NO152791B - Copolymers for the preparation of sterile surgical sutures - Google Patents

Copolymers for the preparation of sterile surgical sutures Download PDF

Info

Publication number
NO152791B
NO152791B NO812911A NO812911A NO152791B NO 152791 B NO152791 B NO 152791B NO 812911 A NO812911 A NO 812911A NO 812911 A NO812911 A NO 812911A NO 152791 B NO152791 B NO 152791B
Authority
NO
Norway
Prior art keywords
polymer
temperature
trimethylene carbonate
surgical sutures
copolymer
Prior art date
Application number
NO812911A
Other languages
Norwegian (no)
Other versions
NO152791C (en
NO812911L (en
Inventor
Michael Norman Rosensaft
Richard Lansing Webb
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Publication of NO812911L publication Critical patent/NO812911L/en
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Publication of NO152791B publication Critical patent/NO152791B/en
Publication of NO152791C publication Critical patent/NO152791C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • A61L17/12Homopolymers or copolymers of glycolic acid or lactic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Materials For Medical Uses (AREA)

Abstract

KOPOLYMER FOR FREMSTILLING AV STERILE KIRURGISKE SUTURER.COPIES FOR THE MANUFACTURE OF STERILE SURGICAL SUTURES.

Description

Oppfinnelsen vedrører en kopolymer for fremstilling av sterile kirurgiske suturer. The invention relates to a copolymer for the production of sterile surgical sutures.

Anvendelse av laktid-polyestere ved fremstilling av syntetiske kirurgiske artikler er kjent på området. I tilknytning til dette er komonomerer ofte blitt anvendt for modi-fisering av egenskapene til de forskjellige polyestere. Den konvensjonelle polymeriseringsmetode for fremstilling av polyesterne er ved ringåpningspolymerisering av de aktuelle cykliske laktider. Ved fremstilling av kopolymerer kopolymeri-seres vanligvis ett laktid med et annet. Andre cykliske materi-aler har også funnet anvendelse som komonomerer. Disse inkluderer andre laktoner, slike forbindelser som trimetylenkarbonat og lignende. The use of lactide polyesters in the production of synthetic surgical articles is known in the field. In connection with this, comonomers have often been used to modify the properties of the various polyesters. The conventional polymerization method for producing the polyesters is by ring-opening polymerization of the relevant cyclic lactides. When producing copolymers, one lactide is usually copolymerized with another. Other cyclic materials have also found use as comonomers. These include other lactones, such compounds as trimethylene carbonate and the like.

Anvendelige polymeriserings- og etterbehandlingsmetoder så vel som fabrikasjonsmetoder for de kirurgiske artikler er også velkjent på området. De kirurgiske artikler som fremstilles, inkluderer både absorberbare og ikke-absorberbare artikler. Applicable polymerization and finishing methods as well as fabrication methods for the surgical articles are also well known in the art. The surgical articles manufactured include both absorbable and non-absorbable articles.

Følgende patenter er av interesse i denne henseende: US-patenter nr. 3.268.486 og 3.268.487. Videre beskriver BRD-patent nr. 2.257.334 fremstilling av kopolymerer av L(-)laktid og glykolid. The following patents are of interest in this regard: US Patent Nos. 3,268,486 and 3,268,487. Furthermore, BRD patent no. 2,257,334 describes the production of copolymers of L(-)lactide and glycolide.

Det har nå vist seg at sterile kirurgiske suturer av syn-tetisk polyester med fordel kan fremstilles ved å anvende en polymerisasjonsprosess hvorved det dannes kopolymere laktid-polyestere ved en ringåpningspolymerisasjon hvorved polymeri-sas jonen foregår separat eller porsjonsvis. Dette oppnås ved i rekkefølge å tilsette de komonomerer som anvendes for dannelse av kopolymerkjeden. Ved å lede polymerisasjonsprosessen på trinnvis måte kan de kirurgiske artiklers in vivo-karakteris-tika mer grovt sett modifiseres før opptreden av den vanlige grad av interferens av evnen hos polymeren til å danne dimen-sjonsstabile, høykrystallinske eller høy-orienterte molekyl-strukturer. Dette fremgår av norsk patent nr. 146.385, hvorfra foreliggende sak er avdelt. It has now been shown that sterile surgical sutures of synthetic polyester can be advantageously produced by using a polymerization process whereby copolymer lactide polyesters are formed by a ring-opening polymerization whereby the polymerization takes place separately or in portions. This is achieved by sequentially adding the comonomers used to form the copolymer chain. By directing the polymerization process in a stepwise manner, the in vivo characteristics of the surgical articles can be more roughly modified before the appearance of the usual degree of interference by the ability of the polymer to form dimensionally stable, highly crystalline or highly oriented molecular structures. This is evident from Norwegian patent no. 146,385, from which the present case is divided.

En fremgangsmåte som beskrevet kan omfatte to eller flere trinn under anvendelse av to eller flere komonomerer i polymeri-sas jonsprosessen. I et eller flere av trinnene kan to monomerer anvendes samtidig. En annen katalysator kan anvendes i hvert trinn om så ønskes. A method as described can comprise two or more steps using two or more comonomers in the polymerization process. In one or more of the steps, two monomers can be used simultaneously. A different catalyst can be used in each step if desired.

Det foretrekkes generelt å utføre de etter hverandre føl-gende polymerisasjoner i det samme reaksjonskar ved å tilsette komonomerene separat til dette. Imidlertid kan', om ønskes, et eller flere av polymersegmentene fremstilles og anvendes som sådant for ytterligere kjemisk reaksjon for dannelse av polyesterne i et annet reaksjonskar, alt etter ønske. It is generally preferred to carry out the successive polymerizations in the same reaction vessel by adding the comonomers separately to this. However, if desired, one or more of the polymer segments can be prepared and used as such for further chemical reaction to form the polyesters in another reaction vessel, as desired.

Laktider som konvensjonelt foretrekkes for anvendelse ved fremstilling av kirurgiske artikler, er L(-)laktig og -glykolid, og det foretrekkes vanligvis å anvende dem sammen i en sekven-siell polymerisasjonsprosess. Andre cykliske komonomerer som konvensjonelt anvendes i denne forbindelse, er f.eks. trimetylenkarbonat og 2-keto-l,4-dioksan. Lactides conventionally preferred for use in the manufacture of surgical articles are L(-) lactide and -glycolide, and it is usually preferred to use them together in a sequential polymerization process. Other cyclic comonomers which are conventionally used in this connection are, e.g. trimethylene carbonate and 2-keto-1,4-dioxane.

Kopolymeren i henhold til foreliggende oppfinnelse har smeltepunkt på 217-221°C, målt på et differensial-avsøknings-kalorimeter som opererer ved 10°C/min. Det karakteristiske ved kopolymeren er at den består av gjentagende enheter av formel (I): og gjentagende enheter av formel (II): The copolymer according to the present invention has a melting point of 217-221°C, measured on a differential scanning calorimeter operating at 10°C/min. The characteristic feature of the copolymer is that it consists of repeating units of formula (I): and repeating units of formula (II):

videre at den har en egen-viskositet på 0,5-2 dl/g, samt at den er fremstilt ved først å polymerisere trimetylenkarbonat, fulgt av glykolid. furthermore, that it has an intrinsic viscosity of 0.5-2 dl/g, and that it is produced by first polymerizing trimethylene carbonate, followed by glycolide.

Ved fremstilling av sterile, syntetiske, absorberbare, kirurgiske suturer anvendes glykolid som den fremherskende laktid-komonomer ved fremstilling av polyesterne. Den nåværende teknikkens stand er slik at detaljerte absorpsjonsmekanismer og detaljer ved de polymere strukturer på de molekylære nivåer ikke er kjent med sikkerhet. In the manufacture of sterile, synthetic, absorbable, surgical sutures, glycolide is used as the predominant lactide comonomer in the manufacture of the polyesters. The current state of the art is such that detailed absorption mechanisms and details of the polymeric structures at the molecular levels are not known with certainty.

Fremstilling av kopolymeren i henhold til oppfinnelsen foretas ved først å polymerisere trimetylenkarbonat, fulgt av glykolid. Preparation of the copolymer according to the invention is carried out by first polymerizing trimethylene carbonate, followed by glycolide.

De kirurgiske suturer fremstilles av polyesterne under The surgical sutures are made from the polyesters below

anvendelse av de fremgangsmåter som konvensjonelt anvendes for de polyestere som er beskrevet i ovennevnte litteratur. Like-ledes anvendes de resulterende kirurgiske suturer på konvensjo-nell måte. application of the methods that are conventionally used for the polyesters described in the above-mentioned literature. Similarly, the resulting surgical sutures are used in a conventional manner.

Følgende eksempler illustrerer fremgangsmåter som er nyttige i tilknytning til utførelsen av foreliggende oppfinnelse. Med mindre annet er angitt, angir alle deler og pro-senter vekt. The following examples illustrate methods that are useful in connection with the implementation of the present invention. Unless otherwise stated, all parts and pro-centers indicate weight.

EKSEMPEL 1 EXAMPLE 1

Inn i en 100 ml tre-halset rundkolbe utstyrt med en glassaksel og en "Teflon" padlerører knyttet til en røremotor og et gassinnløpsrør knyttet til en argonsylinder ble det tilsatt 7,0 g poly(trimetylenkarbonat) med I.V. 0,34. Poly(tri- Into a 100 mL three-necked round-bottomed flask equipped with a glass shaft and a "Teflon" paddle stirrer connected to a stirrer and a gas inlet tube connected to an argon cylinder was added 7.0 g of poly(trimethylene carbonate) by I.V. 0.34. Poly(tri-

metylenkarbonatet) var fremstilt på følgende måte: the methylene carbonate) was prepared in the following way:

Det ble fremstilt en eterløsning av SnC^. 21^0 sammen med An ether solution of SnC^ was prepared. 21^0 together with

en eterløsning av laurylalkohol som inneholdt 10 mg/ml laurylalkohol. Tilstrekkelig volum av de ovennevnte løsninger ble tilsatt i et polymerisasjonsrør slik at den endelige vekt av katalysator og laurylalkohol pr. 20,0 g trimetylenkarbonat, an ether solution of lauryl alcohol containing 10 mg/ml lauryl alcohol. Sufficient volume of the above solutions was added to a polymerization tube so that the final weight of catalyst and lauryl alcohol per 20.0 g trimethylene carbonate,

når løsningsmidlet ble fjernet, var 4,0 mg SnC^^I^O og 250 mg laurylalkohol. when the solvent was removed was 4.0 mg of SnC^^I^O and 250 mg of lauryl alcohol.

Etter at løsningsmidlet var fjernet, ble 20,0 g trimetylenkarbonat tilsatt i røret. Røret ble evakuert og forseglet under vakuum. Det ble så anbragt i et oljebad ved 180°C i 24 timer. Det ble fjernet fra oljebadet og fikk avkjøle seg til romtemperatur. Røret ble åpnet, polymeren ble knust i en Wiley-mølle gjennom After the solvent was removed, 20.0 g of trimethylene carbonate was added to the tube. The tube was evacuated and sealed under vacuum. It was then placed in an oil bath at 180°C for 24 hours. It was removed from the oil bath and allowed to cool to room temperature. The tube was opened, the polymer was crushed in a Wiley mill through

en 20 mesh sikt og tørket i 24 timer ved 50°C ved 0,1 mm Hg. a 20 mesh sieve and dried for 24 hours at 50°C at 0.1 mm Hg.

Den resulterende polymer fra røret viste 48% omdannelse. The resulting polymer from the tube showed 48% conversion.

Prosent omdannelse til polymer ble beregnet ved å dividere vekten av polymer etter tørking med vekten av polymer før tørking. I.V. betyr den iboende viskositet for en løsning av 0,5 g tørket polymer/100 ml heksafluoraceton-seskvihydrat Percent conversion to polymer was calculated by dividing the weight of polymer after drying by the weight of polymer before drying. I.V. means the intrinsic viscosity of a solution of 0.5 g dried polymer/100 ml hexafluoroacetone sesquihydrate

(HFAS), målt ved 30°C. (HFAS), measured at 30°C.

I en 100 ml tre-halset rundbunnet kolbe utstyrt med glass-aksel og "Teflon" (DuPont Company, Wilmington, Delaware, U.S.A.) padlerører, forbundet med en røremotor og et gassinn-løpsrør forbundet med en argon-sylinder, ble det tilsatt 7,0 g av det poly-trimetylenkarbonat som er beskrevet ovenfor. Kolben ble spylt med argon i 15 minutter. Argonspylingen ble opprettholdt under den følgende polymerisasjon. Kolben ble anbragt i et oljebad av 190°C. Kolbeinnholdet nådde 180+ 2°C i løpet av 15 minutter. Deretter ble 3,5 g glykolid tilsatt under røring, og oljebadtemperaturen ble justert slik at temperaturen på kolbeinnholdet ble holdt på 180 + 2°C i 30 min. med kontinuerlig røring. Temperaturen på oljebadet ble så hevet slik at temperaturen på kolbeinnholdet etter at 30 minutter var gått, Into a 100 mL three-necked round-bottom flask equipped with a glass shaft and "Teflon" (DuPont Company, Wilmington, Delaware, U.S.A.) paddle tubes, connected to a stirrer and a gas inlet connected to an argon cylinder, was added 7 .0 g of the polytrimethylene carbonate described above. The flask was purged with argon for 15 minutes. The argon purge was maintained during the following polymerization. The flask was placed in an oil bath of 190°C. The flask contents reached 180+ 2°C within 15 minutes. Then 3.5 g of glycolide were added with stirring, and the oil bath temperature was adjusted so that the temperature of the flask contents was maintained at 180 + 2°C for 30 min. with continuous stirring. The temperature of the oil bath was then raised so that the temperature of the flask contents after 30 minutes had elapsed,

var 220 + 2°C. Deretter ble 31,5 g glykolid tilsatt under røring, og temperaturen ble holdt på 220 + 2°C i 1 1/2 timer under kontinuerlig røring. På dette tidspunkt ble oljebadet fjernet, røringen ble stoppet og kolbeinnholdet fikk avkjøle seg til tilnærmet romtemperatur under argonspyling. Denne was 220 + 2°C. Then 31.5 g of glycolide were added with stirring, and the temperature was maintained at 220 + 2°C for 1 1/2 hours with continuous stirring. At this point, the oil bath was removed, stirring was stopped and the flask contents were allowed to cool to approximately room temperature under an argon purge. This

spyling ble så stoppet. Glasskolben ble ødelagt, og polymeren ble fjernet og knust i en Wiley-mølle gjennom en 20 mesh sikt. 5,0 g av denne polymer ble oppløst i 100 ml 60°C HFAS, og polymeren ble utfelt ved drypping av denne løsning inn i 1.000 ml metanol under røring. Polymeren ble oppsamlet ved filtrering og ekstrahert med aceton i en Soxhlet-ekstraktor i 2 dager. Polymeren ble tørket natten over i et vakuumtørkeskap ved 50°C ved 0,1 mm Hg. Polymerutbyttet var 86%. I.V. i HFAS var 0,64. Molprosent enheter som stammet fra trimetylenkarbonat i poly-merkjeden, bestemt ved NMR, var 16,4. Dette tall tilsvarer 14,7 vekt% trimetylenkarbonatenheter. Smeltepunktet, bestemt ut fra topp-endotermen i en D.T.A.-apparatur var 218°C. flushing was then stopped. The glass flask was broken, and the polymer was removed and crushed in a Wiley mill through a 20 mesh sieve. 5.0 g of this polymer was dissolved in 100 ml of 60°C HFAS, and the polymer was precipitated by dropping this solution into 1,000 ml of methanol with stirring. The polymer was collected by filtration and extracted with acetone in a Soxhlet extractor for 2 days. The polymer was dried overnight in a vacuum oven at 50°C at 0.1 mm Hg. The polymer yield was 86%. I.V. in HFAS was 0.64. The mole percent units derived from trimethylene carbonate in the poly tag chain, determined by NMR, was 16.4. This number corresponds to 14.7 wt% trimethylene carbonate units. The melting point, determined from the peak endotherm in a D.T.A. apparatus was 218°C.

EKSEMPEL 2 EXAMPLE 2

30 g trimetylenkarbonat, 3,3 mg SnCl2-2H20 og 0,133 g laurylalkohol tilsettes i en omrørt reaktor som er forhåndsoppvarmet til 153°C under en nitrogenstrøm. Temperaturen økes i løpet av 30 minutter til 180°C. Etter omrøring i ytterligere 3 0 minutter ved nevnte temperatur tas det ut en prøve på 2,5 g, og 17 g glykolid tilsettes. Temperaturen økes så i løpet av 30 minutter til 223°C. Etter omrøring i 45 minutter ved denne temperatur tilsettes 153 g glykolid. Omrøringen fortsettes i 1 time ved denne temperatur. Polymeren tappes så ut, avkjøles og finmales slik at den passerer gjennom en 10 mesh sikt, og tørkes i 48 timer ved 140°C (0,25 mm Hg). 30 g trimethylene carbonate, 3.3 mg SnCl 2 -2H 2 O and 0.133 g lauryl alcohol are added to a stirred reactor preheated to 153°C under a stream of nitrogen. The temperature is increased over 30 minutes to 180°C. After stirring for a further 30 minutes at the aforementioned temperature, a sample of 2.5 g is taken out, and 17 g of glycolide is added. The temperature is then increased over 30 minutes to 223°C. After stirring for 45 minutes at this temperature, 153 g of glycolide are added. Stirring is continued for 1 hour at this temperature. The polymer is then drained, cooled and finely ground to pass through a 10 mesh screen, and dried for 48 hours at 140°C (0.25 mm Hg).

Prøven på 2,5 g av poly(trimetylenkarbonat) som ble tatt ut ved 180°C, oppløses i metylenklorid. Løsningen tilsettes dråpevis til metanol, og den utfelte polymer oppsamles og tørkes i 24 timer ved 40°C (0,25 mm Hg). Den resulterende homopolymer hadde en egen-viskositet på 1,32 (30°C, 0,5% løs-ning) i HFAS. The sample of 2.5 g of poly(trimethylene carbonate) taken at 180°C is dissolved in methylene chloride. The solution is added dropwise to methanol, and the precipitated polymer is collected and dried for 24 hours at 40°C (0.25 mm Hg). The resulting homopolymer had an intrinsic viscosity of 1.32 (30°C, 0.5% solution) in HFAS.

Egenviskositeten for den endelige kopolymer var 0,81. Konsentrasjonen av trimetylenkarbonat-enheter i kopolymeren, bestemt ved NMR-analyse, er 17 mol% eller 15 vekt%. Ved anvendelse av differensial-avsøkningskalorimeter er glassover-gangstemperaturen 32°C, og toppen for smelte-endotermen er 216°C. The intrinsic viscosity of the final copolymer was 0.81. The concentration of trimethylene carbonate units in the copolymer, determined by NMR analysis, is 17 mol% or 15% by weight. Using a differential scanning calorimeter, the glass transition temperature is 32°C and the melting endotherm peak is 216°C.

EKSEMPEL 3 EXAMPLE 3

Kopolymeren fra eksempel 2 ekstruderes ved en temperatur av 230°C med en hastighet av Q, 221 kg/h, gjennom et 30 ml kapillar med et lengdeidiameter-forhold på 4:1. Ekstrudatet ble kjørt gjennom et bråkjølingsbad med vann av omgivelsestemperatur og oppsamlet på en spole i en hastighet av 61 m/min. The copolymer from Example 2 is extruded at a temperature of 230°C at a rate of Q, 221 kg/h, through a 30 ml capillary with a length to diameter ratio of 4:1. The extrudate was run through a quench bath of ambient temperature water and collected on a spool at a speed of 61 m/min.

Det resulterende ekstrudat ble deretter trukket gjennom et luftkammer med temperatur 40°C ved 3,05 m/min. og et trekk-forhold på 5,2X, for å danne et monofilament som faller under størrelsesområdet USP 6/0. The resulting extrudate was then drawn through an air chamber at a temperature of 40°C at 3.05 m/min. and a draw ratio of 5.2X, to form a monofilament that falls below the USP 6/0 size range.

De fysikalske egenskaper av den trukkede fiber var: The physical properties of the drawn fiber were:

EKSEMPEL 4 EXAMPLE 4

Prøver av monofilamentet fra eksempel 3 ble implantert subkutant i rotter. Etter 21 dager fjernes prøvene, og deres direkte-strekkstyrke måles på et Instron Universal Testing Instrument, modell 1125 (fra firmaet Instron Corp., USA). Prøvene bevarte 45% (i gjennomsnitt) av sin opprinnelige strekkstyrke. Samples of the monofilament from Example 3 were implanted subcutaneously in rats. After 21 days, the samples are removed and their direct tensile strength is measured on an Instron Universal Testing Instrument, model 1125 (from the company Instron Corp., USA). The samples retained 45% (on average) of their original tensile strength.

EKSEMPEL 5 EXAMPLE 5

20 g trimetylenkarbonat, 4 mg SnCl2.2H20 og 0,199 g laurylalkohol tilsettes i en omrørt reaktor som er forhåndsoppvarmet til 140°C. Blandingen omrøres i 2 timer ved denne temperatur under nitrogenatmosfære. 50 mm Hg vakuum påføres og holdes i 30 minutter. Vakuumet oppheves med nitrogen, og 180 g glykolid, forhåndsoppvarmet ved 140°C, tilsettes under nitrogenstrøm. Reaktoren oppvarmes i løpet av 30 minutter til 220°C. Temperaturen holdes ved 220-222°C i 45 minutter. Polymeren tappes ut, avkjøles, kuttes i små biter og tørkes i 24 timer ved 130°C (1 mm Hg). 20 g of trimethylene carbonate, 4 mg of SnCl2.2H20 and 0.199 g of lauryl alcohol are added to a stirred reactor that is preheated to 140°C. The mixture is stirred for 2 hours at this temperature under a nitrogen atmosphere. 50 mm Hg vacuum is applied and maintained for 30 minutes. The vacuum is lifted with nitrogen, and 180 g of glycolide, preheated at 140°C, is added under a stream of nitrogen. The reactor is heated to 220°C within 30 minutes. The temperature is kept at 220-222°C for 45 minutes. The polymer is drained, cooled, cut into small pieces and dried for 24 hours at 130°C (1 mm Hg).

Egenviskositeten for polymeren er 0,86 (30°C, 0,5% løs-ning i HFAS). Konsentrasjonen av trimetylenkarbonat-enheter i kopolymeren er 9 mol%, bestemt ved NMR, eller 8 vekt%. Under anvendelse av differensial-avsøkningskalorimeter er glassover-gangstemperaturen 37°C. Smelteområdet er 196-225°C. Toppen av smelteendotermen er ved 221°C, og^H^ (smeltevarmen) er 17,6 kal/g. 130 g polymer behandles videre i 3 dager ved 180°C og 0,2 mm Hg under en nitrogenstrøm av 56,64 dm 3/h. Slutt-produktet veide 120 g, hadde en grenseviskositet på 0,96 og inneholdt 8,3 mol% (7,4 vekt%) trimetylenkarbonat-enheter. The intrinsic viscosity of the polymer is 0.86 (30°C, 0.5% solution in HFAS). The concentration of trimethylene carbonate units in the copolymer is 9 mol%, determined by NMR, or 8% by weight. Using a differential scanning calorimeter, the glass transition temperature is 37°C. The melting range is 196-225°C. The peak of the melting endotherm is at 221°C, and ^H^ (the heat of fusion) is 17.6 cal/g. 130 g of polymer is further treated for 3 days at 180°C and 0.2 mm Hg under a nitrogen flow of 56.64 dm 3 /h. The final product weighed 120 g, had an intrinsic viscosity of 0.96 and contained 8.3 mol% (7.4 wt%) trimethylene carbonate units.

EKSEMPEL 6 EXAMPLE 6

Kopolymeren fra eksempel 5 ble ekstrudert ved en temperatur av 230°C gjennom et 1,5 mm kapillar med et lengde:dia-meterforhold på 4:1. Ekstrudatet ble kjørt gjennom et brå-kjølingsbad med vann av omgivelsestemperatur og oppsamlet med 15,25 m/min. Det ble deretter trukket gjennom et luftkammer med temperatur 50°C 8X. De fysikalske egenskaper av den trukne fiber var som følger: The copolymer from Example 5 was extruded at a temperature of 230°C through a 1.5 mm capillary with a length:diameter ratio of 4:1. The extrudate was run through a quench bath of ambient temperature water and collected at 15.25 m/min. It was then drawn through an air chamber with a temperature of 50°C 8X. The physical properties of the drawn fiber were as follows:

Claims (2)

1. Kopolymer for fremstilling av sterile kirurgiske suturer, karakterisert ved at den består av gjentagende enheter av formel (I): og gjentagende enheter av formel (II): idet den har en egen-viskositet på 0,5-2 dl/g, og er fremstilt ved først å polymerisere trimetylenkarbonat, fulgt av glykolid.1. Copolymer for the production of sterile surgical sutures, characterized in that it consists of repeating units of formula (I): and repeating units of formula (II): as it has an intrinsic viscosity of 0.5-2 dl/g, and is produced by first polymerizing trimethylene carbonate, followed by glycolide. 2. Kopolymer som angitt i krav 1, karakterisert ved at den har mer enn 50 vekt% av enheter av formel (I).2. Copolymer as stated in claim 1, characterized in that it has more than 50% by weight of units of formula (I).
NO812911A 1977-05-23 1981-08-27 Copolymers for the preparation of sterile surgical sutures. NO152791C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79983677A 1977-05-23 1977-05-23

Publications (3)

Publication Number Publication Date
NO812911L NO812911L (en) 1978-11-24
NO152791B true NO152791B (en) 1985-08-12
NO152791C NO152791C (en) 1985-11-20

Family

ID=25176885

Family Applications (1)

Application Number Title Priority Date Filing Date
NO812911A NO152791C (en) 1977-05-23 1981-08-27 Copolymers for the preparation of sterile surgical sutures.

Country Status (23)

Country Link
JP (1) JPS53145899A (en)
AR (1) AR218303A1 (en)
AU (1) AU525415B2 (en)
BE (1) BE867222A (en)
BR (1) BR7803223A (en)
CA (1) CA1128231A (en)
DD (1) DD139794A5 (en)
DE (1) DE2821570A1 (en)
DK (1) DK225978A (en)
EG (1) EG14151A (en)
ES (1) ES470114A1 (en)
FI (1) FI65443C (en)
FR (1) FR2391734A1 (en)
GB (2) GB1604177A (en)
HU (1) HU180198B (en)
IT (1) IT1105550B (en)
NL (1) NL185493C (en)
NO (1) NO152791C (en)
NZ (1) NZ186944A (en)
PL (1) PL117675B1 (en)
RO (1) RO85051B (en)
SE (1) SE444891B (en)
ZA (1) ZA782039B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137921A (en) * 1977-06-24 1979-02-06 Ethicon, Inc. Addition copolymers of lactide and glycolide and method of preparation
FR2439003A1 (en) * 1978-10-20 1980-05-16 Anvar NEW OSTEOSYNTHESIS PARTS, THEIR PREPARATION AND THEIR APPLICATION
US4273920A (en) * 1979-09-12 1981-06-16 Eli Lilly And Company Polymerization process and product
EP0050215B1 (en) * 1980-10-20 1987-11-19 American Cyanamid Company Modification of polyglycolic acid to achieve variable in-vivo physical properties
US4429080A (en) * 1982-07-01 1984-01-31 American Cyanamid Company Synthetic copolymer surgical articles and method of manufacturing the same
NZ205680A (en) * 1982-10-01 1986-05-09 Ethicon Inc Glycolide/epsilon-caprolactone copolymers and sterile surgical articles made therefrom
ES2091185T3 (en) * 1984-03-06 1996-11-01 United States Surgical Corp A PROCEDURE FOR THE PREPARATION OF TWO-PHASE COMPOSITIONS FOR ABSORBABLE SURGICAL DEVICES.
US4643191A (en) * 1985-11-29 1987-02-17 Ethicon, Inc. Crystalline copolymers of p-dioxanone and lactide and surgical devices made therefrom
DE3641692A1 (en) * 1986-12-06 1988-06-09 Boehringer Ingelheim Kg CATALYST-FREE RESORBABLE HOMOPOLYMERS AND COPOLYMERS
US5120802A (en) * 1987-12-17 1992-06-09 Allied-Signal Inc. Polycarbonate-based block copolymers and devices
US4916193A (en) * 1987-12-17 1990-04-10 Allied-Signal Inc. Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
US4920203A (en) * 1987-12-17 1990-04-24 Allied-Signal Inc. Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US5145945A (en) * 1987-12-17 1992-09-08 Allied-Signal Inc. Homopolymers and copolymers having recurring carbonate units
US5256764A (en) * 1987-12-17 1993-10-26 United States Surgical Corporation Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
US5274074A (en) * 1987-12-17 1993-12-28 United States Surgical Corporation Medical devices fabricated from homopolymers and copolymers having recurring carbonate units
JP2606260B2 (en) * 1988-03-07 1997-04-30 日本合成ゴム株式会社 Block copolymer
US5250584A (en) * 1988-08-31 1993-10-05 G-C Dental Industrial Corp. Periodontium-regenerative materials
JPH02628A (en) * 1988-12-01 1990-01-05 Daicel Chem Ind Ltd Lactone polymer of narrow molecular weight distribution and its production
CA2025893A1 (en) * 1989-01-27 1990-07-28 Hosei Shinoda Biocompatible polyester and production thereof
US5247013A (en) * 1989-01-27 1993-09-21 Mitsui Toatsu Chemicals, Inc. Biocompatible polyester and production thereof
DE4030998C2 (en) * 1989-10-04 1995-11-23 Ernst Peter Prof Dr M Strecker Percutaneous vascular filter
US5080665A (en) * 1990-07-06 1992-01-14 American Cyanamid Company Deformable, absorbable surgical device
US5352515A (en) * 1992-03-02 1994-10-04 American Cyanamid Company Coating for tissue drag reduction
US5322925A (en) * 1992-10-30 1994-06-21 United States Surgical Corporation Absorbable block copolymers and surgical articles made therefrom
US6756000B2 (en) 2000-10-03 2004-06-29 Ethicon, Inc. Process of making multifilament yarn
ES2859599T3 (en) * 2014-08-19 2021-10-04 Purac Biochem Bv Lactide Block Copolymer and Preparation Procedure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3268487A (en) * 1963-12-23 1966-08-23 Shell Oil Co Process for polymerization of lactides
US3867190A (en) * 1971-10-18 1975-02-18 American Cyanamid Co Reducing capillarity of polyglycolic acid sutures
US3784585A (en) * 1971-10-21 1974-01-08 American Cyanamid Co Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same
JPS4936597A (en) * 1972-08-07 1974-04-04

Also Published As

Publication number Publication date
DK225978A (en) 1978-11-24
AR218303A1 (en) 1980-05-30
HU180198B (en) 1983-02-28
DE2821570C2 (en) 1989-04-06
GB1604178A (en) 1981-12-02
GB1604177A (en) 1981-12-02
NL185493B (en) 1989-12-01
FI65443B (en) 1984-01-31
NO152791C (en) 1985-11-20
RO85051A (en) 1984-10-31
JPS53145899A (en) 1978-12-19
FR2391734A1 (en) 1978-12-22
CA1128231A (en) 1982-07-20
NO812911L (en) 1978-11-24
RO85051B (en) 1984-11-30
NL7805276A (en) 1978-11-27
DE2821570A1 (en) 1978-11-30
IT7849479A0 (en) 1978-05-22
EG14151A (en) 1983-12-31
SE7805831L (en) 1978-11-24
AU525415B2 (en) 1982-11-04
BR7803223A (en) 1979-01-02
ZA782039B (en) 1979-09-26
FR2391734B1 (en) 1981-06-12
BE867222A (en) 1978-11-20
IT1105550B (en) 1985-11-04
DD139794A5 (en) 1980-01-23
FI65443C (en) 1984-05-10
FI781419A (en) 1978-11-24
PL117675B1 (en) 1981-08-31
NL185493C (en) 1990-05-01
JPS6139329B2 (en) 1986-09-03
AU3512278A (en) 1979-10-18
ES470114A1 (en) 1979-09-16
PL207038A1 (en) 1979-06-04
SE444891B (en) 1986-05-20
NZ186944A (en) 1980-05-08

Similar Documents

Publication Publication Date Title
NO152791B (en) Copolymers for the preparation of sterile surgical sutures
US4243775A (en) Synthetic polyester surgical articles
US4300565A (en) Synthetic polyester surgical articles
NO160761B (en) SURGICAL, ABSORBED FOR DENSF REMUNERATIVE.
WO1993012160A1 (en) Polyhydroxy carboxylic acid and production thereof
JPH037247A (en) Phenylenebisoxy acetate and production thereof
JPH0314829A (en) Preparation of bioabsorbable polyester
CA1338650C (en) Polycarbonate random copolymer-based fiber compositions and method of melt-spinning same and device
Baimark et al. Synthesis, characterization and melt spinning of a block copolymer of L-lactide and ε-caprolactone for potential use as an absorbable monofilament surgical suture
Neumann et al. Sustainable block copolymers of poly (limonene carbonate)
US8697832B2 (en) Method for producing lactic acid polymers of high crystallinity and molecular weight
Kricheldorf et al. Polymers of carbonic acid. XVII. Polymerization of cyclobis (tetramethylene carbonate) by means of BuSnCl3 and Sn (II) 2‐ethylhexanoate
Lee et al. Synthesis and Properties of ABA Block Copoly (ester-ethers) Comprising Poly (L-lactide)(A) and Poly (oxypropylene-co-oxyethylene)(B) with Different Molecular Weights.
CN115703789B (en) Seven-membered cyclic carbonate monomer based on D-A reaction and preparation method of polycarbonate
US7884157B2 (en) Process for preparing copolymers by anionic solvent-free polymerization
CN112979928A (en) Preparation method of lignin grafted polymer microspheres
CN112028868A (en) Preparation method of glycolide
CN101519494A (en) Preparation method of high molecular weight poly-morpholine-2,5-dione derivative and preparation method of the copolymer thereof
CN106589336A (en) Complete biological degradable polyester and preparing method thereof
JP3267391B2 (en) Degradable polymer
NO146385B (en) STERILE SURGICAL SUTURES, AND PROCEDURE FOR THE PREPARATION OF SUCH SUTURES
CN112851918A (en) High-performance aliphatic polyester elastomer and preparation method thereof
JP3267392B2 (en) Degradable polymer
Hu et al. Synthesis, characterization and degradation of poly (2, 2-dimethyl trimethylene carbonate-co-ϵ-caprolactone-co-glycolide)
WO1992022599A1 (en) Copolymers based on cyclic esters and their use as surgical implants