NO151663B - PROCEDURE FOR REDUCING MONOMER CONTENT IN EXPANDABLE THERMOPLAST Beads - Google Patents

PROCEDURE FOR REDUCING MONOMER CONTENT IN EXPANDABLE THERMOPLAST Beads Download PDF

Info

Publication number
NO151663B
NO151663B NO791908A NO791908A NO151663B NO 151663 B NO151663 B NO 151663B NO 791908 A NO791908 A NO 791908A NO 791908 A NO791908 A NO 791908A NO 151663 B NO151663 B NO 151663B
Authority
NO
Norway
Prior art keywords
beads
water
monomers
autoclave
expandable
Prior art date
Application number
NO791908A
Other languages
Norwegian (no)
Other versions
NO791908L (en
NO151663C (en
Inventor
Joergen Petersen
Original Assignee
Kema Nord Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kema Nord Ab filed Critical Kema Nord Ab
Publication of NO791908L publication Critical patent/NO791908L/en
Publication of NO151663B publication Critical patent/NO151663B/en
Publication of NO151663C publication Critical patent/NO151663C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/006Removal of residual monomers by chemical reaction, e.g. scavenging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte ved reduksjon av monomerinnholdet i ekspanderbare termoplastperler fremstilt ved polymerisasjon av en etenisk umettet monomer eller blanding av monomerer. The present invention relates to a method for reducing the monomer content in expandable thermoplastic beads produced by polymerization of an ethylenically unsaturated monomer or mixture of monomers.

Ekspanderbare termoplastperler, f.eks. perler av vinylidenklorid-akrylnitril-kopolymer, polystyren eller styren-akrylnitril-kopolymer har vært fremstilt kommersielt ved en suspensjonspolymerisa--sjonsprosess, hvorved den flytende mohpmeren dispergeres i et vanhholdig medium som inneholder ett eller flere suspensjons-midler, et hydrokarbondrivmiddel og en polymerisasjonsinitia-tor. Expandable thermoplastic beads, e.g. Beads of vinylidene chloride-acrylonitrile copolymer, polystyrene or styrene-acrylonitrile copolymer have been produced commercially by a suspension polymerization process, whereby the liquid monomer is dispersed in a non-volatile medium containing one or more suspending agents, a hydrocarbon propellant and a polymerization initiator. dare.

Ved polymerisasjonens begynnelsestrinn danner monomerene og drivmidlet en dråpe med bare en fase. I et senere trinn av polymerisasjonen er drivmidlet ikke løselig i polymerfasen, At the initial stage of polymerization, the monomers and the propellant form a droplet with only one phase. In a later stage of the polymerization, the propellant is not soluble in the polymer phase,

men danner en separat fase i form av små innkapslinger i poly-merdråpen. but forms a separate phase in the form of small encapsulations in the polymer droplet.

De erholdte perler består av polymerskall hvilke inneholder "det flytende, flyktige drivmidlet. Perlene ekspanderer ved oppvarming til temperaturer over drivmidlets kokepunkt og over The beads obtained consist of polymer shells which contain "the liquid, volatile propellant. The beads expand when heated to temperatures above the boiling point of the propellant and above

-polymerens mykningspunkt, f.eks. til ca. 70°C for vinylidenklorid-akrylnitrilkopolymerisatperler. Perlene kan anvendes for frem- -the softening point of the polymer, e.g. to approx. 70°C for vinylidene chloride-acrylonitrile copolymer beads. The beads can be used for

stilling av cellematerialer som har mange anvendelsesområder, f.eks. innenfor isolasjons- og forpakningsindustrien. position of cell materials that have many areas of application, e.g. within the insulation and packaging industry.

Et alvorlig problem innenfor all polymerisasjonsteknikk er innholdet av restmonomerer. Monomerene er mer eller mindre giftige og da polymerisasjonen aldri kan gjennomføres med en 100%-ig omsetning, blir både det erholdte polymerisatet og prosessvannet forurenset av ikke-omsatte monomerer. Dette pro-blemet er spesielt utpreget ved polymerisasjonen av ekspanderbare perler, da disse også inneholder en tredje fase, drivmidlet, i hvilket monomerer kan løses. A serious problem within all polymerization techniques is the content of residual monomers. The monomers are more or less toxic and as the polymerization can never be carried out with a 100% conversion, both the resulting polymer and the process water are contaminated by unreacted monomers. This problem is particularly pronounced in the polymerization of expandable beads, as these also contain a third phase, the propellant, in which monomers can be dissolved.

Store mengder akrylnitril i kopolymerer, f.eks. vinylidenklorid-akrylnitril-kopolymer og styren-akrylnitril-kopolymer, begrenser drastisk deres anvendelsesområder og marked, da fritt akrylnitril i prosessvannet og gjenværende akrylnitril i perlene øker helsefaren for dem som arbeider med perlene. Large amounts of acrylonitrile in copolymers, e.g. vinylidene chloride-acrylonitrile copolymer and styrene-acrylonitrile copolymer, drastically limit their areas of application and market, as free acrylonitrile in the process water and residual acrylonitrile in the beads increase the health hazard for those who work with the beads.

I de senere år er det foreslått et stort antall metoder for rensning av polymerisatet for restmonomer, såkaldt stripping, spesielt innenfor polyvinylkloridteknologien. Ifølge de van-ligste metodene anvendes høyere temperaturer for å bevirke diffusjonen av monomerene fra polymerfasen. Den høyere temperaturen øker monomermolekylenes mobilitet og gjør polymeren mykere, og begge disse faktorer øker utdrivningshastigheten. In recent years, a large number of methods have been proposed for cleaning the polymer for residual monomers, so-called stripping, especially within polyvinyl chloride technology. According to the most common methods, higher temperatures are used to effect the diffusion of the monomers from the polymer phase. The higher temperature increases the mobility of the monomer molecules and makes the polymer softer, and both of these factors increase the rate of expulsion.

Den idag oftest anvendte metode for å fjerne vinylklorid fra polyvinylklorid er å behandle den erholdte polymer og prosessvannet med damp ved temperaturer i området 80 - 125°C og ved omgivelsestrykk. Ved visse metoder utføres utdrivningen ved redusert trykk. En slik metode beskrives f.eks. i vesttysk patentsøknad 25 21 780.. The method most often used today to remove vinyl chloride from polyvinyl chloride is to treat the polymer obtained and the process water with steam at temperatures in the range of 80 - 125°C and at ambient pressure. In certain methods, the expulsion is carried out at reduced pressure. Such a method is described e.g. in West German patent application 25 21 780..

Det er ikke mulig å anvende disse metoder for å fjerne monomerer fra ekspanderbare perler, da disse er meget ømfindtlige over-for varme og trykk. Ved høyere temperaturer så vel som ved lavere trykk, ekspanderer perlene pga. drivmidlet. Et annet problem er at monomerer i ekspanderbare perler og spesielt akrylnitril, er mer vannløselige enn vinylklorid og således vanskeligere å fjerne fra vannfasen. Dessuten har mange av de monomerer som vanligvis anvendes for fremstilling av ekspanderbare perler høyt kokepunkt, hvilket medfører at det er van-skelig å fjerne dem fra vannfasen ved økning av temperaturen. Akrylnitril har således et kokepunkt på 77°C, styren 145°C og vinylidenklorid 32°C, mens vinylklorid har et kokepunkt på -14°C. It is not possible to use these methods to remove monomers from expandable beads, as these are very sensitive to heat and pressure. At higher temperatures as well as at lower pressures, the beads expand due to the propellant. Another problem is that monomers in expandable beads, and especially acrylonitrile, are more water-soluble than vinyl chloride and thus more difficult to remove from the water phase. Moreover, many of the monomers that are usually used for the production of expandable beads have a high boiling point, which means that it is difficult to remove them from the water phase when the temperature is increased. Acrylonitrile thus has a boiling point of 77°C, styrene 145°C and vinylidene chloride 32°C, while vinyl chloride has a boiling point of -14°C.

Den høye konsentrasjonen av drivmiddel inne i perlene oa den høye temperaturen ved monomerutdrivningen gir et betydelig trykk inne i perlene/og de ekspanderer i den ikke-fylte eller gassfylte delen av utdrivningsapparaturen. The high concentration of propellant inside the beads and the high temperature during the monomer expulsion produces a significant pressure inside the beads/and they expand in the non-filled or gas-filled part of the expulsion apparatus.

De forekspanderte perlene utgjør et problem og medfører økede produksjonsomkostninger. De forekspanderte perlene må separer-es fra de ikke-ekspanderte ved filtrering eller på annen måte og de forekspanderte perlene øker avfallsmengden. The pre-expanded beads pose a problem and lead to increased production costs. The pre-expanded beads must be separated from the non-expanded ones by filtration or other means and the pre-expanded beads increase the amount of waste.

Man har forsøkt å unngå forekspansjonen av perlene ved å nytte et høyt trykk under avdrivningen, f.eks. 500 - 1500 kPa med en iner.t gass, f.eks. nitrogen. Dette eliminerer imidlertid ikke de forekspanderte perlene. Gassen gir i virkeligheten ikke et høyere ytre trykk på perlene. En likevekt mellom gassen inne i perlen og gassen i det "fri volumet" i utdrivningsapparaturen innstiller seg. Perlene fortsetter å ekspandere pga. det "frie Attempts have been made to avoid the pre-expansion of the beads by using a high pressure during the stripping, e.g. 500 - 1500 kPa with an inert gas, e.g. nitrogen. However, this does not eliminate the pre-expanded beads. In reality, the gas does not produce a higher external pressure on the beads. An equilibrium is established between the gas inside the bead and the gas in the "free volume" of the expulsion apparatus. The pearls continue to expand due to the “free

volumet." og det høye hydrokarbontrykket inne i perlene. the volume.” and the high hydrocarbon pressure inside the beads.

Foreliggende oppfinnelse tilveiebringer en utdrivningsmetode for'ekspanderbare perler ved hvilken forekspansjon av perlene reduseres i betydelig utstrekning. Fremgangsmåten reduserer V også monomerinnholdet i prosessvannét. The present invention provides an expulsion method for expandable beads by which pre-expansion of the beads is reduced to a significant extent. The process also reduces the monomer content in the process water.

^S^-ik-^i^.''- ■ ■ ..- i •"■ .-Vir--|TrføTge~foreliggende oppfinnelse oppvarmes en oppslemming ^S^-ik-^i^.''- ■ ■ ..- i •"■ .-Vir--|TrføTge~present invention a slurry is heated

"åv de ekspanderbare perler og vann. i nærvær av en vann-løselig initiatoir for etenisk uméttede monomerer til en temperatur i området 65-150°C i- et kar som er fullstendig of the expandable beads and water in the presence of a water-soluble initiator for ethylenically unsaturated monomers to a temperature in the range of 65-150°C in a vessel completely

fylt'med flytende medium under et slikt trykk at det flytende mediet ikke kan strømme ut fra karet, inntil en vesen-' tlig del av monomerinnholdet er redusert. filled with liquid medium under such a pressure that the liquid medium cannot flow out of the vessel until a substantial part of the monomer content has been reduced.

Ved anvendelse av et kar som er fullstendig fylt med flytende medium under varmebehandlingen av de ekspanderbare perlene, gir væsken et trykk på overflaten av perlene, hvilket forhind-rer dem i å ekspandere under utdrivningsprosessen. Restmono-merene i de ekspanderbare perlene står i likevekt med monomerene i vannfasen. Da monomerene i vannfasen fjernes ved poly-merisas jon forårsaket av den vannløselige initiatoren, antas det at mer monomer diffunderer fra perlene og drivmidlet til vannfasen og prosessen fungerer som en utdrivningsprosess. Diffusjonen er forholdsvis rask på grunn av den relativt høye temperaturen. By using a vessel completely filled with liquid medium during the heat treatment of the expandable beads, the liquid exerts a pressure on the surface of the beads, preventing them from expanding during the expulsion process. The remaining monomers in the expandable beads are in equilibrium with the monomers in the water phase. As the monomers in the water phase are removed by polymerization caused by the water-soluble initiator, it is assumed that more monomer diffuses from the beads and propellant into the water phase and the process functions as an expulsion process. Diffusion is relatively fast due to the relatively high temperature.

Det kar som utnyttes er fortrinnsvis polymerisasjonsautoklaven, men et hvilket som helst egnet kar kan anvendes. Ved å forbinde f.eks. polymerisasjonsautoklaven med en utvendig anord-ning for væsketrykk slik som en vannledning eller et ekspansjonskar som er delvis fylt med flytende medium og som er ut-styrt med egnede midler for anbringelse av trykk på vannflaten, kan autoklaven lett fylles under varmebehandlingen av perleopp-slemmingen. Karet holdes gjerne fylt ved tilsetning av vann. Hvilken som helst egnet væske kan imidlertid anvendes slik som f.eks. når avdrivningen utføres i et kar adskilt fra autoklaven, prosessvannet fra polymerisasjonsautoklaven for de ekspanderbare perlene. Om et annet kar enn autoklaven anvendes for utdrivningsprosessen, ligger det innenfor oppfinnelsens ramme å tilsette ytterligere flytende medier, f.eks. vann, for å The vessel used is preferably the polymerization autoclave, but any suitable vessel may be used. By connecting e.g. the polymerization autoclave with an external device for liquid pressure such as a water line or an expansion vessel which is partially filled with liquid medium and which is equipped with suitable means for applying pressure to the water surface, the autoclave can be easily filled during the heat treatment of the bead slurry. The tub is preferably kept filled by adding water. However, any suitable liquid can be used such as e.g. when the stripping is carried out in a vessel separate from the autoclave, the process water from the polymerization autoclave for the expandable beads. If a vessel other than the autoclave is used for the expulsion process, it is within the scope of the invention to add additional liquid media, e.g. water, to

fylle karet, eller for å underkaste en del av den oppslemming av perler og vann som erholdes etter polymerisasjonen utdriv-ingsprosessen. to fill the vessel, or to subject part of the slurry of beads and water obtained after polymerization to the expulsion process.

Temperaturområdet for behandlingen av oppslemmingen kan vari-eres innenfor vide grenser og høyere temperaturer gir en mer effektiv utdrivning. Temperaturen bør overstige 65°C, den øvre grensen er i stor grad økonomisk betinget og den kan sett-es til 150°C. Gode resultater oppnås når temperaturen over-stiger den aktuelle polymerens glassovergangstemperatur. The temperature range for the treatment of the slurry can be varied within wide limits and higher temperatures provide a more efficient expulsion. The temperature should exceed 65°C, the upper limit is largely economically conditioned and it can be set to 150°C. Good results are obtained when the temperature exceeds the glass transition temperature of the relevant polymer.

Gjerne ligger området innenfor intervallet 70 - 120°C og fortrinnsvis 75 - 95°C. Utdrivningshastigheten avhenger også av den tid som oppslemmingen utsettes for varmebehandlingen og ved f.eks. en temperatur på 7 5°C er fra 15 min. opptil 8 timer en formålstjenlig tid for akrylnitril/polyvinylidenkloridperler. Ved høyere temperaturer kan tiden reduseres, og ved en utdriv-ningstemperatur på 95°C gir en tid på 1 time tilstrekkelig reduksjon av monomerinnholdet i perlene og prosessvannet. The range is preferably within the range 70 - 120°C and preferably 75 - 95°C. The expulsion rate also depends on the time the slurry is exposed to the heat treatment and, for example, a temperature of 7 5°C is from 15 min. up to 8 hours a suitable time for acrylonitrile/polyvinylidene chloride beads. At higher temperatures, the time can be reduced, and at an expulsion temperature of 95°C, a time of 1 hour provides a sufficient reduction of the monomer content in the beads and the process water.

Det nødvendige trykket på det fylte karet er en funksjon både The required pressure on the filled vessel is a function of both

av temperatur og type drivmiddel og kan lett bestemmes ved enkle forsøk. Et drivmiddel med lavt kokepunkt krever et høyere trykk, da perlene ellers ekspanderer og trykket i karet fører en del av det flytende mediet tilbake til ekspansjons-tanken. Således skal det laveste trykket i ekspansjonskaret være av en slik størrelse at ikke noe flytende medium kan tilbakeføres til karet. Det trykk som kreves for f.eks. poly-styrenperler med pentan som drivmiddel, ligger innenfor intervallet 500 - 2000 kPa ved temperaturer på 75 - 95°C, mens ved isobutan som har et kokepunkt på -12°C, kreves et trykk innenfor intervallet 1000 - 2500 kPa ved samme temperaturer. of temperature and type of propellant and can be easily determined by simple experiments. A propellant with a low boiling point requires a higher pressure, as the beads otherwise expand and the pressure in the vessel drives part of the liquid medium back to the expansion tank. Thus, the lowest pressure in the expansion vessel must be of such a magnitude that no liquid medium can be returned to the vessel. The pressure required for e.g. polystyrene beads with pentane as a propellant lie within the range 500 - 2000 kPa at temperatures of 75 - 95°C, while isobutane, which has a boiling point of -12°C, requires a pressure within the range 1000 - 2500 kPa at the same temperatures.

Som eksempler på egnede vannløselige initiatorer for etenisk umettede monomerer kan nevnes velkjente uorganiske fri-radikalkatalysatorer, slik som hydrogenperoksyd, kalium-eller ammoniumpersulfater, eller organiske-fri-radikalkatalysatorer som hydroperoksyder, cykloheksanonperoksyd eller metylisobutyl-ketonperoksyd. Det faller også,innenfor oppfinnelsens ramme å tilsette en blanding av vannløselige initiatorer eller en kombinasjon av vannløselige og monomerløselige initiatorer som peroksyder, f.eks. laurylperoksyd, peroksydkarbonater, f.eks. cetylperoksydikarbonat eller azo-forbindelser. Mengden vann-løselig initiator kan ligge i intervalet 0,01 - 5% beregnet på mengden anvendt monomer, og ligger fortrinnsvis i intervallet 0.1 - 2%. As examples of suitable water-soluble initiators for ethylenically unsaturated monomers, well-known inorganic free-radical catalysts can be mentioned, such as hydrogen peroxide, potassium or ammonium persulfates, or organic free-radical catalysts such as hydroperoxides, cyclohexanone peroxide or methyl isobutyl ketone peroxide. It is also within the scope of the invention to add a mixture of water-soluble initiators or a combination of water-soluble and monomer-soluble initiators such as peroxides, e.g. lauryl peroxide, peroxide carbonates, e.g. cetyl peroxydicarbonate or azo compounds. The amount of water-soluble initiator can be in the range 0.01 - 5% calculated on the amount of monomer used, and is preferably in the range 0.1 - 2%.

Egnede flytende, flyktige drivmidler-er: petroleter," pentan, '-••-^ iso-pentan, neo-pentan, heksan, heptan, cyklopentan, cyklo-heksan, isobuten, n-butan og iso-butan. Drivmidlet kan på kjent måte anvendes i mengder på 2 - 95, fortrinnsvis 5-40 vekt-% beregnet på monomerene. Suitable liquid, volatile propellants are: petroleum ether," pentane, '-••-^ iso-pentane, neo-pentane, hexane, heptane, cyclopentane, cyclo-hexane, isobutene, n-butane and iso-butane. The propellant can known way is used in amounts of 2-95, preferably 5-40% by weight calculated on the monomers.

Fremgangsmåten ifølge oppfinnelsen kan tilpasses på alle etenisk umettede monomerer eller blandinger av forskjellige monomerer som kan danne polymerperler hvilke inneholder drivmiddel. Som eksempel på slike monomerer kan nevnes styren, vinylidenklorid, akrylestere, metakrylestere, akrylnitril og metakrylnitril. The method according to the invention can be adapted to all ethylenically unsaturated monomers or mixtures of different monomers which can form polymer beads which contain a propellant. Examples of such monomers include styrene, vinylidene chloride, acrylic esters, methacrylic esters, acrylonitrile and methacrylonitrile.

Fremgangsmåten anvendes fortrinnsvis for ekspanderbare perler av styren eller styren og opptil 40% av dets vekt av kopolymer-iserbare etenisk umettede monomerer, spesielt kopolymerer av styren med opptil 40 vekt-% akrylnitril beregnet på styrenet, eller kopolymerer av vinylidenklorid og opptil 40 vekt-%, beregnet på vinylidenkloridet, av akrylnitril eller vinylklorid, spesielt kopolymerer av 65 - 90 vekt-% vinylidenklorid og 35 - 10 vekt-% akrylnitril. Perlene fremstilles fortrinnsvis ved kopolymerisasjon hvorved en komonomer er akrylnitril eller metakrylnitril. The method is preferably used for expandable beads of styrene or styrene and up to 40% of its weight of copolymerizable ethylenically unsaturated monomers, in particular copolymers of styrene with up to 40% by weight of acrylonitrile calculated on the styrene, or copolymers of vinylidene chloride and up to 40% by weight , calculated on the vinylidene chloride, of acrylonitrile or vinyl chloride, especially copolymers of 65 - 90% by weight vinylidene chloride and 35 - 10% by weight acrylonitrile. The beads are preferably produced by copolymerization whereby a comonomer is acrylonitrile or methacrylonitrile.

Karakteristisk for fremgangsmåten er anvendelsen av et Characteristic of the method is the use of a

kar som er helt fylt med reaksjonsmedium under varmebehandlingen. Det er således åpenbart at alle kjente polymerisasjons-forskrifter for fremstilling av ekspanderbare perler fra oven-nevnte monomerer kan tilpasses. vessels that are completely filled with reaction medium during the heat treatment. It is thus obvious that all known polymerization regulations for the production of expandable beads from the above-mentioned monomers can be adapted.

Det er eventuelt mulig å holde autoklaven fylt under polymerisasjonen eller den avsluttende delen av denne ved å forbinde autoklaven med en ytre trykkilde eller et ekspansjonskar som er delvis fylt med vann og som har egnede organer for å an-bringe et trykk på vannflaten. Ifølge en utføresesform av oppfinnelsen avbrytes polymerisasjonen av perlene etter 70% om-vandling, fortrinnsvis 95%, hvoretter den vannløselige initiatoren tilsettes, autoklaven fylles og temperaturen økes ifølge oppfinnelsen under sluttpolymerisasjonen. It is possibly possible to keep the autoclave filled during the polymerization or the final part thereof by connecting the autoclave to an external pressure source or an expansion vessel which is partially filled with water and which has suitable means for applying a pressure to the water surface. According to one embodiment of the invention, the polymerization of the beads is interrupted after 70% conversion, preferably 95%, after which the water-soluble initiator is added, the autoclave is filled and the temperature is increased according to the invention during the final polymerization.

EKSEMPEL 1 ( sammenligningsforsøk) EXAMPLE 1 (comparison test)

Polymerisasjonsforsøket utførtes i en 13 liters autoklav ut-styrt med rører og en kappe for oppvarming og kjøling av reaksjonsmediet. Autoklaven var forbundet med et ytre kar, hvilket også anvendtes for tilsetning av monomerblandingen til reak-toren. The polymerization experiment was carried out in a 13 liter autoclave equipped with stirrers and a jacket for heating and cooling the reaction medium. The autoclave was connected to an outer vessel, which was also used for adding the monomer mixture to the reactor.

Følgende forskrift ble anvendt for sammensetningen av systemet: The following regulations were used for the composition of the system:

Vannet, 8,0 1, sattes sammen med suspensjonsmidlet til autoklaven og denne ble evakuert 900 sek. Vinylidenklorid, akrylnitril, pentan og initiator (totalt 2,9 1) sattes til autoklaven fra det ytre karet. Temperaturen ble øket til 55°C og holdt der i 12 timer. Forbindelsen mellom autoklaven og det ytre karet ble brutt og ved disse betingelser steg trykket til ca. 500 kPa. The water, 8.0 1, was added together with the suspending agent to the autoclave and this was evacuated for 900 sec. Vinylidene chloride, acrylonitrile, pentane and initiator (total 2.9 L) are added to the autoclave from the outer vessel. The temperature was increased to 55°C and held there for 12 hours. The connection between the autoclave and the outer vessel was broken and under these conditions the pressure rose to approx. 500 kPa.

Autoklaven kjøltes fra 55°C til ca. 25°C. Den erholdte suspen-sjonen av perler inneholdt ikke forekspanderte perler, og mengden avfall, som ble samlet på en DIN 60 sikt, var omtrent 15 g pr. 1000 g tilsatt monomer. The autoclave was cooled from 55°C to approx. 25°C. The resulting suspension of beads did not contain pre-expanded beads, and the amount of waste collected on a DIN 60 sieve was approximately 15 g per 1000 g added monomer.

Mengdene av restmonomerer i <p>erlene var: akrylnitril 3200 mg/kg og vinylidenklorid 29000 mg/kg. Mengde akrylnitril i prosessvannet var 1410 mg/kg. The amounts of residual monomers in the beads were: acrylonitrile 3200 mg/kg and vinylidene chloride 29000 mg/kg. The amount of acrylonitrile in the process water was 1410 mg/kg.

EKSEMPEL 2 ( sammenligningsforsøk) EXAMPLE 2 (comparison test)

Polymerisasjonen utførtes med samme forskrift og ifølge samme fremgangsmåte som i eksempel 1. Imidlertid tilsattes 1,0 deler kaliumpersulfat i vannløsning til autoklaven etter 12 timers polymerisasjon og temperaturen ble øket til 7 5°C og holdt der i 4 timer. Mengden avfall var mer enn 100 q. pr. 1000 g tilsatt monomer. The polymerization was carried out with the same regulations and according to the same procedure as in example 1. However, 1.0 parts of potassium persulfate in water solution were added to the autoclave after 12 hours of polymerization and the temperature was increased to 75°C and held there for 4 hours. The amount of waste was more than 100 q. per 1000 g added monomer.

Mengden restmonomer i perlene var: akrylnitril 50 mg/kg og vinylidenklorid 1500 mg/kg og mengden akrylnitril i prosessvannet var 30 mg/kg. Som det fremgår av dette eksempel redu-sertes monomerinnholdet i <p>erlene og prosessvannet betydelig, mens mengden avfall var uakseptabelt høy. The amount of residual monomer in the beads was: acrylonitrile 50 mg/kg and vinylidene chloride 1500 mg/kg and the amount of acrylonitrile in the process water was 30 mg/kg. As can be seen from this example, the monomer content in the pearls and the process water was significantly reduced, while the amount of waste was unacceptably high.

EKSEMPEL 3 EXAMPLE 3

Polymerisasjonen ble utført etter samme forskrift og ifølge samme fremgangsmåte som i eksempel 1. Imidlertid tilsattes 1,0 deler kaliumpersulfat i vannløsning til autoklaven etter 12 timers polymerisasjon. Autoklaven ble forbundet med det ytre karet og holdt helt fylt med vann fra dette ved et trykk på 850 kPa. Temperaturen ble øket til 75°C og holdt der i 4 timer. The polymerization was carried out according to the same regulations and according to the same procedure as in example 1. However, 1.0 parts of potassium persulfate in water solution were added to the autoclave after 12 hours of polymerization. The autoclave was connected to the outer vessel and kept completely filled with water from this at a pressure of 850 kPa. The temperature was increased to 75°C and held there for 4 hours.

Mengden avfall var 15 g pr. 1000 g tilsatt monomer. Mengden restmonomerer i perlene var: akrylnitril 50 mg/kg og vinylidenklorid 1450 mg/kg. Mengden akrylnitril i prosessvannet var 25 mg/kg. The amount of waste was 15 g per 1000 g added monomer. The amount of residual monomers in the beads was: acrylonitrile 50 mg/kg and vinylidene chloride 1450 mg/kg. The amount of acrylonitrile in the process water was 25 mg/kg.

Ved å holde autoklaven helt fylt med vann ifølge oppfinnelsen kunne monomerinnholdet i perlene og prosessvannet reduseres betydelig og mengden forekspanderte perler holdes på et mini-mum. By keeping the autoclave completely filled with water according to the invention, the monomer content in the beads and process water could be significantly reduced and the amount of pre-expanded beads kept to a minimum.

EKSEMPEL 4 EXAMPLE 4

En rekke forsøk ble utført med forskjellige monomersys-temer. Forsøkene ble utført i en 13 liters autoklav ut-styrt med rører og en kappe for kjøling og varming av reaksjonsmediet. Autoklaven var forbundet med en ytre tank som også ble anvendt for satsing av monomer til autoklaven. A number of experiments were carried out with different monomer systems. The experiments were carried out in a 13 liter autoclave equipped with stirrers and a jacket for cooling and heating the reaction medium. The autoclave was connected to an external tank which was also used for feeding monomer to the autoclave.

Følgende oppskrift ble anvendt, idet alle mengder er angitt som vektdeler: 8 liter vann ble tilført autoklaven sammen med suspensjons-midlene og autoklaven ble evakuert i 900 sekunder. Monomer henholdsvis monomerblanding, drivmiddel og initiator (til sammen 2,9 liter) ble tilført autoklaven fra den ytre tanken, hvoretter forbindelsen mellom tanken og autoklaven ble brutt. Temperaturen ble øket til 55°C og holdt der i 12 timer. Deretter ble autoklaven avkjølt til ca. 25°C, og den erholdte suspensjon av perler undersøkt med hensyn til restmonomerinnhold. Resultatene fremgår av den følgende tabell. The following recipe was used, with all amounts given as parts by weight: 8 liters of water were added to the autoclave together with the suspending agents and the autoclave was evacuated for 900 seconds. Monomer or monomer mixture, propellant and initiator (2.9 liters in total) were fed into the autoclave from the outer tank, after which the connection between the tank and the autoclave was broken. The temperature was increased to 55°C and held there for 12 hours. The autoclave was then cooled to approx. 25°C, and the resulting suspension of beads examined for residual monomer content. The results appear in the following table.

Forsøket ble gjentatt med den forskjell at etter 12 timers polymerisasjon ble 1,0 deler kaliumpersulfatløsning tilsatt autoklaven. Autoklaven ble forbundet med den ytre tank og holdt helt fylt med vann fra tanken ved et trykk på 850 kPa. Temperaturen ble øket til 75 C og holdt der i 6 timer. Deretter ble restmonomerinnholdet undersøkt i de behandlede perler. Resultatet fremgår av tabellen. The experiment was repeated with the difference that after 12 hours of polymerization, 1.0 parts of potassium persulphate solution were added to the autoclave. The autoclave was connected to the outer tank and kept completely filled with water from the tank at a pressure of 850 kPa. The temperature was increased to 75 C and held there for 6 hours. The residual monomer content was then examined in the treated beads. The result is shown in the table.

Restmonomerinnhold mg/kg polymer uten redusering med redusering Residual monomer content mg/kg polymer without reduction with reduction

Claims (5)

1. Fremgangsmåte ved reduksjon av monomerinnholdet i ekspanderbare termoplastperler fremstilt ved polymerisasjon av en etenisk umettet monomer eller blanding av monomerer, spesielt slike hvor en av monomerene er akrylnitril, i vannholdig suspensjon i nærvær av et drivmiddel, karakterisert ved at en oppslemming av de ekspanderbare perler og vann i nærvær av en vannløselig initiator for etenisk umettede monomerer oppvarmes til en temperatur i området 65-150°C i et kar som er fullstendig fylt med flytende medium under et slikt trykk at det flytende mediet ikke kan strømme ut fra karet, inntil en vesentlig del av monomerinnholdet er redusert.1. Method for reducing the monomer content in expandable thermoplastic beads produced by polymerization of an ethylenically unsaturated monomer or mixture of monomers, especially those where one of the monomers is acrylonitrile, in an aqueous suspension in the presence of a propellant, characterized in that a slurry of the expandable beads and water in the presence of a water-soluble initiator for ethylenically unsaturated monomers is heated to a temperature in the range of 65-150°C in a vessel which is completely filled with liquid medium under such a pressure that the liquid medium cannot flow out of the vessel, until a a substantial part of the monomer content is reduced. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at behandlingen utføres i polymerisasjonsautoklaven.2. Method according to claim 1, characterized in that the treatment is carried out in the polymerization autoclave. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at behandlingen utføres ved temperaturer i området 70-120°C.3. Method according to claim 1 or 2, characterized in that the treatment is carried out at temperatures in the range 70-120°C. 4. Fremgangsmåte ifølge krav 1 til 3, karakterisert ved at vdet som flytende medium anvendes vann.4. Method according to claims 1 to 3, characterized in that water is used as the liquid medium. 5. Fremgangsmåte ifølge krav 1 til 4, karakterisert ved at oppslemmingen av ekspanderbare perler polymeriseres til en omsetningsgrad på mer enn 70% før tilsetningen av den vannløselige initiatoren.5. Method according to claims 1 to 4, characterized in that the slurry of expandable beads is polymerized to a degree of conversion of more than 70% before the addition of the water-soluble initiator.
NO791908A 1978-06-08 1979-06-07 PROCEDURE FOR REDUCING MONOMER CONTENT IN EXPANDABLE THERMOPLAST Beads. NO151663C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7806665A SE429238B (en) 1978-06-08 1978-06-08 SET TO REDUCE MONOMER CONTENT IN EXPANDABLE TERMOPLASTES

Publications (3)

Publication Number Publication Date
NO791908L NO791908L (en) 1979-12-11
NO151663B true NO151663B (en) 1985-02-04
NO151663C NO151663C (en) 1985-05-15

Family

ID=20335152

Family Applications (1)

Application Number Title Priority Date Filing Date
NO791908A NO151663C (en) 1978-06-08 1979-06-07 PROCEDURE FOR REDUCING MONOMER CONTENT IN EXPANDABLE THERMOPLAST Beads.

Country Status (15)

Country Link
JP (1) JPS5835618B2 (en)
AT (1) AT379162B (en)
AU (1) AU512761B2 (en)
BE (1) BE876836A (en)
CA (1) CA1105650A (en)
CH (1) CH642384A5 (en)
DE (1) DE2923310B2 (en)
DK (1) DK238379A (en)
FI (1) FI65793C (en)
FR (1) FR2428057A1 (en)
GB (1) GB2025429B (en)
IT (1) IT1116551B (en)
NL (1) NL177497C (en)
NO (1) NO151663C (en)
SE (1) SE429238B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550003A (en) * 1983-12-13 1985-10-29 Asahi Kasei Kogyo Kabushiki Kaisha Vinylidene chloride type resin expandable particles, foam particles, in-mold foam molding by use thereof and process for producing them
US10093783B2 (en) 2014-11-26 2018-10-09 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and application thereof
CN109456506A (en) * 2018-11-07 2019-03-12 西能化工科技(上海)有限公司 The heat-expandable microsphere and preparation method thereof of low residual monomer content

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH439717A (en) * 1961-08-22 1967-07-15 Marek Oldrich Process for the production of foamable thermoplastic polymers
US3425966A (en) * 1965-03-01 1969-02-04 Dow Chemical Co Three stage suspension polymerization process for vinyl aryl monomers
FR1480502A (en) * 1965-05-13 1967-05-12 Foster Grant Co Inc Process for preparing expandable plastic particles
DE2511315A1 (en) * 1975-03-19 1976-09-23 Sealed Air Corp METHOD OF MANUFACTURING FOAMABLE STYLE POLYMER PIECES
DE2734607A1 (en) * 1977-08-01 1979-02-15 Basf Ag PROCESS FOR THE MANUFACTURING OF SPHERICAL EXPANDABLE STYRENE POLYMERIZES

Also Published As

Publication number Publication date
SE429238B (en) 1983-08-22
IT1116551B (en) 1986-02-10
NO791908L (en) 1979-12-11
DE2923310B2 (en) 1980-12-11
JPS5835618B2 (en) 1983-08-03
GB2025429A (en) 1980-01-23
IT7949329A0 (en) 1979-06-06
CA1105650A (en) 1981-07-21
FI65793C (en) 1984-07-10
NL7904447A (en) 1979-12-11
FR2428057A1 (en) 1980-01-04
ATA386279A (en) 1985-04-15
AU512761B2 (en) 1980-10-23
CH642384A5 (en) 1984-04-13
NL177497C (en) 1985-10-01
BE876836A (en) 1979-12-07
NO151663C (en) 1985-05-15
GB2025429B (en) 1982-12-01
DK238379A (en) 1979-12-09
NL177497B (en) 1985-05-01
FR2428057B1 (en) 1984-09-14
DE2923310A1 (en) 1979-12-13
FI781847A7 (en) 1979-12-09
JPS54163966A (en) 1979-12-27
FI65793B (en) 1984-03-30
AU4720079A (en) 1979-12-13
SE7806665L (en) 1979-12-09
AT379162B (en) 1985-11-25

Similar Documents

Publication Publication Date Title
US4098977A (en) Method for preparing polymers from water soluble vinyl monomers
JP4162396B2 (en) Process for producing a copolymer in the presence of a chain transfer agent
EP0003957A1 (en) Process for reducing the residual styrene level of a polystyrene latex
US4147845A (en) Reducing the monomer content in expandable thermoplastic beads
US5430127A (en) Process for minimizing residual monomers
NO761676L (en)
NO752264L (en)
NO324456B1 (en) Fluorinated, hydrophilic polymers, their use and polyvalent firefighting foam concentrate
US4835222A (en) Alkylation of vinyl aromatic polymer
NO151663B (en) PROCEDURE FOR REDUCING MONOMER CONTENT IN EXPANDABLE THERMOPLAST Beads
NO753931L (en)
GB1101975A (en) Method of controlling a polymerisation process in a closed container
Ecoscia et al. Emulsion polymerization of vinylidene fluoride: Effects of mixing and reaction conditions on the initial rate of polymerization
EP2297210A1 (en) Packaged formulation comprising a compound liable to exothermic decomposition
NO333033B1 (en) Polymerization Procedure for Oct Polymerization Reactor Yield Using a Specific Initiator System
UA77245C2 (en) Process for polymerization of mixture containing vinylchloride monomer
NO121808B (en)
NO122862B (en)
US4195168A (en) Method of treating suspensions of vinyl chloride/vinyl acetate copolymers
GB1334150A (en) Process for the preparation of foamable styrene polymers
Salazar et al. Towards the production of green/odorless latexes
US3558577A (en) Temperature control of vinyl ester polymerization in an aqueous emulsion
US4078136A (en) Process for the production of a copolymer from a gaseous monomer and a liquid monomer
CN115279823A (en) Expandable resin particles, expandable particles, expanded molded article, and process for producing expandable resin particles
Gustin et al. Understanding vinyl acetate polymerization accidents