, Zn, Cr eller en blanding av oksyder og/eller salter av Cu, Zn, Al, og det særegne ved fremgangsmåten i henhold til oppfinnelsen er at det anvendes en silisiumforbindelsesom består av en krystallinsk kiselsyre hvori noen silisiumatomer i krystallgitteret er erstattet med aluminium og som tilsvarer den generelle formel The present invention relates to a method for the production of dimethyl ether from CO, H_ and optionally CO.,, in the presence of a catalytically active mixture consisting of a silicon compound and a mixture of oxides and/or salts of Cu, Zn, Cr or a mixture of oxides and/or salts of Cu, Zn, Al, and the peculiarity of the method according to the invention is that a silicon compound is used which consists of a crystalline silicic acid in which some silicon atoms in the crystal lattice have been replaced by aluminum and which corresponds to the general formula

hvori y har en verdi fra 2,0018 til 2,0075. where y has a value from 2.0018 to 2.0075.

Oppfinnelsen vedrører også en katalytisk virksom blanding for gjennomføring av den nevnte fremgangsmåte, bestående av en silisiumforbindelse og en blanding av oksyder og/eller salter av Cu, Zn, Cr eller en blanding av oksyder og/eller salter av Cu, Zn, Al, og det særegne ved den katalytisk virksomme blanding i henhold til oppfinnelsen er at silisiumforbindelsen er krystallinsk kiselsyre hvori noen silisiumatomer i krystallgitteret er erstattet med aluminium og som tilsvarer den generelle formel The invention also relates to a catalytically active mixture for carrying out the aforementioned method, consisting of a silicon compound and a mixture of oxides and/or salts of Cu, Zn, Cr or a mixture of oxides and/or salts of Cu, Zn, Al, and the distinctive feature of the catalytically active mixture according to the invention is that the silicon compound is crystalline silicic acid in which some silicon atoms in the crystal lattice have been replaced by aluminum and which corresponds to the general formula

hvori y har en verdi fra 2,0018 til 2,0075. where y has a value from 2.0018 to 2.0075.

Disse trekk ved oppfinnelsen fremgår av patentkravene. These features of the invention appear from the patent claims.

Dimetyleter, i det følgende benevnt DME, fremstilles vanligvis i to trinn ved syntese av metanol fra CO og og eventuelt CO2 og deretter avvanning av den derved oppnådde metanol til Dimethyl ether, hereinafter referred to as DME, is usually produced in two steps by synthesis of methanol from CO and and possibly CO2 and then dewatering the methanol obtained thereby to

å gi DME. to provide DME.

Det er imidlertid kjent enkelte prosesser hvori DME-syntesen gjennomføres i et eneste trinn ved kobling av en metanol-syntesekatalysator til en dehydratiseringskatalysator som vanligvis er aluminiumoksyd. However, certain processes are known in which the DME synthesis is carried out in a single step by coupling a methanol synthesis catalyst to a dehydration catalyst which is usually aluminum oxide.

I de kjente prosesser er metanol-syntesekatalysatoren en blanding som utgjøres av Cu, Zn, Cr eller Cu, Zn, Al mens de-hydratiseringskatalysatoren generelt er aluminiumoksyd. In the known processes, the methanol synthesis catalyst is a mixture consisting of Cu, Zn, Cr or Cu, Zn, Al, while the dehydration catalyst is generally aluminum oxide.

En utførelsesform beskrevet i US-patentskrift 4177167 omfatter en DME-syntesekatalysator som utgjøres av metalloksyder og/ eller metallsalter som er blitt stabilisert ved behandling med en silisiumforbindelse, idet stabiliseringen består i å gjøre det material som oppnås etter behandlingen i stand til å mot-stå termiske og mekaniske påkjenninger og innvirkning av damp ved høy temperatur. De metalloksyder og/eller metallsalter som anvendes i henhold til det nevnte patentskrift er generelt Al, Cr, La, Mn/Cu eller Zn oksyder og/eller salter og deres blandinger. Det problem som oppstår ved katalysatorene av den kjente type, og således ved katalysatoren i henhold til det nevnte patentskrift, vedrører det forhold at det dehydratiserende middel som anvendes utøver sin aktivitet i noen særlig utstrekning bare ved forholdsvis høye temperaturer hvor kobberbaserte metanol-syntesekata lysa torer som er istand til å virke ved lav temperatur og lavt trykk er ustabile, gir an-ledning til sintringsfenomener og således aktivitetstap med tiden. An embodiment described in US patent 4177167 comprises a DME synthesis catalyst which consists of metal oxides and/or metal salts which have been stabilized by treatment with a silicon compound, the stabilization consisting in making the material obtained after the treatment capable of resisting thermal and mechanical stresses and the impact of steam at high temperature. The metal oxides and/or metal salts used according to the aforementioned patent are generally Al, Cr, La, Mn/Cu or Zn oxides and/or salts and their mixtures. The problem that arises with the catalysts of the known type, and thus with the catalyst according to the aforementioned patent, relates to the fact that the dehydrating agent used exerts its activity to any particular extent only at relatively high temperatures where copper-based methanol synthesis catalysts which are able to work at low temperature and low pressure are unstable, give rise to sintering phenomena and thus loss of activity over time.

Den optimale temperatur for dehydratiseringen i samsvar med den tidligere kjente teknikk er av størrelsesorden 280 - 300°C mens kobberbaserte katalysatorer bare har lang leve-tid hvis de anvendes ved en temperatur på mellom 200 og 260°C. The optimum temperature for the dehydration in accordance with the prior art is of the order of 280 - 300°C, while copper-based catalysts only have a long life if they are used at a temperature of between 200 and 260°C.

Det er i samsvar med oppfinnelsen overraskende funnet at det er mulig å arbeide ved en mye lavere gjennomsnittlig temperatur under samtidig oppnåelse av ganske høy DME-omdannelses-utbytter ved å anvende en katalysator tildannet ved intim blanding av pulverisert krystallinsk silisiumholdig material hvori aluminium er substituert inn i krystallgitteret og pul-veriserte oksyder og/eller salter av Cu, Zn og Cr eller Cu, Zn og Al. It has surprisingly been found in accordance with the invention that it is possible to work at a much lower average temperature while at the same time achieving a fairly high DME conversion yield by using a catalyst formed by intimate mixing of powdered crystalline silicon-containing material in which aluminum has been substituted in the crystal lattice and powdered oxides and/or salts of Cu, Zn and Cr or Cu, Zn and Al.

Fremgangsmåten i henhold til oppfinnelsen gjennomføres ved at CO og H2 og eventuelt C02 tilføres en reaksjonssone fylt The method according to the invention is carried out by adding CO and H2 and optionally C02 to a reaction zone filled

med den nevnte katalysator. with the aforementioned catalyst.

Det krystallinske silika som anvendes ved oppfinnelsen og dets fremstilling er beskrevet i tysk patentansøkning 2924870. 40 til 70% av alle metallatomer tilstede i den nevnte katalysatorblanding er silisiumatomer. Prosentandelen av kobber-atomer i total som definert i det foregående, det vil si på basis av bare metallatomer, varierer fra 15 til 30%, sink fra 8 til 15%, krom fra 0,8 til 10% og aluminium fra 0,1 til 10%. The crystalline silica used in the invention and its production is described in German patent application 2924870. 40 to 70% of all metal atoms present in the aforementioned catalyst mixture are silicon atoms. The percentage of copper atoms in total as defined above, that is on the basis of only metal atoms, varies from 15 to 30%, zinc from 8 to 15%, chromium from 0.8 to 10% and aluminum from 0.1 to 10%.

DME-prosessen i samsvar med oppfinnelsen gjennomføres ved<1>en temperatur på mellom 150 og 250°C og ved et trykk mellom 4000 og 15000 KPa. The DME process in accordance with the invention is carried out at<1>a temperature of between 150 and 250°C and at a pressure of between 4000 and 15000 KPa.

Oppfinnelsen skal beskrives ved hjelp av de etterfølgende ut-før el ses eksempler . The invention shall be described with the help of the following examples.

EKSEMPLER 1- 2 EXAMPLES 1-2

En katalysator ble fremstilt basert på Cu, Zn, Al og silika modifisert med aluminium i samsvar med følgende metode. A catalyst was prepared based on Cu, Zn, Al and silica modified with aluminum according to the following method.

676 g Cu(N03)2 3 H20, 327 g Zn (N03>2 6H20 og 57 g natriumaluminat ble oppløst i 10 1 vann. Oppløsningen ble oppvarmet i 85°C og en 10% oppløsning av NaOH i vann ble tilsatt under omrøringer inntil pH nådde 7,5. Bunnfallet fikk avsette seg under kjøling, væsken ble helt av og bunnfallet vasket gjentatte ganger med vann inntil natrium og nitrater forsvant, under anvendelse av avsetning og tilslutt filtre-ring . 676 g of Cu(N03)2 3 H20, 327 g of Zn (N03>2 6H20 and 57 g of sodium aluminate were dissolved in 10 1 of water. The solution was heated to 85°C and a 10% solution of NaOH in water was added with stirring until The pH reached 7.5.The precipitate was allowed to settle under cooling, the liquid was poured off and the precipitate was washed repeatedly with water until the sodium and nitrates disappeared, using sedimentation and finally filtration.

Bunnfallet ble tørket i en ovn ved 120°C i luft. Materialet ble malt til granuler ikke større enn 20 mesh ASTM og ble blandet med 325 g silika modifisert med aluminium fremstilt som beskrevet i eksempel 5 i tysk patentansøkning 2924870. The precipitate was dried in an oven at 120°C in air. The material was ground into granules no larger than 20 mesh ASTM and was mixed with 325 g of silica modified with aluminum prepared as described in example 5 of German patent application 2924870.

Pulveret ble komprimert til pellets med en diameter på 4 mm og en lengde på 6 mm. The powder was compressed into pellets with a diameter of 4 mm and a length of 6 mm.

Cu, Zn, Al og Si var tilstede i katalysatoren i atomforhold 28:11:7:54. Cu, Zn, Al and Si were present in the catalyst in an atomic ratio of 28:11:7:54.

100 cm<3> katalysator ble anbragt i en rørformet reaktor med 2,54 cm. 100 cm<3> catalyst was placed in a tubular reactor with 2.54 cm.

En skjerm med ytre diameter 8 mm for å romme et termometerpar var anbragt aksialt i midten av reaktoren. A screen with an outer diameter of 8 mm to accommodate a pair of thermometers was placed axially in the center of the reactor.

Temperaturen ble gradvis øket mens det ble tilført en blanding av H2 og N2 til reaktoren for å redusere katalysatoren under kontrollerte betingelser. The temperature was gradually increased while feeding a mixture of H 2 and N 2 to the reactor to reduce the catalyst under controlled conditions.

Når temperaturen nådde 220°C og katalysatorreduksjonen var fullstendig ble trykket redusert til 7000 KPa og blandingen av H2 og N2 ble gradvis erstattet med en 1:1 blanding av CO When the temperature reached 220°C and the catalyst reduction was complete, the pressure was reduced to 7000 KPa and the mixture of H2 and N2 was gradually replaced with a 1:1 mixture of CO

og H2 med en gass-volumhastighet på 2100 h and H2 with a gas volume rate of 2100 h

Katalysatortemperaturen ble stabilisert ved 200°C (eksempel The catalyst temperature was stabilized at 200°C (example

1) og 230°C (eksempel 2). 1) and 230°C (example 2).

Vann, metanol og del av dimetyleteren fremstilt ved reaksjonen ble kondensert i en kondenser anordnet nedstrøms fra reaktoren. Det kondenserte vann, metanol og DME ble trukket ut under trykk og analysert ved hjelp av gasskromatografering. Water, methanol and part of the dimethyl ether produced by the reaction were condensed in a condenser arranged downstream from the reactor. The condensed water, methanol and DME were extracted under pressure and analyzed by gas chromatography.

Gassen som forlot reaktoren ble ført til en prøvetagningsven-til i en gasskromatograf og analysert og deretter innført i en regneverk-strømningsmåler for å måle gassmengden. The gas leaving the reactor was taken to a sampling valve in a gas chromatograph and analyzed and then fed into a calculator flow meter to measure the amount of gas.

Tabell 1 viser resultatene oppnådd under de nevnte betingelser. Biprodukter tilstede i en mengde på mindre enn 1% er tatt i betraktning. Table 1 shows the results obtained under the mentioned conditions. By-products present in an amount of less than 1% are taken into account.

EKSEMPLER 3- 4 EXAMPLES 3-4

En katalysator ble fremstilt som angitt basert på Cu, Zn, Cr, Si og Al idet komponentene var tilstede i atomforholdet 20:12:8:60:0,2. A catalyst was prepared as indicated based on Cu, Zn, Cr, Si and Al, the components being present in the atomic ratio of 20:12:8:60:0.2.

1600 g Cu(N03)2 3H20, 1182 g Zn(N03)2 6H20 og 1060 g Cr(N03)3 9 H20 ble oppløst i 20 1 destillert vann. Oppløsningen ble oppvarmet til 95°C og 20 1 av en vandig oppløsning av 1300 g NaOH ble så tilsatt under omrøring. Bunnfallet ble avkjølt, vasket med vann ved dekantering, filtrert og vasket gjentatte ganger med vann. Bunnfallet ble tørket i en ovn ved 120°C. Materialet ble malt til granuler med størrelse mindre enn 20 mesh ASTM og deretter blandet med 1192 g silika modifisert med aluminium (eksempel 5 i tysk patentansøkning 2.924.870). 1600 g of Cu(N03)2 3H20, 1182 g of Zn(N03)2 6H20 and 1060 g of Cr(N03)3 9H20 were dissolved in 20 1 of distilled water. The solution was heated to 95°C and 20 1 of an aqueous solution of 1300 g of NaOH was then added with stirring. The precipitate was cooled, washed with water by decantation, filtered and washed repeatedly with water. The precipitate was dried in an oven at 120°C. The material was ground into granules of size less than 20 mesh ASTM and then mixed with 1192 g of silica modified with aluminum (Example 5 in German Patent Application 2,924,870).

PelletJble dannet med diameter 4 mm og lengde 6 mm. 100 cm 3 katalysator ble undersøkt under de samme betingelser som i eksemplene 1-2, idet resultatene er angitt i tabell 2. Pellets were formed with a diameter of 4 mm and a length of 6 mm. 100 cm 3 of catalyst was examined under the same conditions as in examples 1-2, the results being given in table 2.

EKSEMPLER 5- 6 ( sammenligning) EXAMPLES 5-6 (comparison)

Katalysatoren i henhold til eksempel 1 i US-patentskrift 4.177.167 hvori atomforholdet Cu:Zn:Cr:Al var 20:12:8:60 ble undersøkt under de samme betingelser som i eksemplene 1 og 2. The catalyst according to Example 1 of US Patent 4,177,167 in which the atomic ratio Cu:Zn:Cr:Al was 20:12:8:60 was examined under the same conditions as in Examples 1 and 2.

Resultatene er gitt i den etterfølgende tabell 3. The results are given in the following table 3.

Disse sammenligningseksempler viser at ved lave arbeids-temperaturer vil katalysatoren basert på stabilisert aluminium ikke fremvise tilstrekkelig dehydratiserende aktivitet slik at DME bare er tilstede i små mengder. These comparative examples show that at low working temperatures the catalyst based on stabilized aluminum will not exhibit sufficient dehydrating activity so that DME is only present in small amounts.

Claims (2)

1. Fremgangsmåte for fremstilling av dimetyleter fra CO, H2 og eventuelt C02 , i nærvær av en katalytisk virksom blanding bestående av en silisiumforbindelse og en blanding av oksyder og/eller salter av Cu, Zn, Cr eller en blanding av oksyder og/eller salter av Cu, Zn, Al, karakterisert ved at det anvendes en silisiumforbindelse som består av en krystallinsk kiselsyre hvori noen silisiumatomer i krystallgitteret er erstattet med aluminium og som tilsvarer den generelle formel hvori y har en verdi fra 2,0018 til 2,0075.1. Process for the production of dimethyl ether from CO, H2 and optionally CO2, in the presence of a catalytically active mixture consisting of a silicon compound and a mixture of oxides and/or salts of Cu, Zn, Cr or a mixture of oxides and/or salts of Cu, Zn, Al, characterized in that a silicon compound is used which consists of a crystalline silicic acid in which some silicon atoms in the crystal lattice have been replaced by aluminum and which corresponds to the general formula where y has a value from 2.0018 to 2.0075. 2. Katalytisk virksom blanding for gjennomføring av fremgangsmåten som angitt i krav 1, bestående av en silisiumforbindelse og en blanding av oksyder og/eller salter av Cu, Zn, Cr eller en blanding av oksyder og/eller salter av Cu, Zn, Al, karakterisert ved at silisiumforbindelsen er krystallinsk kiselsyre hvori noen silisiumatomer i krystallgitteret er erstattet med aluminium og som tilsvarer den generelle formel hvori y har en verdi fra 2,0018 til 2,0075.2. Catalytically active mixture for carrying out the method as stated in claim 1, consisting of a silicon compound and a mixture of oxides and/or salts of Cu, Zn, Cr or a mixture of oxides and/or salts of Cu, Zn, Al, characterized in that the silicon compound is crystalline silicic acid in which some silicon atoms in the crystal lattice have been replaced by aluminum and which corresponds to the general formula where y has a value from 2.0018 to 2.0075.
NO821816A 1981-06-02 1982-06-01 PROCEDURE FOR CATALYST MIXTURES FOR THE SYNTHESIS OF DIMETYLETS FROM CO, H2 AND EVEN CO2. NO155488C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT22081/81A IT1137176B (en) 1981-06-02 1981-06-02 PROCESS FOR THE PRODUCTION OF DIMETHYLETER

Publications (3)

Publication Number Publication Date
NO821816L NO821816L (en) 1982-12-03
NO155488B true NO155488B (en) 1986-12-29
NO155488C NO155488C (en) 1987-04-08

Family

ID=11191199

Family Applications (1)

Application Number Title Priority Date Filing Date
NO821816A NO155488C (en) 1981-06-02 1982-06-01 PROCEDURE FOR CATALYST MIXTURES FOR THE SYNTHESIS OF DIMETYLETS FROM CO, H2 AND EVEN CO2.

Country Status (30)

Country Link
JP (1) JPS57204229A (en)
KR (1) KR830010034A (en)
AR (1) AR230829A1 (en)
AU (1) AU553865B2 (en)
BE (1) BE893373A (en)
BR (1) BR8202979A (en)
CA (1) CA1182797A (en)
CH (1) CH649519A5 (en)
CU (1) CU21425A3 (en)
DD (1) DD208973A5 (en)
DE (1) DE3220547C2 (en)
DK (1) DK239982A (en)
ES (1) ES513916A0 (en)
FI (1) FI821958L (en)
FR (1) FR2506756A1 (en)
GB (1) GB2099327B (en)
GR (1) GR76005B (en)
IN (1) IN155752B (en)
IT (1) IT1137176B (en)
LU (1) LU84166A1 (en)
MX (1) MX158200A (en)
NL (1) NL8202206A (en)
NO (1) NO155488C (en)
NZ (1) NZ200599A (en)
PH (1) PH17161A (en)
PL (1) PL236730A1 (en)
SE (1) SE8203409L (en)
SU (1) SU1329614A3 (en)
YU (1) YU111382A (en)
ZA (1) ZA823801B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590176A (en) * 1984-06-05 1986-05-20 Shell Oil Company Catalyst for dimethyl ether synthesis and a process for its preparation
IT1207499B (en) * 1985-07-26 1989-05-25 Montedipe Spa PROCEDURE FOR THE OXIDATION OF FLUORINATED OLEFINS AND CATALYST SUITABLE FOR THE PURPOSE.
DE68904202T2 (en) * 1988-01-14 1993-05-06 Air Prod & Chem ONE-STEP METHOD FOR SYNTHESIS OF DIMETHYLAETHER USING A LIQUID-PHASE REACTOR SYSTEM.
EP0340324B1 (en) * 1988-05-04 1992-12-16 RWE-DEA Aktiengesellschaft für Mineraloel und Chemie Process for the preparation of pure dimethyl ether
CA2020929A1 (en) * 1989-07-18 1991-01-19 Thomas H. L. Hsiung One-step liquid phase process for dimethyl ether synthesis
EP0591538A4 (en) * 1991-11-11 1995-01-04 Kaoru Fujimoto Process for producing dimethyl ether.
US5344365A (en) * 1993-09-14 1994-09-06 Sematech, Inc. Integrated building and conveying structure for manufacturing under ultraclean conditions
DK173614B1 (en) 1999-02-02 2001-04-30 Topsoe Haldor As Process for preparing methanol / dimethyl ether mixture from synthesis gas
KR100812099B1 (en) 2006-11-28 2008-03-12 한국가스공사 Method of preparing catalyst for making dimethylether from syngas with carbon dioxide
FR2909666B1 (en) 2006-12-08 2009-03-06 Centre Nat Rech Scient DEHYDRATION OF METHANOL TO DIMETHYL ETHER EMPLOYING CATALYSTS BASED ON ZEOLITHE SUPPORTED ON SILICON CARBIDE
EP2072486A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons to ethanol
EP2072491A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of alcohol(s) into alcohol(s) with increased carbon-chain
EP2072492A1 (en) 2007-12-17 2009-06-24 BP p.l.c. Process for the conversion of hydrocarbons to ethanol
EP2357037A1 (en) * 2010-02-17 2011-08-17 LANXESS Deutschland GmbH Method for producing mechanically stable shaped catalysts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1177167A (en) * 1914-06-30 1916-03-28 Levis Miller Booth Apparatus for purifying liquids.
IT972655B (en) * 1972-12-20 1974-05-31 Snam Progetti PROCEDURE FOR THE PRODUCTION OF DIMETHYL ETHER
DK155176C (en) * 1978-06-22 1989-07-17 Snam Progetti PROCEDURE FOR THE PREPARATION OF ALUMINUM OXIDE MODIFIED SILICON Dioxide
US4341069A (en) * 1980-04-02 1982-07-27 Mobil Oil Corporation Method for generating power upon demand

Also Published As

Publication number Publication date
NO821816L (en) 1982-12-03
YU111382A (en) 1985-04-30
KR830010034A (en) 1983-12-24
SE8203409L (en) 1982-12-03
DE3220547A1 (en) 1983-01-20
DE3220547C2 (en) 1983-07-07
DD208973A5 (en) 1984-04-18
JPS57204229A (en) 1982-12-14
ES8305297A1 (en) 1983-04-01
PH17161A (en) 1984-06-13
NZ200599A (en) 1985-04-30
BE893373A (en) 1982-12-01
FR2506756A1 (en) 1982-12-03
CU21425A3 (en) 1987-01-13
ES513916A0 (en) 1983-04-01
IT1137176B (en) 1986-09-03
GB2099327B (en) 1984-09-19
GB2099327A (en) 1982-12-08
NO155488C (en) 1987-04-08
SU1329614A3 (en) 1987-08-07
CH649519A5 (en) 1985-05-31
CA1182797A (en) 1985-02-19
LU84166A1 (en) 1983-04-13
AU8441482A (en) 1982-12-09
FI821958A0 (en) 1982-06-02
PL236730A1 (en) 1983-01-31
ZA823801B (en) 1983-04-27
BR8202979A (en) 1983-05-03
AU553865B2 (en) 1986-07-31
NL8202206A (en) 1983-01-03
GR76005B (en) 1984-08-03
IN155752B (en) 1985-03-02
FI821958L (en) 1982-12-03
DK239982A (en) 1982-12-03
MX158200A (en) 1989-01-16
IT8122081A0 (en) 1981-06-02
AR230829A1 (en) 1984-07-31

Similar Documents

Publication Publication Date Title
NO155488B (en) PROCEDURE FOR CATALYST MIXTURES FOR THE SYNTHESIS OF DIMETYLETS FROM CO, H2 AND EVEN CO2.
SU1731040A3 (en) Method of producing alyphatic @@@ alcohols and related catalyst
CA1153354A (en) Catalysts for methanol synthesis
WO2016101822A1 (en) Copper-based catalyst and method for preparing same
NO20111709A1 (en) Method of Methanol Synthesis
NO160945B (en) THERMAL P EFFECTED ROCKET ENGINE SAFETY SYSTEM.
PL110957B1 (en) Catalyst for dimethyl ether manufacture
CN108325548A (en) A kind of molybdenum sulphide and preparation method thereof for low carbon alcohol by synthetic gas
WO2022258072A1 (en) Method for preparing vinylene carbonate
CN105452228B (en) Prepare the novel method of Febuxostat
CN113244928A (en) Novel catalyst for preparing ethanol by methyl acetate hydrogenation and preparation method thereof
CN108409541A (en) The catalyst and preparation method thereof of 2,3,6- pseudocuminols is synthesized for metacresol
CN109824613B (en) Method for producing BTA and co-producing TTA by one-step method
CN107442134B (en) Rhodium/nickel alloy nano catalyst and preparation method and application thereof
CN115322166B (en) Method for synthesizing difurfuryl ether
CN103480378B (en) The preparation method of Modified Copper-based Catalysts for Methanol
CN105085167B (en) Two-section method process for preparing alcohol by oxalic ester hydrogenation
CN108658787A (en) The preparation method of ethamine
WO2018233497A1 (en) Copper-based catalyst and preparation method therefor, and method for preparing etherification-grade ethylene glycol by using catalyst
FR2461706A1 (en) PROCESS FOR THE CONTINUOUS PREPARATION OF MORPHOLINE
JP3789749B2 (en) Method for producing thiosalicylic acid
CN102924314B (en) Preparation method of 2-amino-6-nitrobenzoic acid
US5106810A (en) Methanol dissociation catalysts
CN110835296A (en) Preparation process of 2,2, 4-trimethyl-3-hydroxypentanoic acid
CN116159602B (en) Reduction process of copper catalyst for N-methylaniline synthesis