NO152087B - DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE - Google Patents
DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE Download PDFInfo
- Publication number
- NO152087B NO152087B NO792392A NO792392A NO152087B NO 152087 B NO152087 B NO 152087B NO 792392 A NO792392 A NO 792392A NO 792392 A NO792392 A NO 792392A NO 152087 B NO152087 B NO 152087B
- Authority
- NO
- Norway
- Prior art keywords
- copper
- solution
- reaction
- acetylene
- chloride
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title 1
- 239000000126 substance Substances 0.000 title 1
- 238000006243 chemical reaction Methods 0.000 claims description 43
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 28
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 28
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims description 20
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 claims description 18
- 229950011008 tetrachloroethylene Drugs 0.000 claims description 18
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 17
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- -1 copper (I) ions Chemical class 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 150000001805 chlorine compounds Chemical class 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 235000019270 ammonium chloride Nutrition 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000000243 solution Substances 0.000 description 35
- 239000007789 gas Substances 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000007795 chemical reaction product Substances 0.000 description 8
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 8
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 8
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 7
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 5
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 5
- KFUSEUYYWQURPO-OWOJBTEDSA-N trans-1,2-dichloroethene Chemical group Cl\C=C\Cl KFUSEUYYWQURPO-OWOJBTEDSA-N 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229960002415 trichloroethylene Drugs 0.000 description 3
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical group ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- KFUSEUYYWQURPO-UHFFFAOYSA-N 1,2-dichloroethene Chemical class ClC=CCl KFUSEUYYWQURPO-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- WFYPICNXBKQZGB-UHFFFAOYSA-N butenyne Chemical group C=CC#C WFYPICNXBKQZGB-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- KFUSEUYYWQURPO-UPHRSURJSA-N cis-1,2-dichloroethene Chemical group Cl\C=C/Cl KFUSEUYYWQURPO-UPHRSURJSA-N 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- BNIXVQGCZULYKV-UHFFFAOYSA-N pentachloroethane Chemical compound ClC(Cl)C(Cl)(Cl)Cl BNIXVQGCZULYKV-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/001—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/26—Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00087—Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
- B01J2219/00094—Jackets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00074—Controlling the temperature by indirect heating or cooling employing heat exchange fluids
- B01J2219/00119—Heat exchange inside a feeding nozzle or nozzle reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00162—Controlling or regulating processes controlling the pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00164—Controlling or regulating processes controlling the flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/40—Valorisation of by-products of wastewater, sewage or sludge processing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Nozzles (AREA)
- General Preparation And Processing Of Foods (AREA)
Description
Fremgangsmåte for fremstilling av triklorethylen og tetraklorethylen. Process for the production of trichlorethylene and tetrachlorethylene.
Denne oppfinnelse angår en fremgangsmåte for fremstilling av triklorethylen og tetraklorethylen ved en reaksjon This invention relates to a method for producing trichlorethylene and tetrachlorethylene by a reaction
mellom kobberklorid og acetylen. between copper chloride and acetylene.
Triklorethylen og perklorethylen er Trichlorethylene and perchlorethylene are
forbindelser som lenge har vært kjent, og compounds that have long been known, and
som fremstilles i industriell målestokk, which is produced on an industrial scale,
vanligvis med acetylen og klor som råmate-rialer. Det første trinn ved fremstilling av usually with acetylene and chlorine as raw materials. The first step in the production of
triklorethylen er fremstilling av tetraklor-ethan, som oppnåes ved addisjonsklorering trichlorethylene is the production of tetrachloroethane, which is obtained by addition chlorination
med klor. For å oppnå triklorethylen be-handles deretter tetraklorethanet med kalk with chlorine. To obtain trichloroethylene, the tetrachloroethane is then treated with lime
eller crackes termisk. Som biprodukt får or thermally cracked. As a byproduct gets
man henholdsvis kalsiumklorid eller hydrogenklorid. calcium chloride or hydrogen chloride, respectively.
Tetraklorethylen fremstilles av triklorethylen over pentaklorethan eller ved di-rekte klorering av acetylen i en gassreak-sjon ved 400—500° C. Tetrachlorethylene is produced from trichlorethylene over pentachloroethane or by direct chlorination of acetylene in a gas reaction at 400-500°C.
Det er kjent å klorere acetylen med It is known to chlorinate acetylene with
kobber(II)klorid, f. eks. fra tysk patent nr. copper(II) chloride, e.g. from German patent no.
1 011 414, som angår en fremgangsmåte for fremstilling av 1,1-diklorethylen og trans-1,2-diklorethylen ved reaksjon mellom acetylen og hydrogenklorid i nærvær av kobber (II)- og kobber (I)-ioner i et forhold på fra 1:4 til 1:9. Det er også kjent å frem-stille vinylklorid, diklorethylener, mono-vinylacetylen osv. fra acetylen, hydrogenklorid og kobberklorider. Det er felles for alle disse kjente metoder at man arbeider i sterkt sure oppløsninger og med høyt innhold av kobber(I)-ioner i forhold til kobber (II)-ioner. Det er nu overraskende funnet at klo rering av acetylen med kobber(II)klorid gir høye utbytter av triklorethylen og tetraklorethylen, hvis man i henhold til fremgangsmåten ifølge oppfinnelsen går frem på den måte at acetylen føres gjennom en reaksjonsoppløsning som inneholder kobber(II)- og kobber (I)-ioner, hvor kobber-(II)-ionene utgjør 50—100, fortrinnsvis 70 —100, molprosent av den totale kobbermengde, eventuelt klorider av andre metaller, og har en pH-verdi på 0 til 3, fortrinnsvis 1 til 2,5, ved en reaksjonstemperatur på minst 60°C. Andre trekk ved fremgangsmåten vil fremgå av den følgende beskrivelse. 1 011 414, which relates to a process for the production of 1,1-dichloroethylene and trans-1,2-dichloroethylene by reaction between acetylene and hydrogen chloride in the presence of copper (II) and copper (I) ions in a ratio of from 1:4 to 1:9. It is also known to produce vinyl chloride, dichloroethylenes, mono-vinylacetylene etc. from acetylene, hydrogen chloride and copper chlorides. It is common to all these known methods that you work in strongly acidic solutions and with a high content of copper (I) ions in relation to copper (II) ions. It has now surprisingly been found that claw reaction of acetylene with copper (II) chloride gives high yields of trichlorethylene and tetrachlorethylene, if, according to the method according to the invention, one proceeds in such a way that acetylene is passed through a reaction solution containing copper (II) and copper (I) ions , where the copper (II) ions make up 50-100, preferably 70-100, mole percent of the total amount of copper, possibly chlorides of other metals, and have a pH value of 0 to 3, preferably 1 to 2.5, at a reaction temperature of at least 60°C. Other features of the method will appear from the following description.
pH er her en verdi målt med en gass-elektrode. Ved alle pH-målinger ble en prøve av reaksjonsoppløsningen fortynnet med en like stor del destillert vann. Ofte har reaksjonsoppløsningen vært så kon-sentrert, at en fortynning har vært nød-vendig for å utføre målingen uten at opp-løsningen krystalliseres. Det er selvsagt ikke korrekt å tale om pH i en oppløsning pH is here a value measured with a gas electrode. For all pH measurements, a sample of the reaction solution was diluted with an equal amount of distilled water. Often the reaction solution has been so concentrated that a dilution has been necessary to carry out the measurement without the solution crystallising. It is obviously not correct to talk about the pH of a solution
som har så høye ionestyrker som her, men de verdier man får, er godt reproduserbare fra det ene tilfelle til det annet. which have ionic strengths as high as here, but the values obtained are well reproducible from one case to another.
I den anvendte reaksjonsoppløsning kan det enverdige kobber oksyderes til to-verdig med klor eller med hydrogenklorid og oksygen, f. eks. som beskrevet i tysk patent nr. 1 094 734 og svensk patent nr. 178 849. Muligheten til å utnytte hydrogenklorid som en klorkilde er verdifull, da hydrogenklorid opnåes som et biprodukt ved mange kloreringsreaksjoner. In the reaction solution used, the monovalent copper can be oxidized to divalent with chlorine or with hydrogen chloride and oxygen, e.g. as described in German Patent No. 1,094,734 and Swedish Patent No. 178,849. The possibility of utilizing hydrogen chloride as a source of chlorine is valuable, as hydrogen chloride is obtained as a by-product in many chlorination reactions.
Triklorethylen og tetraklorethylen dannes med en hastighet som er avhengig av oppløsningens surhet og dens innhold av kobber(II)-ioner. For samtidig å oppnå en høy reaksjonshastighet og et tilfredsstil-lende utbytte av tri- og tetraklorethylen foretrekkes å arbeide med en pH-verdi på 1—2,5 og et innhold av kobber(II)-ioner som er 70—100 molprosent av det totale kobberinnhold av reaksjonsoppløsningen. Det mest gunstige område for dannelsen av triklorethylen synes å ligge ved 70—90, og for dannelsen av tetraklorethylen ved 85—100, beregnet som molprosent kobber-(II)-ioner. Trichlorethylene and tetrachlorethylene are formed at a rate that depends on the acidity of the solution and its content of copper(II) ions. In order to simultaneously achieve a high reaction rate and a satisfactory yield of tri- and tetrachloroethylene, it is preferable to work with a pH value of 1-2.5 and a content of copper(II) ions that is 70-100 mole percent of the total copper content of the reaction solution. The most favorable range for the formation of trichlorethylene seems to lie at 70-90, and for the formation of tetrachlorethylene at 85-100, calculated as mole percent copper (II) ions.
Reaksjonen kan utføres satsvis så vel som kontinuerlig. The reaction can be carried out batchwise as well as continuously.
Den kan utføres i konvensjonell appa-ratur, f. eks. i et kar med en rører og et gassinnløp, i en kolonne eller en rørreak-tor. Reaksjonsoppløsningen innføres i en reaktor og acetylenet innføres ved en temperatur på minst 60°C, hensiktsmessig 80— 130°C, i hvilket tilfelle et trykk-kar ikke er nødvendig. Reaksjonshastigheten kan økes ved å øke temperaturen over 100°C og foreta reaksjonen i et trykk-kar. Reaksjonshastigheten kan økes ytterligere ved å tilføre acetylenet med en slik hastighet at det i reaksjonskammeret dannes et trykk sem er høyere enn det trykk mettet damp har ved reaksjonstemperaturen. Kobber (Il)kloridet reduseres til kobber (I) klorid mens acetylenet kloreres. Reaksjonsproduktene forlater reaktoren etterhvert sorn damper ettersom de dannes. It can be carried out in conventional equipment, e.g. in a vessel with a stirrer and a gas inlet, in a column or a tube reactor. The reaction solution is introduced into a reactor and the acetylene is introduced at a temperature of at least 60°C, suitably 80-130°C, in which case a pressure vessel is not necessary. The reaction rate can be increased by increasing the temperature above 100°C and carrying out the reaction in a pressure vessel. The reaction rate can be further increased by adding the acetylene at such a rate that a pressure is created in the reaction chamber that is higher than the pressure saturated steam has at the reaction temperature. The copper (II) chloride is reduced to copper (I) chloride while the acetylene is chlorinated. The reaction products eventually leave the reactor as vapors as they are formed.
Av særlig interesse er muligheten å ut-føre reaksjonen kontinuerlig. Det er da mulig å anvende det område for reaksjonen, f. eks. mellom kobber(II)-ioneinnhold på 75—85 molprosent, hvor reaksjonshastigheten til den ønskede forbindelse er høyest. For å sikre at reaksjonsforbindeisen ved en mulig avkjøling ikke krystalliserer på grunn av det utfelte kobber(I)klorid, er det hensiktsmessig å tilsette klorider av andre metaller, f. eks. av ammonium, kalium, natrium, litium, magnesium og kalsium. Disse tilsetningsstoffer har også i visse tilfelle en aktiverende virkning på reaksjonen. Tilsetningsstoffene begrenser imid-lertid mulighetene for å arbeide med me-get høye kobberkloridinnhold (mer enn 4 mol pr. liter). Det sistnevnte kan være ønskelig, når man arbeider kontinuerlig og i det område hvor kobber(II)-ioneinnhol-det i forhold til kobber(I)-ioneinnholdet er så høyt at det dannede kobber (I) klorid holdes i oppløsning ved tilstedeværelsen av kloridioner. Det er således viktig for teknisk gjennomføring av reaksjonen at klorid-innholdet er høyt. Hvilket kation man an-vender for å oppnå dette synes å være av mindre viktighet. Of particular interest is the possibility of carrying out the reaction continuously. It is then possible to use that area for the reaction, e.g. between a copper (II) ion content of 75-85 mole percent, where the reaction rate of the desired compound is highest. To ensure that the reaction compound does not crystallize due to the precipitated copper(I) chloride during possible cooling, it is appropriate to add chlorides of other metals, e.g. of ammonium, potassium, sodium, lithium, magnesium and calcium. These additives also in certain cases have an activating effect on the reaction. However, the additives limit the possibilities for working with very high copper chloride contents (more than 4 mol per litre). The latter may be desirable, when working continuously and in the area where the copper (II) ion content in relation to the copper (I) ion content is so high that the formed copper (I) chloride is kept in solution by the presence of chloride ions . It is thus important for the technical implementation of the reaction that the chloride content is high. Which cation is used to achieve this seems to be of less importance.
I det følgende er beskrevet noen ek-sempler på utførelse av reaksjonen. De føl-gende forkortelser er anvendt for å angi de dannede reaksjonsprodukter: tri = triklorethylen tetra = tetraklorethylen 1,1- = 1,1-diklorethylen cis- = cis-l,2-diklorethylen trans- = trans-l,2-diklorethylen In the following, some examples of carrying out the reaction are described. The following abbreviations are used to indicate the reaction products formed: tri = trichloroethylene tetra = tetrachloroethylene 1,1- = 1,1-dichloroethylene cis- = cis-1,2-dichloroethylene trans- = trans-1,2-dichloroethylene
Eksempel 1. Example 1.
500 ml oppløsning inneholdende 255 g (= 1,5 mol) CuCl2 . 2H20 og 102 g (= 1,5 mol) MgCl2 . 6H2b innføres i en en-liter retorte utstyrt med rører, termometer, gassinnløpsrør og kjøler. Retorten ble an-brakt i et varmebad for å holde temperaturen på 98°C under reaksjonen. Karbon-dioksyd ble innført for å drive luft ut av apparatet, hvoretter reaksjonen ble igang-satt ved innføring av acetylen (10 liter pr. time). Oppløsningens pH-verdi var 2,3 ved starten (pH-verdien falt til 0,9 under reaksjonen). De dannede reaksjonsprodukter og det destillerte vann ble oppsamlet i et rør i et kjølebad ved h-60°C. Prøverørene ble utbyttet hvert 15. eller 30. minutt og reaksjonsproduktene ble veiet og analysert ved hjelp av en gasskromatograf og et IR-spektrofotometer. Resultatene er angitt i den følgende tabell. 500 ml solution containing 255 g (= 1.5 mol) CuCl2. 2H 2 O and 102 g (= 1.5 mol) MgCl 2 . 6H2b is introduced into a one-liter retort equipped with stirrer, thermometer, gas inlet tube and cooler. The retort was placed in a heat bath to maintain the temperature at 98°C during the reaction. Carbon dioxide was introduced to drive air out of the apparatus, after which the reaction was started by introducing acetylene (10 liters per hour). The pH value of the solution was 2.3 at the start (the pH value fell to 0.9 during the reaction). The formed reaction products and the distilled water were collected in a tube in a cooling bath at h-60°C. The test tubes were replaced every 15 or 30 minutes and the reaction products were weighed and analyzed using a gas chromatograph and an IR spectrophotometer. The results are shown in the following table.
Eksempel 2. Example 2.
Dette forsøk ble utført i samme apparat og på samme måte som i eksempel 1, men reaksjonsoppløsningen inneholdt bare 510 g (= 3 mol) CuCl, . 2H.,0. pH-verdien var 1,7 ved starten. Acetylen ble innført med en hastighet på 20 liter pr. time. For-søket kunne bare fortsettes til en reduksjonsgrad på 40 pst. basert på tilført mengde CuCl2, da CuCl ved denne reduksjonsgrad begynner å utfelles. This experiment was carried out in the same apparatus and in the same way as in example 1, but the reaction solution contained only 510 g (= 3 mol) of CuCl, . 2H.,0. The pH value was 1.7 at the start. Acetylene was introduced at a rate of 20 liters per hour. The trial could only be continued up to a reduction rate of 40 per cent based on the added amount of CuCl2, as CuCl begins to precipitate at this reduction rate.
Den totale omdannelse av acetylen under forsøket var 45%, og utbyttet av triklorethylen var 50% og av tetraklorethylen 8%. The total conversion of acetylene during the experiment was 45%, and the yield of trichlorethylene was 50% and of tetrachlorethylene 8%.
Eksempel 3. Example 3.
Dette forsøk ble utført i en sylindrisk This experiment was carried out in a cylindrical
beholder med en gassfordeler i bunnen gjennom hvilken acetylenet ble tilført, og de resulterende gasser ble ført fra toppen av beholderen til en kondensator hvor reaksjonsproduktene ble oppsamlet. Etter container with a gas distributor at the bottom through which the acetylene was supplied, and the resulting gases were led from the top of the container to a condenser where the reaction products were collected. After
kondensatoren var det tilknyttet et mano-meter og en reduksjonsventil. I beholderen ble innført 200 ml vannoppløsning inneholdende 3 mol kobberklorid og 6 mol litium-klorid pr. liter. 7 molprosent av den totale kobbermengde var til stede som Cu (I) og pH-verdien av oppløsningen var 1,8. Ved 120°C og et absolutt trykk på 2,4 atmosfæ-rer ble acetylen innført i oppløsningen, a manometer and a reducing valve were connected to the condenser. 200 ml of water solution containing 3 mol of copper chloride and 6 mol of lithium chloride per litres. 7 mole percent of the total amount of copper was present as Cu (I) and the pH value of the solution was 1.8. At 120°C and an absolute pressure of 2.4 atmospheres, acetylene was introduced into the solution,
reduksjonsventilen var regulert slik at den avga 1 liter gass pr. time fra apparatet. Etter én time hadde man fått 8,5 g produkt i kondensatoren. Sammensetningen var 43 pst. triklorethylen, 2 pst. tetraklorethylen og 55 pst. trans-l,2-diklorethylen. Ved et tilsvarende forsøk ved 90°C og atmosfærisk trykk fikk man en mengde på 3,3 g produkt the reduction valve was regulated so that it emitted 1 liter of gas per hour from the device. After one hour, 8.5 g of product had been obtained in the condenser. The composition was 43% trichlorethylene, 2% tetrachlorethylene and 55% trans-1,2-dichloroethylene. In a similar experiment at 90°C and atmospheric pressure, a quantity of 3.3 g of product was obtained
med en sammensetning på henholdsvis 59,3, 3,7 og 37,0 pst. with a composition of 59.3, 3.7 and 37.0 per cent respectively.
Eksempel 4. Example 4.
Dette forsøk ble utført med kontinuerlig tilførsel og fjerning av reaksjonsoppløs-ningen. Reaksjonskaret besto av et glass-rør med en lengde på 660 mm og en tyk-kelse på 50 mm og inneholdende en varme-spiral. Acetylenet ble tilført gjennom en gassfordeler i den nedre del av karet og reaksjonsproduktene fikk destillere av i den øvre del av røret. Den friske reaksjonsopp-løsning ble tilført ved bunnen, og den rea-gerte oppløsning strømmet ut gjennom et overløp midt på røret. Ved å regulere til-førselshastigheten for oppløsningen og acetylenmengden (5 liter pr. time) var det mulig å oppnå 500 ml av oppløsningen med en relativt konstant reduksjonsgrad i karet. Konsentrasjonen av oppløsningen var 3 mol CuCl2 pr. liter og 6 mol LiCl pr. liter. pH-verdien var 2,3. This experiment was carried out with continuous supply and removal of the reaction solution. The reaction vessel consisted of a glass tube with a length of 660 mm and a thickness of 50 mm and containing a heating coil. The acetylene was supplied through a gas distributor in the lower part of the vessel and the reaction products were allowed to distill off in the upper part of the tube. The fresh reaction solution was supplied at the bottom, and the reacted solution flowed out through an overflow in the middle of the tube. By regulating the supply rate for the solution and the amount of acetylene (5 liters per hour) it was possible to obtain 500 ml of the solution with a relatively constant degree of reduction in the vessel. The concentration of the solution was 3 mol CuCl2 per liter and 6 mol LiCl per litres. The pH value was 2.3.
Resultatene er angitt i den følgende tabell: The results are shown in the following table:
Omdannelsen av acetylen under forsøket var ca. 45% og utbyttet av triklorethylen 66% og av tetraklorethylen 10%. The conversion of acetylene during the experiment was approx. 45% and the yield of trichlorethylene 66% and of tetrachlorethylene 10%.
Omdannelsen av acetylen under forsøket var 70% og utbyttet av triklorethylen 67% og tetraklorethylen 27%. The conversion of acetylene during the experiment was 70% and the yield of trichlorethylene 67% and tetrachlorethylene 27%.
Eksempel 6. Example 6.
Dette forsøk ble utført som i eksempel This experiment was carried out as in the example
3, men overløpet var flyttet høyere opp slik 3, but the spillway had been moved higher up like this
at reaksjonskaret inneholdt 750 ml oppløs-ning inneholdende 6 mol CuCl2 pr. liter. pH-verdien var 2,3. that the reaction vessel contained 750 ml of solution containing 6 mol of CuCl2 per litres. The pH value was 2.3.
Omdannelsen av acetylen under forsøket var 40% og utbyttet av triklorethylen 65% og av tetraklorethylen 19%. I det dannede reaksjonsprodukt atskilles tri- og tetraklorethylen lett ved destillasjon. The conversion of acetylene during the experiment was 40% and the yield of trichlorethylene 65% and of tetrachlorethylene 19%. In the reaction product formed, tri- and tetrachlorethylene are easily separated by distillation.
Eksempel 7. Example 7.
Ved dette forsøk var volumet av reaksjonskaret ca. 8 liter, og apparatet var for-øvrig prinsipielt det samme som i eksemp-lene 4—6. Den kontinuerlig tilførte vann-oppløsning inneholdt 6 mol kobberklorid pr. liter, idet 8 molprosent av den totale kobbermengde var til stede som Cu (I). pH-verdien av oppløsningen var 1,8 og dens temperatur 100°C. Acetylen ble tilført med en hastighet på 20 normalliter pr. time og ble omdannet til et produkt bestående av 81 pst. (etter vekt) triklorethylen, 12 pst. tetraklorethylen og 7 pst. trans-diklorethylen. Omdannelsen av acetylen var 97 pst. In this experiment, the volume of the reaction vessel was approx. 8 litres, and the apparatus was otherwise in principle the same as in examples 4-6. The continuously supplied water solution contained 6 mol of copper chloride per litres, 8 mole percent of the total amount of copper being present as Cu (I). The pH value of the solution was 1.8 and its temperature 100°C. Acetylene was supplied at a rate of 20 standard liters per hour and was converted to a product consisting of 81 percent (by weight) trichlorethylene, 12 percent tetrachlorethylene and 7 percent trans-dichloroethylene. The conversion of acetylene was 97 per cent.
Eksempel 8. Example 8.
Forsøket ble utført kontinuerlig som i eksempel 7, men oppløsningen inneholdt 4,5 mol kobberklorid og 3 mol litiumklo-rid pr. liter. Mengden av Cu (I) var 15 molprosent av den totale kobbermengde, opp-løsningens pH-verdi var 1,8 og dens temperatur 100°C. 20 normalliter pr. time acetylen ble praktisk talt fullstendig omdannet til et produkt bestående av 76 pst. (etter vekt) triklorethylen, 12 pst. tetraklorethylen og 12 pst. trans-diklorethylen, i alt 114 g pr. time. Den katalyserende oppløs-ning ble deretter pumpet til en oksyda-sjonskolonne hvor den ble oksydert med en blanding av ca. 60 normalliter HCl-gass og 30 normalliter oksygen pr. time. The experiment was carried out continuously as in example 7, but the solution contained 4.5 mol copper chloride and 3 mol lithium chloride per litres. The amount of Cu (I) was 15 mole percent of the total amount of copper, the solution's pH value was 1.8 and its temperature 100°C. 20 standard liters per hour acetylene was practically completely converted to a product consisting of 76 per cent (by weight) trichlorethylene, 12 per cent tetrachlorethylene and 12 per cent trans-dichloroethylene, a total of 114 g per hour. The catalytic solution was then pumped to an oxidation column where it was oxidized with a mixture of approx. 60 standard liters of HCl gas and 30 standard liters of oxygen per hour.
Fremgangsmåten kan utføres i større målestokk i et apparat som skjematisk er vist på tegningen. The method can be carried out on a larger scale in an apparatus which is schematically shown in the drawing.
Prinsipielt består apparatet av en reaktor 1 med et innløp i bunnen for klorid-oppløsningen fra en beholder 3a, et innløp for acetylen og et overløp for oppløsnin-gen. Reaksjonsproduktet uttømmes på toppen av reaktoren sammen med uomsatt gass og oppsamles i en kondensator 5. Den brukte oppløsning føres til en beholder 6b fra hvilken den pumpes ved hjelp av en pumpe 4b til en annen beholder 3b. Kobber (I)-ionene i den brukte oppløsning oksyderes med HC1 og O, i en oksydasjons-kolonne 2 som er utstyrt med med et inn-løp i bunnen for oppløsningen fra beholderen 3b og et overløp fra hvilket oppløs-ningen strømmer til en beholder 6a, og oppløsningen pumpes derfra ved hjelp av en pumpe 4a til beholderen 3a. De oksyde-rende gasser (HC1 og 02) tilføres til kolon-nen i bunnen og unnslipper på toppen. In principle, the apparatus consists of a reactor 1 with an inlet at the bottom for the chloride solution from a container 3a, an inlet for acetylene and an overflow for the solution. The reaction product is discharged at the top of the reactor together with unreacted gas and collected in a condenser 5. The spent solution is led to a container 6b from which it is pumped by means of a pump 4b to another container 3b. The copper (I) ions in the used solution are oxidized with HC1 and O, in an oxidation column 2 which is equipped with an inlet at the bottom for the solution from the container 3b and an overflow from which the solution flows to a container 6a, and the solution is pumped from there by means of a pump 4a to the container 3a. The oxidizing gases (HC1 and O2) are supplied to the column at the bottom and escape at the top.
Istedenfor å anvende en separat oksy-dasjonskolonne kan reoksydasjonen utfø-res i en reaktor utstyrt med atskilte inn-løp for acetylen og blandingen av oksygen og hydrogenklorid. Instead of using a separate oxidation column, the reoxidation can be carried out in a reactor equipped with separate inlets for acetylene and the mixture of oxygen and hydrogen chloride.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7821658A FR2431321A1 (en) | 1978-07-21 | 1978-07-21 | PROCESS FOR THE TREATMENT OF SUBSTANCES HAVING DIFFERENT PHASES, SUCH AS TREATMENT OF SUBSTANCES IN LIQUID, SEMI-LIQUID, OR PASTE FORM, WITH ANOTHER NOTABLY GASEOUS PHASE |
Publications (3)
Publication Number | Publication Date |
---|---|
NO792392L NO792392L (en) | 1980-01-22 |
NO152087B true NO152087B (en) | 1985-04-22 |
NO152087C NO152087C (en) | 1985-07-31 |
Family
ID=9211028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO792392A NO152087C (en) | 1978-07-21 | 1979-07-19 | DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP0007846B1 (en) |
JP (1) | JPS5520696A (en) |
AR (1) | AR225419A1 (en) |
AT (1) | ATE901T1 (en) |
AU (1) | AU530971B2 (en) |
BR (1) | BR7904641A (en) |
CA (1) | CA1132850A (en) |
DE (1) | DE2962620D1 (en) |
DK (1) | DK150785C (en) |
ES (1) | ES482686A1 (en) |
FI (1) | FI72709C (en) |
FR (1) | FR2431321A1 (en) |
IE (1) | IE49618B1 (en) |
IN (1) | IN152322B (en) |
MA (1) | MA18535A1 (en) |
NO (1) | NO152087C (en) |
PT (1) | PT69949A (en) |
ZA (1) | ZA793747B (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2488525A1 (en) * | 1980-08-14 | 1982-02-19 | Rhone Poulenc Ind | Mixing of two fluids present as different phases - esp. for heat or mass transfer between gas and liq. |
FR2490619A1 (en) * | 1980-09-24 | 1982-03-26 | Rhone Poulenc Ind | PROCESS FOR TREATING LIQUID MATERIAL CONDUCTING SOLID WASTE BY ACTION OF A FLUID PHASE AND AT LEAST ONE GAS PHASE |
FR2501525A1 (en) * | 1981-03-13 | 1982-09-17 | Rhone Poulenc Spec Chim | DEVICE FOR CONTACTING SUBSTANCES IN DIFFERENT PHASES, AT LEAST ONE GAS BEING |
FR2508818A1 (en) * | 1981-07-06 | 1983-01-07 | Rhone Poulenc Chim Base | METHOD FOR THE HOMOGENEOUS THERMAL AND / OR CHEMICAL TREATMENT OF A FLUID, AND APPLICATION TO POLYPHOSPHATES |
FR2508888A1 (en) * | 1981-07-06 | 1983-01-07 | Rhone Poulenc Chim Base | NOVEL SODIUM ORTHOPHOSPHATE, PROCESS FOR OBTAINING SAME |
FR2508887A1 (en) * | 1981-07-06 | 1983-01-07 | Rhone Poulenc Chim Base | NOVEL SODIUM TRIPOLYPHOSPHATE, PROCESS FOR OBTAINING SAME AND APPLICATIONS |
EP0101347B1 (en) * | 1982-07-27 | 1986-09-24 | Rhone-Poulenc Chimie De Base | Sodium tripolyphosphate having a high hydration rate, and detergent composition containing it |
FR2531059A1 (en) * | 1982-07-27 | 1984-02-03 | Rhone Poulenc Chim Base | High hydration rate sodium tripolyphosphate |
US4499833A (en) * | 1982-12-20 | 1985-02-19 | Rockwell International Corporation | Thermal conversion of wastes |
US4579069A (en) * | 1983-02-17 | 1986-04-01 | Rockwell International Corporation | Volume reduction of low-level radioactive wastes |
FR2551183B1 (en) * | 1983-05-20 | 1988-05-13 | Rhone Poulenc Chim Base | OWN COMBUSTION PROCESS AND DEVICE APPLICABLE IN PARTICULAR TO THE BURNING OF HEAVY FUELS |
FR2546077B1 (en) * | 1983-05-20 | 1988-05-06 | Rhone Poulenc Chim Base | HIGH TEMPERATURE REACTION DEVICE |
GB2177618B (en) * | 1985-07-13 | 1989-07-19 | Adrian Philip Boyes | Gas/liquid contacting |
FR2587915B1 (en) * | 1985-09-27 | 1987-11-27 | Omya Sa | DEVICE FOR CONTACTING FLUIDS IN THE FORM OF DIFFERENT PHASES |
JPS62179984U (en) * | 1986-05-02 | 1987-11-14 | ||
US4767543A (en) * | 1986-11-13 | 1988-08-30 | Universite De Sherbrooke | Oxidation of wastewaters |
JPH0540769Y2 (en) * | 1987-11-16 | 1993-10-15 | ||
EP0545757A1 (en) * | 1991-11-29 | 1993-06-09 | Rhone-Poulenc Chimie | Process for the preparation of perovskites on the basis of manganese or chromium and perovskites so obtained |
FR2684659A1 (en) * | 1991-12-06 | 1993-06-11 | Rhone Poulenc Chimie | Glass or glass-ceramic precursor and process for its preparation |
FR2698156B1 (en) * | 1992-11-16 | 1995-01-27 | Rhone Poulenc Chimie | Process for the thermal treatment of an effluent comprising polluting organic materials or an inorganic compound. |
FR2718371B1 (en) * | 1994-04-08 | 1996-05-03 | Rhone Poulenc Chimie | Reduction catalysts for nitrogen oxides based on spinels. |
FR2720296B1 (en) | 1994-05-27 | 1996-07-12 | Rhone Poulenc Chimie | Compounds based on alumina, cerium oxide and zirconium oxide with high reducibility, process for their preparation and their use in the preparation of catalysts. |
FR2720295B1 (en) | 1994-05-27 | 1996-07-12 | Rhone Poulenc Chimie | Dispersible compound based on a rare earth, colloidal suspension obtained from this compound, their methods of preparation and use in the manufacture of catalysts. |
FR2826016B1 (en) | 2001-06-13 | 2004-07-23 | Rhodia Elect & Catalysis | COMPOUND BASED ON AN ALKALINE EARTH, SULFUR AND ALUMINUM, GALLIUM OR INDIUM, METHOD FOR PREPARING SAME AND USE THEREOF AS LUMINOPHORE |
FR2855169B1 (en) | 2003-05-23 | 2006-06-16 | Rhodia Elect & Catalysis | PRECURSOR COMPOUNDS OF ALKALINO-EARTH OR RARE EARTH ALUMINATES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS A LUMINOPHORE PRECURSOR, IN PARTICULAR |
CN109357270A (en) * | 2018-11-21 | 2019-02-19 | 贵州智慧能源科技有限公司 | A kind of device being capable of handling complex component sewage |
CN109357288A (en) * | 2018-11-21 | 2019-02-19 | 贵州智慧能源科技有限公司 | It is capable of handling the rocket engine burner and power drive unit of complex component |
WO2021111001A1 (en) | 2019-12-06 | 2021-06-10 | Solvay Sa | Aluminates and red emitters in a greenhouse film for plant growth |
WO2021110999A1 (en) | 2019-12-06 | 2021-06-10 | Solvay Sa | Use of aluminates in a greenhouse film for plant growth |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1049365B (en) * | 1955-07-01 | 1959-01-29 | Badische Anilin- S. Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein | Process and device for converting gaseous or vaporous and / or liquid substances, optionally together with solid, finely divided substances |
FR1179472A (en) * | 1956-08-06 | 1959-05-25 | Koppers Gmbh Heinrich | Method and device for making crackings |
FR1292258A (en) * | 1961-03-20 | 1962-05-04 | Black Sivalls & Bryson Inc | Device for mixing fluids, in particular fuel and air |
BE790854A (en) * | 1972-01-27 | 1973-02-15 | Venot Pic Sa | VERTICAL STATIC INCINERATOR FOR LIQUID SLUDGE |
FR2257326B1 (en) * | 1973-06-19 | 1976-05-28 | Rhone Progil | |
US3906873A (en) * | 1974-04-19 | 1975-09-23 | Standard Products Co | Waste converter |
FR2406610A1 (en) * | 1977-10-20 | 1979-05-18 | Rhone Poulenc Ind | Treating waste water contg. oxidisable material, esp. sulphur derivs. - by continuous single-stage process comprising simultaneous atomisation and oxidation in oxidising gas vortex |
-
1978
- 1978-07-21 FR FR7821658A patent/FR2431321A1/en active Granted
-
1979
- 1979-07-05 AU AU48672/79A patent/AU530971B2/en not_active Ceased
- 1979-07-10 AT AT79400477T patent/ATE901T1/en active
- 1979-07-10 EP EP79400477A patent/EP0007846B1/en not_active Expired
- 1979-07-10 DE DE7979400477T patent/DE2962620D1/en not_active Expired
- 1979-07-13 AR AR27730679A patent/AR225419A1/en active
- 1979-07-18 DK DK302179A patent/DK150785C/en active
- 1979-07-19 JP JP9210879A patent/JPS5520696A/en active Granted
- 1979-07-19 NO NO792392A patent/NO152087C/en unknown
- 1979-07-20 FI FI792279A patent/FI72709C/en not_active IP Right Cessation
- 1979-07-20 BR BR7904641A patent/BR7904641A/en unknown
- 1979-07-20 PT PT6994979A patent/PT69949A/en unknown
- 1979-07-20 ES ES482686A patent/ES482686A1/en not_active Expired
- 1979-07-20 CA CA332,275A patent/CA1132850A/en not_active Expired
- 1979-07-20 MA MA18732A patent/MA18535A1/en unknown
- 1979-07-21 IN IN50/CAL/79A patent/IN152322B/en unknown
- 1979-07-23 ZA ZA00793747A patent/ZA793747B/en unknown
- 1979-08-08 IE IE1379/79A patent/IE49618B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
AR225419A1 (en) | 1982-03-31 |
EP0007846A1 (en) | 1980-02-06 |
FR2431321B1 (en) | 1981-03-20 |
JPS6132045B2 (en) | 1986-07-24 |
BR7904641A (en) | 1980-04-15 |
IE791379L (en) | 1980-01-21 |
DK150785B (en) | 1987-06-22 |
FI72709B (en) | 1987-03-31 |
NO152087C (en) | 1985-07-31 |
IN152322B (en) | 1983-12-17 |
DE2962620D1 (en) | 1982-06-09 |
AU530971B2 (en) | 1983-08-04 |
CA1132850A (en) | 1982-10-05 |
EP0007846B1 (en) | 1982-04-28 |
DK302179A (en) | 1980-01-22 |
IE49618B1 (en) | 1985-11-13 |
ZA793747B (en) | 1980-08-27 |
ES482686A1 (en) | 1980-04-16 |
DK150785C (en) | 1988-01-18 |
ATE901T1 (en) | 1982-05-15 |
FI792279A (en) | 1980-01-22 |
FR2431321A1 (en) | 1980-02-15 |
PT69949A (en) | 1979-08-01 |
NO792392L (en) | 1980-01-22 |
FI72709C (en) | 1987-07-10 |
MA18535A1 (en) | 1980-04-01 |
AU4867279A (en) | 1980-01-24 |
JPS5520696A (en) | 1980-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO152087B (en) | DEVICE FOR TREATING SUBSTANCES IN LIQUID, SEMI-FLOATING OR PASTEFORM PHASE WITH ANOTHER PHASE | |
US5486627A (en) | Method for producing epoxides | |
DK151006B (en) | METHOD FOR PREPARING 1,2-DICHLORETHAN IN A LIQUID MEDIUM | |
US3304337A (en) | Ethane chlorination | |
US3455797A (en) | Procedure for the preparation of olefin oxides | |
US3607027A (en) | Process for preparing chlorine dioxide | |
US3516790A (en) | Process and apparatus for preparing chlorine dioxide | |
US2377669A (en) | Perchlorination process | |
US4233280A (en) | Manufacture of anhydrous hydrogen chloride by combusting chlorine-containing organic substances | |
US3065280A (en) | Production of methyl chloroform | |
US3059035A (en) | Continuous process for producing methyl chloroform | |
US3301910A (en) | Production of trichloroethylene and tetrachloroethylene | |
US2449233A (en) | Processes for the preparation of fluorine-containing cyclic hydrocarbons | |
JPH0819015B2 (en) | Recovery of ethylene, chlorine and hydrogen chloride from vent waste gas of direct chlorination reactor | |
HU191194B (en) | Process for producing of 1,2 diclore-ethan | |
US1510790A (en) | Manufacture of chlorhydrins | |
NO152844B (en) | PROCEDURE FOR THE PREPARATION OF THIENOPYRIDINE DERIVATIVES | |
US2675413A (en) | Production of unsaturated halides by exchange of halogen atoms | |
US3968179A (en) | Selective preparation of 1,2-dichloroethane | |
US4774373A (en) | Process for making 1,2-dichloroethane | |
US2863924A (en) | Method of producing polychlorinated acetaldehydes | |
US3047642A (en) | Halogenation intiator | |
US2174492A (en) | Preparation of alkane sulphonyl chlorides | |
US2942947A (en) | Process for the preparation of perchloryl fluoride | |
SU510990A3 (en) | The method of purification of 1,2-dichloroethane from trichlorethylene |