NO152087B - DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE - Google Patents

DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE Download PDF

Info

Publication number
NO152087B
NO152087B NO792392A NO792392A NO152087B NO 152087 B NO152087 B NO 152087B NO 792392 A NO792392 A NO 792392A NO 792392 A NO792392 A NO 792392A NO 152087 B NO152087 B NO 152087B
Authority
NO
Norway
Prior art keywords
copper
solution
reaction
acetylene
chloride
Prior art date
Application number
NO792392A
Other languages
Norwegian (no)
Other versions
NO152087C (en
NO792392L (en
Inventor
Francois Prudhon
Augustin Scicluna
Original Assignee
Rhone Poulenc Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Ind filed Critical Rhone Poulenc Ind
Publication of NO792392L publication Critical patent/NO792392L/en
Publication of NO152087B publication Critical patent/NO152087B/en
Publication of NO152087C publication Critical patent/NO152087C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00119Heat exchange inside a feeding nozzle or nozzle reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Nozzles (AREA)
  • General Preparation And Processing Of Foods (AREA)

Description

Fremgangsmåte for fremstilling av triklorethylen og tetraklorethylen. Process for the production of trichlorethylene and tetrachlorethylene.

Denne oppfinnelse angår en fremgangsmåte for fremstilling av triklorethylen og tetraklorethylen ved en reaksjon This invention relates to a method for producing trichlorethylene and tetrachlorethylene by a reaction

mellom kobberklorid og acetylen. between copper chloride and acetylene.

Triklorethylen og perklorethylen er Trichlorethylene and perchlorethylene are

forbindelser som lenge har vært kjent, og compounds that have long been known, and

som fremstilles i industriell målestokk, which is produced on an industrial scale,

vanligvis med acetylen og klor som råmate-rialer. Det første trinn ved fremstilling av usually with acetylene and chlorine as raw materials. The first step in the production of

triklorethylen er fremstilling av tetraklor-ethan, som oppnåes ved addisjonsklorering trichlorethylene is the production of tetrachloroethane, which is obtained by addition chlorination

med klor. For å oppnå triklorethylen be-handles deretter tetraklorethanet med kalk with chlorine. To obtain trichloroethylene, the tetrachloroethane is then treated with lime

eller crackes termisk. Som biprodukt får or thermally cracked. As a byproduct gets

man henholdsvis kalsiumklorid eller hydrogenklorid. calcium chloride or hydrogen chloride, respectively.

Tetraklorethylen fremstilles av triklorethylen over pentaklorethan eller ved di-rekte klorering av acetylen i en gassreak-sjon ved 400—500° C. Tetrachlorethylene is produced from trichlorethylene over pentachloroethane or by direct chlorination of acetylene in a gas reaction at 400-500°C.

Det er kjent å klorere acetylen med It is known to chlorinate acetylene with

kobber(II)klorid, f. eks. fra tysk patent nr. copper(II) chloride, e.g. from German patent no.

1 011 414, som angår en fremgangsmåte for fremstilling av 1,1-diklorethylen og trans-1,2-diklorethylen ved reaksjon mellom acetylen og hydrogenklorid i nærvær av kobber (II)- og kobber (I)-ioner i et forhold på fra 1:4 til 1:9. Det er også kjent å frem-stille vinylklorid, diklorethylener, mono-vinylacetylen osv. fra acetylen, hydrogenklorid og kobberklorider. Det er felles for alle disse kjente metoder at man arbeider i sterkt sure oppløsninger og med høyt innhold av kobber(I)-ioner i forhold til kobber (II)-ioner. Det er nu overraskende funnet at klo rering av acetylen med kobber(II)klorid gir høye utbytter av triklorethylen og tetraklorethylen, hvis man i henhold til fremgangsmåten ifølge oppfinnelsen går frem på den måte at acetylen føres gjennom en reaksjonsoppløsning som inneholder kobber(II)- og kobber (I)-ioner, hvor kobber-(II)-ionene utgjør 50—100, fortrinnsvis 70 —100, molprosent av den totale kobbermengde, eventuelt klorider av andre metaller, og har en pH-verdi på 0 til 3, fortrinnsvis 1 til 2,5, ved en reaksjonstemperatur på minst 60°C. Andre trekk ved fremgangsmåten vil fremgå av den følgende beskrivelse. 1 011 414, which relates to a process for the production of 1,1-dichloroethylene and trans-1,2-dichloroethylene by reaction between acetylene and hydrogen chloride in the presence of copper (II) and copper (I) ions in a ratio of from 1:4 to 1:9. It is also known to produce vinyl chloride, dichloroethylenes, mono-vinylacetylene etc. from acetylene, hydrogen chloride and copper chlorides. It is common to all these known methods that you work in strongly acidic solutions and with a high content of copper (I) ions in relation to copper (II) ions. It has now surprisingly been found that claw reaction of acetylene with copper (II) chloride gives high yields of trichlorethylene and tetrachlorethylene, if, according to the method according to the invention, one proceeds in such a way that acetylene is passed through a reaction solution containing copper (II) and copper (I) ions , where the copper (II) ions make up 50-100, preferably 70-100, mole percent of the total amount of copper, possibly chlorides of other metals, and have a pH value of 0 to 3, preferably 1 to 2.5, at a reaction temperature of at least 60°C. Other features of the method will appear from the following description.

pH er her en verdi målt med en gass-elektrode. Ved alle pH-målinger ble en prøve av reaksjonsoppløsningen fortynnet med en like stor del destillert vann. Ofte har reaksjonsoppløsningen vært så kon-sentrert, at en fortynning har vært nød-vendig for å utføre målingen uten at opp-løsningen krystalliseres. Det er selvsagt ikke korrekt å tale om pH i en oppløsning pH is here a value measured with a gas electrode. For all pH measurements, a sample of the reaction solution was diluted with an equal amount of distilled water. Often the reaction solution has been so concentrated that a dilution has been necessary to carry out the measurement without the solution crystallising. It is obviously not correct to talk about the pH of a solution

som har så høye ionestyrker som her, men de verdier man får, er godt reproduserbare fra det ene tilfelle til det annet. which have ionic strengths as high as here, but the values obtained are well reproducible from one case to another.

I den anvendte reaksjonsoppløsning kan det enverdige kobber oksyderes til to-verdig med klor eller med hydrogenklorid og oksygen, f. eks. som beskrevet i tysk patent nr. 1 094 734 og svensk patent nr. 178 849. Muligheten til å utnytte hydrogenklorid som en klorkilde er verdifull, da hydrogenklorid opnåes som et biprodukt ved mange kloreringsreaksjoner. In the reaction solution used, the monovalent copper can be oxidized to divalent with chlorine or with hydrogen chloride and oxygen, e.g. as described in German Patent No. 1,094,734 and Swedish Patent No. 178,849. The possibility of utilizing hydrogen chloride as a source of chlorine is valuable, as hydrogen chloride is obtained as a by-product in many chlorination reactions.

Triklorethylen og tetraklorethylen dannes med en hastighet som er avhengig av oppløsningens surhet og dens innhold av kobber(II)-ioner. For samtidig å oppnå en høy reaksjonshastighet og et tilfredsstil-lende utbytte av tri- og tetraklorethylen foretrekkes å arbeide med en pH-verdi på 1—2,5 og et innhold av kobber(II)-ioner som er 70—100 molprosent av det totale kobberinnhold av reaksjonsoppløsningen. Det mest gunstige område for dannelsen av triklorethylen synes å ligge ved 70—90, og for dannelsen av tetraklorethylen ved 85—100, beregnet som molprosent kobber-(II)-ioner. Trichlorethylene and tetrachlorethylene are formed at a rate that depends on the acidity of the solution and its content of copper(II) ions. In order to simultaneously achieve a high reaction rate and a satisfactory yield of tri- and tetrachloroethylene, it is preferable to work with a pH value of 1-2.5 and a content of copper(II) ions that is 70-100 mole percent of the total copper content of the reaction solution. The most favorable range for the formation of trichlorethylene seems to lie at 70-90, and for the formation of tetrachlorethylene at 85-100, calculated as mole percent copper (II) ions.

Reaksjonen kan utføres satsvis så vel som kontinuerlig. The reaction can be carried out batchwise as well as continuously.

Den kan utføres i konvensjonell appa-ratur, f. eks. i et kar med en rører og et gassinnløp, i en kolonne eller en rørreak-tor. Reaksjonsoppløsningen innføres i en reaktor og acetylenet innføres ved en temperatur på minst 60°C, hensiktsmessig 80— 130°C, i hvilket tilfelle et trykk-kar ikke er nødvendig. Reaksjonshastigheten kan økes ved å øke temperaturen over 100°C og foreta reaksjonen i et trykk-kar. Reaksjonshastigheten kan økes ytterligere ved å tilføre acetylenet med en slik hastighet at det i reaksjonskammeret dannes et trykk sem er høyere enn det trykk mettet damp har ved reaksjonstemperaturen. Kobber (Il)kloridet reduseres til kobber (I) klorid mens acetylenet kloreres. Reaksjonsproduktene forlater reaktoren etterhvert sorn damper ettersom de dannes. It can be carried out in conventional equipment, e.g. in a vessel with a stirrer and a gas inlet, in a column or a tube reactor. The reaction solution is introduced into a reactor and the acetylene is introduced at a temperature of at least 60°C, suitably 80-130°C, in which case a pressure vessel is not necessary. The reaction rate can be increased by increasing the temperature above 100°C and carrying out the reaction in a pressure vessel. The reaction rate can be further increased by adding the acetylene at such a rate that a pressure is created in the reaction chamber that is higher than the pressure saturated steam has at the reaction temperature. The copper (II) chloride is reduced to copper (I) chloride while the acetylene is chlorinated. The reaction products eventually leave the reactor as vapors as they are formed.

Av særlig interesse er muligheten å ut-føre reaksjonen kontinuerlig. Det er da mulig å anvende det område for reaksjonen, f. eks. mellom kobber(II)-ioneinnhold på 75—85 molprosent, hvor reaksjonshastigheten til den ønskede forbindelse er høyest. For å sikre at reaksjonsforbindeisen ved en mulig avkjøling ikke krystalliserer på grunn av det utfelte kobber(I)klorid, er det hensiktsmessig å tilsette klorider av andre metaller, f. eks. av ammonium, kalium, natrium, litium, magnesium og kalsium. Disse tilsetningsstoffer har også i visse tilfelle en aktiverende virkning på reaksjonen. Tilsetningsstoffene begrenser imid-lertid mulighetene for å arbeide med me-get høye kobberkloridinnhold (mer enn 4 mol pr. liter). Det sistnevnte kan være ønskelig, når man arbeider kontinuerlig og i det område hvor kobber(II)-ioneinnhol-det i forhold til kobber(I)-ioneinnholdet er så høyt at det dannede kobber (I) klorid holdes i oppløsning ved tilstedeværelsen av kloridioner. Det er således viktig for teknisk gjennomføring av reaksjonen at klorid-innholdet er høyt. Hvilket kation man an-vender for å oppnå dette synes å være av mindre viktighet. Of particular interest is the possibility of carrying out the reaction continuously. It is then possible to use that area for the reaction, e.g. between a copper (II) ion content of 75-85 mole percent, where the reaction rate of the desired compound is highest. To ensure that the reaction compound does not crystallize due to the precipitated copper(I) chloride during possible cooling, it is appropriate to add chlorides of other metals, e.g. of ammonium, potassium, sodium, lithium, magnesium and calcium. These additives also in certain cases have an activating effect on the reaction. However, the additives limit the possibilities for working with very high copper chloride contents (more than 4 mol per litre). The latter may be desirable, when working continuously and in the area where the copper (II) ion content in relation to the copper (I) ion content is so high that the formed copper (I) chloride is kept in solution by the presence of chloride ions . It is thus important for the technical implementation of the reaction that the chloride content is high. Which cation is used to achieve this seems to be of less importance.

I det følgende er beskrevet noen ek-sempler på utførelse av reaksjonen. De føl-gende forkortelser er anvendt for å angi de dannede reaksjonsprodukter: tri = triklorethylen tetra = tetraklorethylen 1,1- = 1,1-diklorethylen cis- = cis-l,2-diklorethylen trans- = trans-l,2-diklorethylen In the following, some examples of carrying out the reaction are described. The following abbreviations are used to indicate the reaction products formed: tri = trichloroethylene tetra = tetrachloroethylene 1,1- = 1,1-dichloroethylene cis- = cis-1,2-dichloroethylene trans- = trans-1,2-dichloroethylene

Eksempel 1. Example 1.

500 ml oppløsning inneholdende 255 g (= 1,5 mol) CuCl2 . 2H20 og 102 g (= 1,5 mol) MgCl2 . 6H2b innføres i en en-liter retorte utstyrt med rører, termometer, gassinnløpsrør og kjøler. Retorten ble an-brakt i et varmebad for å holde temperaturen på 98°C under reaksjonen. Karbon-dioksyd ble innført for å drive luft ut av apparatet, hvoretter reaksjonen ble igang-satt ved innføring av acetylen (10 liter pr. time). Oppløsningens pH-verdi var 2,3 ved starten (pH-verdien falt til 0,9 under reaksjonen). De dannede reaksjonsprodukter og det destillerte vann ble oppsamlet i et rør i et kjølebad ved h-60°C. Prøverørene ble utbyttet hvert 15. eller 30. minutt og reaksjonsproduktene ble veiet og analysert ved hjelp av en gasskromatograf og et IR-spektrofotometer. Resultatene er angitt i den følgende tabell. 500 ml solution containing 255 g (= 1.5 mol) CuCl2. 2H 2 O and 102 g (= 1.5 mol) MgCl 2 . 6H2b is introduced into a one-liter retort equipped with stirrer, thermometer, gas inlet tube and cooler. The retort was placed in a heat bath to maintain the temperature at 98°C during the reaction. Carbon dioxide was introduced to drive air out of the apparatus, after which the reaction was started by introducing acetylene (10 liters per hour). The pH value of the solution was 2.3 at the start (the pH value fell to 0.9 during the reaction). The formed reaction products and the distilled water were collected in a tube in a cooling bath at h-60°C. The test tubes were replaced every 15 or 30 minutes and the reaction products were weighed and analyzed using a gas chromatograph and an IR spectrophotometer. The results are shown in the following table.

Eksempel 2. Example 2.

Dette forsøk ble utført i samme apparat og på samme måte som i eksempel 1, men reaksjonsoppløsningen inneholdt bare 510 g (= 3 mol) CuCl, . 2H.,0. pH-verdien var 1,7 ved starten. Acetylen ble innført med en hastighet på 20 liter pr. time. For-søket kunne bare fortsettes til en reduksjonsgrad på 40 pst. basert på tilført mengde CuCl2, da CuCl ved denne reduksjonsgrad begynner å utfelles. This experiment was carried out in the same apparatus and in the same way as in example 1, but the reaction solution contained only 510 g (= 3 mol) of CuCl, . 2H.,0. The pH value was 1.7 at the start. Acetylene was introduced at a rate of 20 liters per hour. The trial could only be continued up to a reduction rate of 40 per cent based on the added amount of CuCl2, as CuCl begins to precipitate at this reduction rate.

Den totale omdannelse av acetylen under forsøket var 45%, og utbyttet av triklorethylen var 50% og av tetraklorethylen 8%. The total conversion of acetylene during the experiment was 45%, and the yield of trichlorethylene was 50% and of tetrachlorethylene 8%.

Eksempel 3. Example 3.

Dette forsøk ble utført i en sylindrisk This experiment was carried out in a cylindrical

beholder med en gassfordeler i bunnen gjennom hvilken acetylenet ble tilført, og de resulterende gasser ble ført fra toppen av beholderen til en kondensator hvor reaksjonsproduktene ble oppsamlet. Etter container with a gas distributor at the bottom through which the acetylene was supplied, and the resulting gases were led from the top of the container to a condenser where the reaction products were collected. After

kondensatoren var det tilknyttet et mano-meter og en reduksjonsventil. I beholderen ble innført 200 ml vannoppløsning inneholdende 3 mol kobberklorid og 6 mol litium-klorid pr. liter. 7 molprosent av den totale kobbermengde var til stede som Cu (I) og pH-verdien av oppløsningen var 1,8. Ved 120°C og et absolutt trykk på 2,4 atmosfæ-rer ble acetylen innført i oppløsningen, a manometer and a reducing valve were connected to the condenser. 200 ml of water solution containing 3 mol of copper chloride and 6 mol of lithium chloride per litres. 7 mole percent of the total amount of copper was present as Cu (I) and the pH value of the solution was 1.8. At 120°C and an absolute pressure of 2.4 atmospheres, acetylene was introduced into the solution,

reduksjonsventilen var regulert slik at den avga 1 liter gass pr. time fra apparatet. Etter én time hadde man fått 8,5 g produkt i kondensatoren. Sammensetningen var 43 pst. triklorethylen, 2 pst. tetraklorethylen og 55 pst. trans-l,2-diklorethylen. Ved et tilsvarende forsøk ved 90°C og atmosfærisk trykk fikk man en mengde på 3,3 g produkt the reduction valve was regulated so that it emitted 1 liter of gas per hour from the device. After one hour, 8.5 g of product had been obtained in the condenser. The composition was 43% trichlorethylene, 2% tetrachlorethylene and 55% trans-1,2-dichloroethylene. In a similar experiment at 90°C and atmospheric pressure, a quantity of 3.3 g of product was obtained

med en sammensetning på henholdsvis 59,3, 3,7 og 37,0 pst. with a composition of 59.3, 3.7 and 37.0 per cent respectively.

Eksempel 4. Example 4.

Dette forsøk ble utført med kontinuerlig tilførsel og fjerning av reaksjonsoppløs-ningen. Reaksjonskaret besto av et glass-rør med en lengde på 660 mm og en tyk-kelse på 50 mm og inneholdende en varme-spiral. Acetylenet ble tilført gjennom en gassfordeler i den nedre del av karet og reaksjonsproduktene fikk destillere av i den øvre del av røret. Den friske reaksjonsopp-løsning ble tilført ved bunnen, og den rea-gerte oppløsning strømmet ut gjennom et overløp midt på røret. Ved å regulere til-førselshastigheten for oppløsningen og acetylenmengden (5 liter pr. time) var det mulig å oppnå 500 ml av oppløsningen med en relativt konstant reduksjonsgrad i karet. Konsentrasjonen av oppløsningen var 3 mol CuCl2 pr. liter og 6 mol LiCl pr. liter. pH-verdien var 2,3. This experiment was carried out with continuous supply and removal of the reaction solution. The reaction vessel consisted of a glass tube with a length of 660 mm and a thickness of 50 mm and containing a heating coil. The acetylene was supplied through a gas distributor in the lower part of the vessel and the reaction products were allowed to distill off in the upper part of the tube. The fresh reaction solution was supplied at the bottom, and the reacted solution flowed out through an overflow in the middle of the tube. By regulating the supply rate for the solution and the amount of acetylene (5 liters per hour) it was possible to obtain 500 ml of the solution with a relatively constant degree of reduction in the vessel. The concentration of the solution was 3 mol CuCl2 per liter and 6 mol LiCl per litres. The pH value was 2.3.

Resultatene er angitt i den følgende tabell: The results are shown in the following table:

Omdannelsen av acetylen under forsøket var ca. 45% og utbyttet av triklorethylen 66% og av tetraklorethylen 10%. The conversion of acetylene during the experiment was approx. 45% and the yield of trichlorethylene 66% and of tetrachlorethylene 10%.

Omdannelsen av acetylen under forsøket var 70% og utbyttet av triklorethylen 67% og tetraklorethylen 27%. The conversion of acetylene during the experiment was 70% and the yield of trichlorethylene 67% and tetrachlorethylene 27%.

Eksempel 6. Example 6.

Dette forsøk ble utført som i eksempel This experiment was carried out as in the example

3, men overløpet var flyttet høyere opp slik 3, but the spillway had been moved higher up like this

at reaksjonskaret inneholdt 750 ml oppløs-ning inneholdende 6 mol CuCl2 pr. liter. pH-verdien var 2,3. that the reaction vessel contained 750 ml of solution containing 6 mol of CuCl2 per litres. The pH value was 2.3.

Omdannelsen av acetylen under forsøket var 40% og utbyttet av triklorethylen 65% og av tetraklorethylen 19%. I det dannede reaksjonsprodukt atskilles tri- og tetraklorethylen lett ved destillasjon. The conversion of acetylene during the experiment was 40% and the yield of trichlorethylene 65% and of tetrachlorethylene 19%. In the reaction product formed, tri- and tetrachlorethylene are easily separated by distillation.

Eksempel 7. Example 7.

Ved dette forsøk var volumet av reaksjonskaret ca. 8 liter, og apparatet var for-øvrig prinsipielt det samme som i eksemp-lene 4—6. Den kontinuerlig tilførte vann-oppløsning inneholdt 6 mol kobberklorid pr. liter, idet 8 molprosent av den totale kobbermengde var til stede som Cu (I). pH-verdien av oppløsningen var 1,8 og dens temperatur 100°C. Acetylen ble tilført med en hastighet på 20 normalliter pr. time og ble omdannet til et produkt bestående av 81 pst. (etter vekt) triklorethylen, 12 pst. tetraklorethylen og 7 pst. trans-diklorethylen. Omdannelsen av acetylen var 97 pst. In this experiment, the volume of the reaction vessel was approx. 8 litres, and the apparatus was otherwise in principle the same as in examples 4-6. The continuously supplied water solution contained 6 mol of copper chloride per litres, 8 mole percent of the total amount of copper being present as Cu (I). The pH value of the solution was 1.8 and its temperature 100°C. Acetylene was supplied at a rate of 20 standard liters per hour and was converted to a product consisting of 81 percent (by weight) trichlorethylene, 12 percent tetrachlorethylene and 7 percent trans-dichloroethylene. The conversion of acetylene was 97 per cent.

Eksempel 8. Example 8.

Forsøket ble utført kontinuerlig som i eksempel 7, men oppløsningen inneholdt 4,5 mol kobberklorid og 3 mol litiumklo-rid pr. liter. Mengden av Cu (I) var 15 molprosent av den totale kobbermengde, opp-løsningens pH-verdi var 1,8 og dens temperatur 100°C. 20 normalliter pr. time acetylen ble praktisk talt fullstendig omdannet til et produkt bestående av 76 pst. (etter vekt) triklorethylen, 12 pst. tetraklorethylen og 12 pst. trans-diklorethylen, i alt 114 g pr. time. Den katalyserende oppløs-ning ble deretter pumpet til en oksyda-sjonskolonne hvor den ble oksydert med en blanding av ca. 60 normalliter HCl-gass og 30 normalliter oksygen pr. time. The experiment was carried out continuously as in example 7, but the solution contained 4.5 mol copper chloride and 3 mol lithium chloride per litres. The amount of Cu (I) was 15 mole percent of the total amount of copper, the solution's pH value was 1.8 and its temperature 100°C. 20 standard liters per hour acetylene was practically completely converted to a product consisting of 76 per cent (by weight) trichlorethylene, 12 per cent tetrachlorethylene and 12 per cent trans-dichloroethylene, a total of 114 g per hour. The catalytic solution was then pumped to an oxidation column where it was oxidized with a mixture of approx. 60 standard liters of HCl gas and 30 standard liters of oxygen per hour.

Fremgangsmåten kan utføres i større målestokk i et apparat som skjematisk er vist på tegningen. The method can be carried out on a larger scale in an apparatus which is schematically shown in the drawing.

Prinsipielt består apparatet av en reaktor 1 med et innløp i bunnen for klorid-oppløsningen fra en beholder 3a, et innløp for acetylen og et overløp for oppløsnin-gen. Reaksjonsproduktet uttømmes på toppen av reaktoren sammen med uomsatt gass og oppsamles i en kondensator 5. Den brukte oppløsning føres til en beholder 6b fra hvilken den pumpes ved hjelp av en pumpe 4b til en annen beholder 3b. Kobber (I)-ionene i den brukte oppløsning oksyderes med HC1 og O, i en oksydasjons-kolonne 2 som er utstyrt med med et inn-løp i bunnen for oppløsningen fra beholderen 3b og et overløp fra hvilket oppløs-ningen strømmer til en beholder 6a, og oppløsningen pumpes derfra ved hjelp av en pumpe 4a til beholderen 3a. De oksyde-rende gasser (HC1 og 02) tilføres til kolon-nen i bunnen og unnslipper på toppen. In principle, the apparatus consists of a reactor 1 with an inlet at the bottom for the chloride solution from a container 3a, an inlet for acetylene and an overflow for the solution. The reaction product is discharged at the top of the reactor together with unreacted gas and collected in a condenser 5. The spent solution is led to a container 6b from which it is pumped by means of a pump 4b to another container 3b. The copper (I) ions in the used solution are oxidized with HC1 and O, in an oxidation column 2 which is equipped with an inlet at the bottom for the solution from the container 3b and an overflow from which the solution flows to a container 6a, and the solution is pumped from there by means of a pump 4a to the container 3a. The oxidizing gases (HC1 and O2) are supplied to the column at the bottom and escape at the top.

Istedenfor å anvende en separat oksy-dasjonskolonne kan reoksydasjonen utfø-res i en reaktor utstyrt med atskilte inn-løp for acetylen og blandingen av oksygen og hydrogenklorid. Instead of using a separate oxidation column, the reoxidation can be carried out in a reactor equipped with separate inlets for acetylene and the mixture of oxygen and hydrogen chloride.

Claims (4)

1. Fremgangsmåte for fremstilling av triklorethylen og tetraklorethylen ved en reaksjon mellom acetylen og kobberklorid i en vannoppløsning, karakterisert ved at acetylen føres gjennom en reak-sjonsoppløsning som inneholder kobber-(II)- og kobber (I)-ioner, hvor kobber (II)-ionene utgjør 50—100, fortrinnsvis 70—100, molprosent av den totale kobbermengde, eventuelt klorider av andre metaller, og har en pH-verdi på 0 til 3, fortrinnsvis 1 til« 2,5, ved en reaksjonstemperatur på minst 60°C.1. Process for the production of trichlorethylene and tetrachlorethylene by a reaction between acetylene and copper chloride in a water solution, characterized in that acetylene is passed through a reaction solution containing copper (II) and copper (I) ions, where copper (II ) ions make up 50-100, preferably 70-100, mole percent of the total amount of copper, possibly chlorides of other metals, and have a pH value of 0 to 3, preferably 1 to "2.5, at a reaction temperature of at least 60 °C. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at det totale kloridioninnhold i oppløsningen er fra 4 gramatomer pr. liter opp til en oppløsning som er mettet ved reaksjonstemperaturen.2. Method according to claim 1, characterized in that the total chloride ion content in the solution is from 4 gram atoms per liters up to a solution which is saturated at the reaction temperature. 3. Fremgangsmåte ifølge påstand 1— 2, karakterisert ved at oppløsnin-gen innholder vannoppløselige klorider av kalium, lithium, kalsium, magnesium, alu-minium, sink eller en blanding derav.3. Method according to claims 1-2, characterized in that the solution contains water-soluble chlorides of potassium, lithium, calcium, magnesium, aluminium, zinc or a mixture thereof. 4. Fremgangsmåte ifølge en av de foregående påstander, karakterisert v e d at oppløsningen også inneholder am-moniumklorid.4. Method according to one of the preceding claims, characterized in that the solution also contains ammonium chloride.
NO792392A 1978-07-21 1979-07-19 DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE NO152087C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7821658A FR2431321A1 (en) 1978-07-21 1978-07-21 PROCESS FOR THE TREATMENT OF SUBSTANCES HAVING DIFFERENT PHASES, SUCH AS TREATMENT OF SUBSTANCES IN LIQUID, SEMI-LIQUID, OR PASTE FORM, WITH ANOTHER NOTABLY GASEOUS PHASE

Publications (3)

Publication Number Publication Date
NO792392L NO792392L (en) 1980-01-22
NO152087B true NO152087B (en) 1985-04-22
NO152087C NO152087C (en) 1985-07-31

Family

ID=9211028

Family Applications (1)

Application Number Title Priority Date Filing Date
NO792392A NO152087C (en) 1978-07-21 1979-07-19 DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE

Country Status (18)

Country Link
EP (1) EP0007846B1 (en)
JP (1) JPS5520696A (en)
AR (1) AR225419A1 (en)
AT (1) ATE901T1 (en)
AU (1) AU530971B2 (en)
BR (1) BR7904641A (en)
CA (1) CA1132850A (en)
DE (1) DE2962620D1 (en)
DK (1) DK150785C (en)
ES (1) ES482686A1 (en)
FI (1) FI72709C (en)
FR (1) FR2431321A1 (en)
IE (1) IE49618B1 (en)
IN (1) IN152322B (en)
MA (1) MA18535A1 (en)
NO (1) NO152087C (en)
PT (1) PT69949A (en)
ZA (1) ZA793747B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2488525A1 (en) * 1980-08-14 1982-02-19 Rhone Poulenc Ind Mixing of two fluids present as different phases - esp. for heat or mass transfer between gas and liq.
FR2490619A1 (en) * 1980-09-24 1982-03-26 Rhone Poulenc Ind PROCESS FOR TREATING LIQUID MATERIAL CONDUCTING SOLID WASTE BY ACTION OF A FLUID PHASE AND AT LEAST ONE GAS PHASE
FR2501525A1 (en) * 1981-03-13 1982-09-17 Rhone Poulenc Spec Chim DEVICE FOR CONTACTING SUBSTANCES IN DIFFERENT PHASES, AT LEAST ONE GAS BEING
FR2508818A1 (en) * 1981-07-06 1983-01-07 Rhone Poulenc Chim Base METHOD FOR THE HOMOGENEOUS THERMAL AND / OR CHEMICAL TREATMENT OF A FLUID, AND APPLICATION TO POLYPHOSPHATES
FR2508888A1 (en) * 1981-07-06 1983-01-07 Rhone Poulenc Chim Base NOVEL SODIUM ORTHOPHOSPHATE, PROCESS FOR OBTAINING SAME
FR2508887A1 (en) * 1981-07-06 1983-01-07 Rhone Poulenc Chim Base NOVEL SODIUM TRIPOLYPHOSPHATE, PROCESS FOR OBTAINING SAME AND APPLICATIONS
EP0101347B1 (en) * 1982-07-27 1986-09-24 Rhone-Poulenc Chimie De Base Sodium tripolyphosphate having a high hydration rate, and detergent composition containing it
FR2531059A1 (en) * 1982-07-27 1984-02-03 Rhone Poulenc Chim Base High hydration rate sodium tripolyphosphate
US4499833A (en) * 1982-12-20 1985-02-19 Rockwell International Corporation Thermal conversion of wastes
US4579069A (en) * 1983-02-17 1986-04-01 Rockwell International Corporation Volume reduction of low-level radioactive wastes
FR2551183B1 (en) * 1983-05-20 1988-05-13 Rhone Poulenc Chim Base OWN COMBUSTION PROCESS AND DEVICE APPLICABLE IN PARTICULAR TO THE BURNING OF HEAVY FUELS
FR2546077B1 (en) * 1983-05-20 1988-05-06 Rhone Poulenc Chim Base HIGH TEMPERATURE REACTION DEVICE
GB2177618B (en) * 1985-07-13 1989-07-19 Adrian Philip Boyes Gas/liquid contacting
FR2587915B1 (en) * 1985-09-27 1987-11-27 Omya Sa DEVICE FOR CONTACTING FLUIDS IN THE FORM OF DIFFERENT PHASES
JPS62179984U (en) * 1986-05-02 1987-11-14
US4767543A (en) * 1986-11-13 1988-08-30 Universite De Sherbrooke Oxidation of wastewaters
JPH0540769Y2 (en) * 1987-11-16 1993-10-15
EP0545757A1 (en) * 1991-11-29 1993-06-09 Rhone-Poulenc Chimie Process for the preparation of perovskites on the basis of manganese or chromium and perovskites so obtained
FR2684659A1 (en) * 1991-12-06 1993-06-11 Rhone Poulenc Chimie Glass or glass-ceramic precursor and process for its preparation
FR2698156B1 (en) * 1992-11-16 1995-01-27 Rhone Poulenc Chimie Process for the thermal treatment of an effluent comprising polluting organic materials or an inorganic compound.
FR2718371B1 (en) * 1994-04-08 1996-05-03 Rhone Poulenc Chimie Reduction catalysts for nitrogen oxides based on spinels.
FR2720296B1 (en) 1994-05-27 1996-07-12 Rhone Poulenc Chimie Compounds based on alumina, cerium oxide and zirconium oxide with high reducibility, process for their preparation and their use in the preparation of catalysts.
FR2720295B1 (en) 1994-05-27 1996-07-12 Rhone Poulenc Chimie Dispersible compound based on a rare earth, colloidal suspension obtained from this compound, their methods of preparation and use in the manufacture of catalysts.
FR2826016B1 (en) 2001-06-13 2004-07-23 Rhodia Elect & Catalysis COMPOUND BASED ON AN ALKALINE EARTH, SULFUR AND ALUMINUM, GALLIUM OR INDIUM, METHOD FOR PREPARING SAME AND USE THEREOF AS LUMINOPHORE
FR2855169B1 (en) 2003-05-23 2006-06-16 Rhodia Elect & Catalysis PRECURSOR COMPOUNDS OF ALKALINO-EARTH OR RARE EARTH ALUMINATES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS A LUMINOPHORE PRECURSOR, IN PARTICULAR
CN109357270A (en) * 2018-11-21 2019-02-19 贵州智慧能源科技有限公司 A kind of device being capable of handling complex component sewage
CN109357288A (en) * 2018-11-21 2019-02-19 贵州智慧能源科技有限公司 It is capable of handling the rocket engine burner and power drive unit of complex component
WO2021111001A1 (en) 2019-12-06 2021-06-10 Solvay Sa Aluminates and red emitters in a greenhouse film for plant growth
WO2021110999A1 (en) 2019-12-06 2021-06-10 Solvay Sa Use of aluminates in a greenhouse film for plant growth

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049365B (en) * 1955-07-01 1959-01-29 Badische Anilin- S. Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein Process and device for converting gaseous or vaporous and / or liquid substances, optionally together with solid, finely divided substances
FR1179472A (en) * 1956-08-06 1959-05-25 Koppers Gmbh Heinrich Method and device for making crackings
FR1292258A (en) * 1961-03-20 1962-05-04 Black Sivalls & Bryson Inc Device for mixing fluids, in particular fuel and air
BE790854A (en) * 1972-01-27 1973-02-15 Venot Pic Sa VERTICAL STATIC INCINERATOR FOR LIQUID SLUDGE
FR2257326B1 (en) * 1973-06-19 1976-05-28 Rhone Progil
US3906873A (en) * 1974-04-19 1975-09-23 Standard Products Co Waste converter
FR2406610A1 (en) * 1977-10-20 1979-05-18 Rhone Poulenc Ind Treating waste water contg. oxidisable material, esp. sulphur derivs. - by continuous single-stage process comprising simultaneous atomisation and oxidation in oxidising gas vortex

Also Published As

Publication number Publication date
AR225419A1 (en) 1982-03-31
EP0007846A1 (en) 1980-02-06
FR2431321B1 (en) 1981-03-20
JPS6132045B2 (en) 1986-07-24
BR7904641A (en) 1980-04-15
IE791379L (en) 1980-01-21
DK150785B (en) 1987-06-22
FI72709B (en) 1987-03-31
NO152087C (en) 1985-07-31
IN152322B (en) 1983-12-17
DE2962620D1 (en) 1982-06-09
AU530971B2 (en) 1983-08-04
CA1132850A (en) 1982-10-05
EP0007846B1 (en) 1982-04-28
DK302179A (en) 1980-01-22
IE49618B1 (en) 1985-11-13
ZA793747B (en) 1980-08-27
ES482686A1 (en) 1980-04-16
DK150785C (en) 1988-01-18
ATE901T1 (en) 1982-05-15
FI792279A (en) 1980-01-22
FR2431321A1 (en) 1980-02-15
PT69949A (en) 1979-08-01
NO792392L (en) 1980-01-22
FI72709C (en) 1987-07-10
MA18535A1 (en) 1980-04-01
AU4867279A (en) 1980-01-24
JPS5520696A (en) 1980-02-14

Similar Documents

Publication Publication Date Title
NO152087B (en) DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE
US5486627A (en) Method for producing epoxides
DK151006B (en) METHOD FOR PREPARING 1,2-DICHLORETHAN IN A LIQUID MEDIUM
US3304337A (en) Ethane chlorination
US3455797A (en) Procedure for the preparation of olefin oxides
US3607027A (en) Process for preparing chlorine dioxide
US3516790A (en) Process and apparatus for preparing chlorine dioxide
US2377669A (en) Perchlorination process
US4233280A (en) Manufacture of anhydrous hydrogen chloride by combusting chlorine-containing organic substances
US3065280A (en) Production of methyl chloroform
US3059035A (en) Continuous process for producing methyl chloroform
US3301910A (en) Production of trichloroethylene and tetrachloroethylene
US2449233A (en) Processes for the preparation of fluorine-containing cyclic hydrocarbons
JPH0819015B2 (en) Recovery of ethylene, chlorine and hydrogen chloride from vent waste gas of direct chlorination reactor
HU191194B (en) Process for producing of 1,2 diclore-ethan
US1510790A (en) Manufacture of chlorhydrins
NO152844B (en) PROCEDURE FOR THE PREPARATION OF THIENOPYRIDINE DERIVATIVES
US2675413A (en) Production of unsaturated halides by exchange of halogen atoms
US3968179A (en) Selective preparation of 1,2-dichloroethane
US4774373A (en) Process for making 1,2-dichloroethane
US2863924A (en) Method of producing polychlorinated acetaldehydes
US3047642A (en) Halogenation intiator
US2174492A (en) Preparation of alkane sulphonyl chlorides
US2942947A (en) Process for the preparation of perchloryl fluoride
SU510990A3 (en) The method of purification of 1,2-dichloroethane from trichlorethylene