NO147833B - PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACID ANHYDRIDS BY CARBONYLATION - Google Patents

PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACID ANHYDRIDS BY CARBONYLATION Download PDF

Info

Publication number
NO147833B
NO147833B NO75751378A NO751378A NO147833B NO 147833 B NO147833 B NO 147833B NO 75751378 A NO75751378 A NO 75751378A NO 751378 A NO751378 A NO 751378A NO 147833 B NO147833 B NO 147833B
Authority
NO
Norway
Prior art keywords
iodide
carbonylation
reaction
anhydride
bromide
Prior art date
Application number
NO75751378A
Other languages
Norwegian (no)
Other versions
NO751378L (en
NO147833C (en
Inventor
Colin Hewlett
Original Assignee
Halcon Res & Dev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO743165A external-priority patent/NO147183C/en
Publication of NO751378L publication Critical patent/NO751378L/no
Application filed by Halcon Res & Dev filed Critical Halcon Res & Dev
Publication of NO147833B publication Critical patent/NO147833B/en
Publication of NO147833C publication Critical patent/NO147833C/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cephalosporin Compounds (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte av den art som er angitt i kravets ingress. The present invention relates to a method of the type stated in the preamble of the claim.

Eddiksyreanhydrid har i mange år vært kjent som et industri-elt kjemikalie og store mengder anvendes ved fremstilling av celluloseacetat. Det fremstilles vanligvis i industri-ell skala ved omsetning av keten og eddiksyre. Det er også kjent at eddiksyreanhydrid kan fremstilles ved spaltning av etylidendiacetat, såvel som ved oksydasjon av acetalde-hyd. Hver av disse klassiske fremgangsmåter er beheftet med velkjente ulempler og man har lenge søkt etter en for-bedret fremgangsmåte for fremstilling av eddiksyreanhydrid. Acetic anhydride has for many years been known as an industrial chemical and large quantities are used in the production of cellulose acetate. It is usually produced on an industrial scale by reacting ketene and acetic acid. It is also known that acetic anhydride can be produced by splitting ethylidene diacetate, as well as by oxidizing acetaldehyde. Each of these classical methods is subject to well-known disadvantages and an improved method for the production of acetic anhydride has long been searched for.

I US-patent nr. 2.729.561, 2.730.546 og 2.789.137 er det foreslått å fremstille anhydrider ved å omsette karbonmonoksyd med forskjellige reaktanter (karbonylering). Imidlertid har slike tidligere forslag innbefattende karbonylerings-reaksjoner krevet anvendelse av meget høye trykk. Karbonylering ved lavere trykk er foreslått som en mulig måte for fremstilling av eddiksyre. Eksempelvis beskrives i fransk patent 1.573.130 karbonylering av metanol og blandinger av metanol og metylacetat i nærvær av forbindelser av iridium, platina, palladium, osmium og ruthenium og i nærvær av et bromid eller et jodid under trykk som er mere moderate enn de som er foreslått i de ovenfor nevnte patentskrifter. In US Patent Nos. 2,729,561, 2,730,546 and 2,789,137, it is proposed to prepare anhydrides by reacting carbon monoxide with various reactants (carbonylation). However, such previous proposals involving carbonylation reactions have required the use of very high pressures. Carbonylation at lower pressure has been proposed as a possible way to produce acetic acid. For example, French patent 1,573,130 describes the carbonylation of methanol and mixtures of methanol and methyl acetate in the presence of compounds of iridium, platinum, palladium, osmium and ruthenium and in the presence of a bromide or an iodide under pressures that are more moderate than those proposed in the above-mentioned patent documents.

På tilsvarende måte fremstilles i henhold til svensk ut-legningsskrift 364255 eddiksyre fra de ovenfor nevnte reaktanter under anvendelse av en rhodium-forbindelse i kombi-nasjon med et bromid eller et jodid. I senere tid er i US-patentene 3.689.533 og 3.717.670 åpenbart en dampfase-prosess for fremstilling av eddiksyre under anvendelse av forskjellige katalysatorer omfattende en rhodiumbestanddel dispergert på en bærer. Ingen av disse nylig beskrevne karbonyleringsprosesser vedrører eller er påtenkt brukt for fremstilling av eddiksyreanhydrider eller andre karboksylsyreanhydrider. In a similar way, according to Swedish publication 364255, acetic acid is produced from the above-mentioned reactants using a rhodium compound in combination with a bromide or an iodide. More recently, US patents 3,689,533 and 3,717,670 disclose a vapor phase process for the production of acetic acid using various catalysts comprising a rhodium component dispersed on a support. None of these recently described carbonylation processes relate to or are intended to be used for the production of acetic anhydrides or other carboxylic anhydrides.

Ifølge foreliggende oppfinnelse tilveiebringes en fremgangsmåte for fremstilling av karboksylsyreanhydrider, spesielt lavere alkansyreanhydrider, såsom eddiksyreanhydrid (hvor de tidligere høye anvendte trykk ikke er nødvendig). Fremgangs-måten er særpreget ved det som er angitt i kravets karak-teriserende del. According to the present invention, a method is provided for the production of carboxylic anhydrides, especially lower alkanoic anhydrides, such as acetic anhydride (where the previously high pressures used are not necessary). The procedure is characterized by what is stated in the characterizing part of the claim.

Således kan eksempelvis eddiksyreanhydrid fremstilles effek-tivt ved å omsette metyljodid med karbonmonoksyd ved moderate CO-partialtrykk, denne karbonyleringsreaksjonen utføres i nærvær av gruppe VIII edelmetallkatalysator, hvoretter det erholdte acetyljodid omsettes med metylacetat. I de ovenfor nevnte reaksjoner kan jodidene erstattes med de tilsvarende bromider. På tilsvarende måte kan andre lavere alkansyreanhydrider, eksempelvis anhydrider av lavere alkansyrer, såsom propionsyreanhydrid, smørsyreanhydrid og valer-iansyreanhydrid fremstilles ved først å fremstille det tilsvarende acylhalogenid, ved karbonylering, såsom propion-yljodid, propionylbromid, butyryljodid, butyrylbromid etc, som deretter omsettes med et lavere alkylalkanoat eller en lavere alkyleter. Thus, for example, acetic anhydride can be produced effectively by reacting methyl iodide with carbon monoxide at moderate CO partial pressures, this carbonylation reaction is carried out in the presence of a group VIII noble metal catalyst, after which the obtained acetyl iodide is reacted with methyl acetate. In the above-mentioned reactions, the iodides can be replaced by the corresponding bromides. In a similar way, other lower alkanoic anhydrides, for example anhydrides of lower alkanoic acids, such as propionic anhydride, butyric anhydride and valerian anhydride can be prepared by first preparing the corresponding acyl halide, by carbonylation, such as propionyl iodide, propionyl bromide, butyryl iodide, butyryl bromide etc., which are then reacted with a lower alkyl alkanoate or a lower alkyl ether.

På tilsvarende måte kan fremstilles andre karboksylsyreanhydrider, eksempelvis anhydrider av andre alkansyrer, såsom de inneholdende opptil 12 karbonatomer, eksempelvis kaprylsyre-anhydrider, kaprinsyreanhydrider og laurinsyreanhydrider av monocykliske aromatiske monokarboksylsyrer, såsom benzosyre. Slik som er tilfelle for de lavere alkansyreanhydrider kan disse høyere anhydrider frems.tilles ved i det andre trinn å omsette det tilsvarende acylhalogenid, såsom kaprylyljodid, kaprylylbromid, dekanoyljodid, dekanoylbromid, dodekanoyl-jodid, dodekanoylbromid, benzoylbromid, benzoyljodid med passende ester, eksempelvis alkylalkanoater inneholdende opptil 11 karbonatomer i alkylgruppen og opptil 12 karbonatomer i karboksylat- eller acylgruppen, eller arylestere eller tilsvarende etere, såsom heptylkaprylat, nonylkaptoat, undecyllaurat, fenylbenzoat, heptyleter, nonyleter og fenyl-eter. I hvert tilfelle, slik som beskrevet i forbindelse med de lavere alkansyreanhydrider fremstilles i det første trinn acylhalogenidet ved å omsette det tilsvarende alkyl-eller arylhalogenid med karbonmonoksyd i nærvær av en gruppe VIII edelmetallkatalysator for å effektuere karbonyleringsreaksjonen. Other carboxylic anhydrides can be prepared in a similar way, for example anhydrides of other alkanoic acids, such as those containing up to 12 carbon atoms, for example caprylic anhydrides, capric anhydrides and lauric anhydrides of monocyclic aromatic monocarboxylic acids, such as benzoic acid. As is the case for the lower alkanoic anhydrides, these higher anhydrides can be produced by reacting in the second step the corresponding acyl halide, such as caprylyl iodide, caprylyl bromide, decanoyl iodide, decanoyl bromide, dodecanoyl iodide, dodecanoyl bromide, benzoyl bromide, benzoyl iodide with a suitable ester, for example alkyl alkanoates containing up to 11 carbon atoms in the alkyl group and up to 12 carbon atoms in the carboxylate or acyl group, or aryl esters or equivalent ethers, such as heptyl caprylate, nonyl captoate, undecyl laurate, phenyl benzoate, heptyl ether, nonyl ether and phenyl ether. In each case, as described in connection with the lower alkanoic anhydrides, the acyl halide is prepared in the first step by reacting the corresponding alkyl or aryl halide with carbon monoxide in the presence of a Group VIII noble metal catalyst to effect the carbonylation reaction.

Det er foretrukket at reaktanten velges slik at det erholdte anhydrid vil være et symmetrisk anhydrid, dvs. hvor R i hver av ligningene (1) og (2) eller (1) og (3) er like i hvert tilfelle, men fremgangsmåten kan anvendes for å fremstille ikke-symmetriske eller blandede anhydrider og dette kan lett effektueres under anvendelse av forskjellige kombinasjoner av reaktanter, dvs. ved anvendelse av forbindelser med forskjellige R grupper i de foregående reaksjoner, slik som vil være åpenbart for en fagmann. It is preferred that the reactant is chosen so that the anhydride obtained will be a symmetrical anhydride, i.e. where R in each of the equations (1) and (2) or (1) and (3) is the same in each case, but the method can be used to prepare non-symmetrical or mixed anhydrides and this can be easily effected using different combinations of reactants, i.e. using compounds with different R groups in the preceding reactions, as will be obvious to a person skilled in the art.

De ovenfor beskrevne reaksjoner kan uttrykkes på følgende måte: The reactions described above can be expressed as follows:

hvori R er en alkylgruppe med 1-11 karbonatomer, eller monocyklisk aryl, f.eks. fenyl eller alkaryl, eksempelvis benzyl. Fortrinnsvis er R lavere alkyl, dvs. en alkylgruppe med 1-4 karbonatomer, såsom metyl, etyl, n-propyl, i-propyl, n-butyl, sec-butyl, iso-butyl og t-butyl, og hvor X er I eller Br. in which R is an alkyl group with 1-11 carbon atoms, or monocyclic aryl, e.g. phenyl or alkaryl, for example benzyl. Preferably R is lower alkyl, i.e. an alkyl group with 1-4 carbon atoms, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, iso-butyl and t-butyl, and where X is I or Bro.

Det mere lettflyktige alkylhalogenid og uomsatt acylhalogenid og etere eller estere i sluttproduktblandingen kan lett fjernes ved destillasjon, for resirkulering, og netto utbyt-te av produktet er i vesentlige utelukkende det ønskede karboksylsyreanhydrid. For tilfelle av en væskefasereaksjon, som er foretrukket, kan de organiske forbindelser lett fjernes fra edelmetallkatalysatoren ved destillasjon. Ved den ovenfor beskrevne reaksjon dannes det ikke vann og vannfrie eller i det vesentlige vannfrie reaktanter anvendes da det er viktig å arbeide under i det alt vesentlige vannfrie betingelser. The more volatile alkyl halide and unreacted acyl halide and ethers or esters in the final product mixture can be easily removed by distillation, for recycling, and the net yield of the product is essentially exclusively the desired carboxylic anhydride. In the case of a liquid phase reaction, which is preferred, the organic compounds can be easily removed from the noble metal catalyst by distillation. In the reaction described above, no water is formed and anhydrous or essentially anhydrous reactants are used as it is important to work under essentially anhydrous conditions.

Prosessen utføres i to trinn ved at acylhalogenidet fremstilles ved karbonylering ved å omsette et hydrokarbylhalogenid, eksempelvis metyljodid, og karbonmonoksyd i en første reaksjonssone i nærvær av en gruppe VIII edelmetallkatalysator for fremstilling av et acylhalogenid, eksempelvis acyl-jodid, som deretter overføres til en andre reaksjonssone og acylhalogenidet omsettes med esteren, eksempelvis en lavere alkansyre eller en hydrokarbyleter, eksempelvis en lavere alkyleter for å gi det ønskede karboksylsyreanhydrid og hvorved hydrokarbylhalogenidet regenereres. Hydrokarbylhalogenidet skilles fra det erholdte syreanhydrid ved destillasjon og resirkuleres til første trinns reaksjonssone for karbonylering, ikke-omsatt acylhalogenid og ester eller eter blir også resirkulert og karboksylsyreanhydridet gjenvinnes som det eneste nettoprodukt. The process is carried out in two stages by the acyl halide being produced by carbonylation by reacting a hydrocarbyl halide, for example methyl iodide, and carbon monoxide in a first reaction zone in the presence of a group VIII noble metal catalyst to produce an acyl halide, for example acyl iodide, which is then transferred to a second reaction zone and the acyl halide are reacted with the ester, for example a lower alkanoic acid or a hydrocarbyl ether, for example a lower alkyl ether to give the desired carboxylic acid anhydride and whereby the hydrocarbyl halide is regenerated. The hydrocarbyl halide is separated from the obtained acid anhydride by distillation and recycled to the first stage reaction zone for carbonylation, unreacted acyl halide and ester or ether are also recycled and the carboxylic anhydride is recovered as the only net product.

Når reaksjonen mellom hydrokarbylhalogenidet og karbonmonoksyd utføres, er temperaturer innen et vidt område, eksempelvis 20 - 500 C egnede, men temperaturer i området 100 - 350°C anvendes fortrinnsvis og mere foretrukkede temperaturer ligg-er generelt i området 125 - 250°C. Temperaturer lavere enn de som er nevnt ovenfor kan anvendes, men dette kan føre til nedsatte reaksjonshastigheter, også høyere temperaturer kan anvendes med det oppnås ingen spesielle fordeler ved dette. Reaksjonstiden er ingen kritisk parameter for prosessen og vil i en stor grad være avhengig av den anvendte temperatur, men typiske oppholdstider vil eksempelvis generelt falle innen området 0,1 - 20 timer. Reaksjonen utføres naturlig-vis under overatmosfærisk trykk, men et av trekkene ved oppfinnelsen er at spesielt høye trykk ikke er nødvendig, selv om de om ønsket kan anvendes. Generelt utføres reaksjonen ved å anvende karbonmonoksyd-partialtrykk som fortrinnsvis er 0,35 - 140 kg/cm 2 manometer-trykk, og mest foretrukket 1,75 - 70 kg/cm <2>manometer-trykk, men kan, om ønsket, være i omradet 0,007 - 1050 kg/cm 2 manometer-trykk. When the reaction between the hydrocarbyl halide and carbon monoxide is carried out, temperatures within a wide range, for example 20 - 500°C are suitable, but temperatures in the range 100 - 350°C are preferably used and more preferred temperatures are generally in the range 125 - 250°C. Temperatures lower than those mentioned above can be used, but this can lead to reduced reaction rates, higher temperatures can also be used, but no particular advantages are obtained. The reaction time is not a critical parameter for the process and will largely depend on the temperature used, but typical residence times will, for example, generally fall within the range of 0.1 - 20 hours. The reaction is naturally carried out under superatmospheric pressure, but one of the features of the invention is that particularly high pressures are not necessary, although they can be used if desired. In general, the reaction is carried out using carbon monoxide partial pressure which is preferably 0.35 - 140 kg/cm 2 gauge pressure, and most preferably 1.75 - 70 kg/cm <2> gauge pressure, but may, if desired, be in the range 0.007 - 1050 kg/cm 2 manometer pressure.

Når en væskefasereaksjon anvendes, er det totale trykk det som er nødvendig for å bibeholde den ønskede væskefasen. Følgelig utføres en væskefasereaksjon passende i en auto-klav eller lignende apparat. Ved slutten av den ønskede oppholdstid overføres reaksjonsblandingen til en annen sone og oppvarmes. Fortrinnsvis innføres reaksjonsproduktet først i en destillasjonssone som kan være en fraksjonert de-stillasjonskolonne, som er effektiv for å separere eventuelt uomsatt hydrokarbylhalogenid som kan være tilstede og for å separere acylhalogenidet fra katalysatoren. Katalysatoren og hydrokarbylhalogenidet kan deretter resirkuleres til første trinns reaksjonssone. Alternativt kan disse separa-sjoner utelates og hele reaksjonsblandingen kan overføres til den andre reaksjonssone eller hydrokarbylhalogenidet eller kun katalysatoren kan fraskilles på dette punkt. When a liquid phase reaction is used, the total pressure is that required to maintain the desired liquid phase. Accordingly, a liquid phase reaction is conveniently carried out in an autoclave or similar apparatus. At the end of the desired residence time, the reaction mixture is transferred to another zone and heated. Preferably, the reaction product is first introduced into a distillation zone which may be a fractional distillation column, which is effective to separate any unreacted hydrocarbyl halide which may be present and to separate the acyl halide from the catalyst. The catalyst and hydrocarbyl halide can then be recycled to the first stage reaction zone. Alternatively, these separations can be omitted and the entire reaction mixture can be transferred to the second reaction zone or the hydrocarbyl halide or only the catalyst can be separated at this point.

I den andre reaksjonssonen omsettes acylhalogenidet med en karboksylsyreester eller hydrokarbyleter. Denne reaksjon kan utføres termisk hvis acylhalogenidet er separert fra gruppe VIII edelmetallkatalysatoren, eller hvis denne sepa-rasjon ikke har funnet sted, kan reaksjonen med esteren eller eteren finne sted i nærvær av katalysatoren. I begge tilfeller anvendes passende temperatur i området 0 - 300°C, en temperatur i området 20 - 250°C foretrukket og en temperatur i området 50 - 200°C er spesielt foretrukket. Under reaksjonsforløpet dannes karboksylsyreanhydridet og hydrokarbylhalogenidet regenereres. Den erholdte produktbland-ing vil inneholde det ønskede anhydrid og hydrokarbylhalogenidet, men den kan også inneholde ikke-omsatt ester eller eter og acylhalogenid, samt edelmetallkatalysatoren hvis denne ikke ble skilt fra før det andre reaksjonstrinnet. In the second reaction zone, the acyl halide is reacted with a carboxylic acid ester or hydrocarbyl ether. This reaction can be carried out thermally if the acyl halide is separated from the group VIII noble metal catalyst, or if this separation has not taken place, the reaction with the ester or ether can take place in the presence of the catalyst. In both cases, a suitable temperature in the range 0 - 300°C is used, a temperature in the range 20 - 250°C is preferred and a temperature in the range 50 - 200°C is particularly preferred. During the course of the reaction, the carboxylic acid anhydride is formed and the hydrocarbyl halide is regenerated. The resulting product mixture will contain the desired anhydride and the hydrocarbyl halide, but it may also contain unreacted ester or ether and acyl halide, as well as the noble metal catalyst if this was not separated before the second reaction step.

De organiske bestanddeler skilles lett fra hverandre ved konvensjonell fraksjonert destillasjon, idet hydrokarbylhalogenidet generelt er mest lettflyktig og anhydridet generelt minst lettflyktig, anhydridet kan lett destilleres fra den uorganiske katalysator, hvis denne er tilstede. The organic components are easily separated from each other by conventional fractional distillation, as the hydrocarbyl halide is generally the most volatile and the anhydride is generally the least volatile, the anhydride can be easily distilled from the inorganic catalyst, if this is present.

Det gjenvunnede hydrokarbylhalogenid resirkuleres passende til det første trinns reaksjonssone for karbonylering sammen med eventuelt gjenvunnet katalysator. Eventuell uomsatt ester eller eter og/eller acylhalogenid kan resirkuleres til andre trinns reaksjonssone og den gjenværende organiske bestanddel av reaksjonsblandingen, nemlig karboksylsyreanhydridet, gjenvinnes som det ønskede produkt. The recovered hydrocarbyl halide is suitably recycled to the first stage reaction zone for carbonylation along with any recovered catalyst. Any unreacted ester or ether and/or acyl halide can be recycled to the second stage reaction zone and the remaining organic component of the reaction mixture, namely the carboxylic anhydride, is recovered as the desired product.

Hydrokarbylhalogenidkarbonyleringen (ligning 1) diskutert ovenfor, utføres fortrinnsvis i nærvær av et oppløsningsmid-del eller fortynningsmiddel. Oppløsningsmiddelet eller for-tynningsmiddelet kan være et hvilket som helst organisk opp-løsningsmiddel som er inert under prosessbetingelsene, såsom hydrokarboner, eksempelvis oktan, benzen, toluen eller karboksylsyrer såsom eddiksyre eller lignende. Som opp-løsningsmiddel eller fortynningsmiddel velges fortrinnsvis et som har et kokepunkt tilstrekkelig forskjellig fra reaksjonsblandingens komponenter, slik at det lett kan fraskilles, hvilket vil være åpenbart for en fagmann. The hydrocarbyl halide carbonylation (equation 1) discussed above is preferably carried out in the presence of a solvent or diluent. The solvent or diluent can be any organic solvent which is inert under the process conditions, such as hydrocarbons, for example octane, benzene, toluene or carboxylic acids such as acetic acid or the like. As solvent or diluent, one is preferably chosen which has a boiling point sufficiently different from the components of the reaction mixture, so that it can be easily separated, which will be obvious to a person skilled in the art.

Gruppe VIII edelmetallkatalysator, dvs. iridium, osmium, platina, palladium, rhodium og ruthenium, kan anvendes i en hvilken som helst egnet form, dvs. null-valens-tilstand eller hvilken som helst høyere valens-tilstand. F.eks. Group VIII noble metal catalyst, i.e. iridium, osmium, platinum, palladium, rhodium and ruthenium, can be used in any suitable form, i.e. zero valence state or any higher valence state. E.g.

kan katalysatoren som tilsettes være selve metallet i finfordelt form eller som et metallkarbonat, -oksyd, -hydrok-syd, -bromid, -jodid, -klorid, -lavere alkoksyd (metoksyd), -fenoksyd eller metallkarboksylat hvori karboksylationet er avledet fra en alkansyre med 1-20 karbonatomer. På samme måt'e kan komplekser av metaller anvendes, f .eks. metallkarbonyler, såsom iridiumkarbonyler og rhodiumkar-bonyler eller som andre komplekser, såsom karbonylhalogenid-^ er,eksempelvis iridium-tri-karbonylklorid [Ir (CO)^Cl]2 eller som acetylacetonater, eksempelvis rhodium acetylaceto-nat Rh(C5H702)3. the catalyst that is added can be the metal itself in finely divided form or as a metal carbonate, -oxide, -hydroxy-syd, -bromide, -iodide, -chloride, -lower alkoxide (methoxide), -phenoxide or metal carboxylate in which the carboxylation is derived from an alkanoic acid with 1-20 carbon atoms. In the same way, complexes of metals can be used, e.g. metal carbonyls, such as iridium carbonyls and rhodium carbonyls or as other complexes, such as carbonyl halides, for example iridium tricarbonyl chloride [Ir (CO)^Cl]2 or as acetylacetonates, for example rhodium acetylacetonate Rh(C5H702)3.

Karbonmonoksyd anvendes fortrinnsvis i en i det vesentlige ren tilstand som er kommersielt tilgjengelig, men inerte fortynningsmidler såsom karbondioksyd, nitrogen, metan og edelgasser kan være tilstede om ønsket. Tilstedeværelse av inerte fortynningsmidler påvirker ikke karbonyleringsreaksjonen, men deres tilstedeværelse gjør det nødvendig å øke totaltrykket for å bibeholde det ønskede CO partialtrykk. Karbonmonoksydet bør, som de andre reaktanter, i det alt vesentlige være tørt, dvs. CO og de andre reaktanter bør i en rimelig grad være vannfrie. Tilstedeværelse av mindre mengder vann, slik som kan være tilfelle for kommersielt til-gjengelige former av reaktantene er imidlertid fullstendig akseptabelt. Carbon monoxide is preferably used in an essentially pure state which is commercially available, but inert diluents such as carbon dioxide, nitrogen, methane and noble gases may be present if desired. The presence of inert diluents does not affect the carbonylation reaction, but their presence makes it necessary to increase the total pressure to maintain the desired CO partial pressure. The carbon monoxide should, like the other reactants, be essentially dry, i.e. CO and the other reactants should be reasonably anhydrous. However, the presence of minor amounts of water, as may be the case for commercially available forms of the reactants, is completely acceptable.

Det er overraskende funnet at aktiviteten av gruppe VIII edelmetallkatalysatorene beskrevet ovenfor kan forbedres vesentlig, spesielt med hensyn til reaksjonshastighet og produktkonsentrasjon, ved en samtidig anvendelse av en promotor. Effektive promotorer innbefatter elementer med atomvekter større enn 5 i gruppene IA, IIA, HIA, IVB, VIB, ikke-edelmetaller i gruppene VIII og elementene i lantan og actin-gruppene i den periodiske tabell. Spesielt foretrukket er de metaller innen hver gruppe med de lavere atomvekter, eksempelvis de med atomvekter mindre enn 100, spesielt foretrukket er metallene i gruppe IA, IIA og HIA. Generelt er de mest egnede elementer litium, magnesium, kalsium, titanium, krom, jern, nikkel og aluminium. Mest foretrukket er litium, aluminium og kalsium, spesielt litium. Promotorene kan anvendes i deres elementærform dvs. som finfordelt eller pulveriserte metaller, eller de kan anvendes som forbindelser av forskjellige typer såvel organiske som uorganiske, og som er effektive med hensyn til å introdusere elementet i reaksjonssystemet. Typiske forbindelser av pro-motorelementene innbefattes således oksyder, hydroksyder, halogenider, såsom bromider og jodider, oksyhalogenider, hydrider, alkoksyder og lignende. Spesielt foretrukne organiske forbindelser er salter av organiske monokarboksylsyrer, eksempelvis alkanoater såsom acetater, butyrater, dekanoater og laurater, benzoater og lignende. Andre forbindelser innbefatter metallalkyler, karbonylforbindelser såvel som chelater, assosiasjonsforbindelser og enolsalter. Spesielt foretrukket er elementærformene, forbindelser som bromider eller jodider, samt organiske salter eksempelvis salter av monokarboksylsyren tilsvarende anhydridet som fremstilles. Blandinger av promotorer kan, om ønsket, også anvendes, spesielt blandinger av elementer fra forskjellige grupper i den periodiske tabell. Den eksakte mekanisme for promotoreffekten eller den eksakte form i hvilken promotoren virker, er ikke kjent, men det er bemerket at når promotoren tilsettes i en elementær form, dvs. som finfordelt metall, kan en kort induksjonsperiode observeres. It has surprisingly been found that the activity of the group VIII noble metal catalysts described above can be substantially improved, especially with regard to reaction rate and product concentration, by a simultaneous use of a promoter. Effective promoters include elements with atomic weights greater than 5 in groups IA, IIA, HIA, IVB, VIB, non-noble metals in groups VIII, and the elements in the lanthanum and actin groups of the periodic table. Particularly preferred are the metals within each group with the lower atomic weights, for example those with atomic weights less than 100, particularly preferred are the metals in group IA, IIA and HIA. In general, the most suitable elements are lithium, magnesium, calcium, titanium, chromium, iron, nickel and aluminum. Most preferred are lithium, aluminum and calcium, especially lithium. The promoters can be used in their elemental form, i.e. as finely divided or powdered metals, or they can be used as compounds of various types, both organic and inorganic, and which are effective in introducing the element into the reaction system. Typical compounds of the promoter elements thus include oxides, hydroxides, halides, such as bromides and iodides, oxyhalides, hydrides, alkoxides and the like. Particularly preferred organic compounds are salts of organic monocarboxylic acids, for example alkanoates such as acetates, butyrates, decanoates and laurates, benzoates and the like. Other compounds include metal alkyls, carbonyl compounds as well as chelates, association compounds and enol salts. Particularly preferred are the elementary forms, compounds such as bromides or iodides, as well as organic salts, for example salts of the monocarboxylic acid corresponding to the anhydride that is produced. Mixtures of promoters can, if desired, also be used, especially mixtures of elements from different groups in the periodic table. The exact mechanism of the promoter effect or the exact form in which the promoter acts is not known, but it is noted that when the promoter is added in an elemental form, ie as finely divided metal, a short induction period can be observed.

Promotormengden kan variere innen vide grenser og anvendes fortrinnsvis i en mengde på 0,0001 - 100 mol pr. mol av gruppe VIII edelmetallkatalysator og mere foretrukket 0,001 The amount of promoter can vary within wide limits and is preferably used in an amount of 0.0001 - 100 mol per moles of group VIII noble metal catalyst and more preferably 0.001

- 10 mol pr. mol katalysator. - 10 moles per moles of catalyst.

Ved opparbeidelse av reaksjonsblandingen, eksempelvis ved destillasjon som nevnt ovenfor, vil promotoren generelt forbli sammen med gruppe VIII edelmetallkatalysatoren, dvs. som en av de minst flyktige komponenter og kan passende resirkuleres eller på annen måte behandles sammen med katalysatoren . When working up the reaction mixture, for example by distillation as mentioned above, the promoter will generally remain together with the group VIII noble metal catalyst, i.e. as one of the least volatile components and can suitably be recycled or otherwise treated together with the catalyst.

Som tidligere indikert kan karbonyleringsreaksjonen også ut-føres, om ønsket, i dampfase ved passende kontroll av totaltrykket i forhold til temperaturen, slik at reaktantene er As previously indicated, the carbonylation reaction can also be carried out, if desired, in the vapor phase by suitable control of the total pressure in relation to the temperature, so that the reactants are

i dampform når de er i kontakt med katalysatoren. Både for dampfase og væskefasedrift er det ønskelig at katalysatoren og promotoren, dvs. katalysatorkomponentene, er båret på, dvs. dispergert på, en bærer av konvensjonell type såsom aluminiumoksyd, silisiumoksyd, silisiumkarbid, zirkonium-oksyd, karbon, bauxitt og attapulgittleire. Katalysatorkomponentene kan påføres bærerne på konvensjonell måte, eksempelvis ved impregnering av bæreren med en oppløsning av katalysatoren eller katalysatoren og promotoren, etterfulgt av tørking. Konsentrasjonen av katalysatorkomponenten på bæreren kan variere innen vide grenser, eksempelvis 0,01 - 10 vekts-% eller høyere in vapor form when in contact with the catalyst. For both vapor phase and liquid phase operation, it is desirable that the catalyst and promoter, i.e. the catalyst components, are supported on, i.e. dispersed on, a carrier of a conventional type such as aluminum oxide, silicon oxide, silicon carbide, zirconium oxide, carbon, bauxite and attapulite clay. The catalyst components can be applied to the carriers in a conventional manner, for example by impregnating the carrier with a solution of the catalyst or the catalyst and the promoter, followed by drying. The concentration of the catalyst component on the carrier can vary within wide limits, for example 0.01 - 10% by weight or higher

De følgende eksempler beskriver oppfinnelsen og i alle eksempler er alle deler og prosentangivelser henholdsvis vektdeler og vektprosenter hvis intet annet er angitt. The following examples describe the invention and in all examples all parts and percentages are respectively parts by weight and percentages by weight if nothing else is stated.

EKSEM PEL 1 Eczema PEL 1

Metyljodid (71 deler) og rhodiumtrikloridhydrat (0,83 deler) oppvarmes i blanding med 300 deler metylacetat ved 175 - 200°C i en omrørt rustfri stålautoklav forsynt med et indre belegg av "Hastelloy B" under en atmosfære av karbonmonoksyd (CO partialtrykk 51-41 kg/cm 2manometertrykk, totaltrykk 70 kg/cm 2 manometertrykk). Etter 3 timers reaksjonstid er 0,7 mol karbonmonoksyd absorbert pr. mol metyljodid og GC-analyse av reaksjonsblandingen viste at den inneholdt 7,7 % acetyljodid og 8,7 % eddiksyreanhydrid. Resten av reaksjonsblandingen besto av ikke-omsatte bestanddeler og katalysatoren. Autoklaven ble avkjølt og reaksjonsblandingen ble helt ut. Reaksjonsblandingen ble deretter fortynnet med 100 deler nonan for å fremme separasjonen og destillert under atmosfæretrykk gjennom en 15-bunners "Oldershaw" kolonne. Metyljodid og metylacetat destillerer over ved en temperatur på 45-57°C og deretter oppsamles en acetyljodid-fraksjon (18,7 deler) kp. 108-111°C etterfulgt av en to-fase eddiksyreanhydrid-nonan fraksjon kp. 113-127,5°C. Den nedre fase fraskilles (21,6 deler) og- identifiseres som i det vesentlige rent eddiksyreanhydrid ved GC-analyse og infrarød fotospektrometri. Methyl iodide (71 parts) and rhodium trichloride hydrate (0.83 parts) are heated in mixture with 300 parts of methyl acetate at 175 - 200°C in a stirred stainless steel autoclave provided with an inner coating of "Hastelloy B" under an atmosphere of carbon monoxide (CO partial pressure 51 -41 kg/cm 2 manometer pressure, total pressure 70 kg/cm 2 manometer pressure). After a reaction time of 3 hours, 0.7 mol of carbon monoxide has been absorbed per moles of methyl iodide and GC analysis of the reaction mixture showed that it contained 7.7% acetyl iodide and 8.7% acetic anhydride. The rest of the reaction mixture consisted of unreacted components and the catalyst. The autoclave was cooled and the reaction mixture was poured off. The reaction mixture was then diluted with 100 parts of nonane to promote separation and distilled at atmospheric pressure through a 15-well "Oldershaw" column. Methyl iodide and methyl acetate distill over at a temperature of 45-57°C and then an acetyl iodide fraction (18.7 parts) b.p. is collected. 108-111°C followed by a two-phase acetic anhydride-nonane fraction bp. 113-127.5°C. The lower phase is separated (21.6 parts) and identified as essentially pure acetic anhydride by GC analysis and infrared photospectrometry.

Metylacetat (3,7 deler) og det ovenfor erholdte acetyljodid (8,5 deler) oppvarmes sammen under tilbakeløp i 4 timer. Tilbakeløpskondensatoren holdes ved en temperatur på 45 - 50°C og ikke-kondensert damp fra denne kondensator konden-seres i en andre kondensator holdt ved 10°C. Metyljodid (2,8 deler) sammen med mindre mengder (ca. 15 %) metylacetat oppsamles fra den andre kondensator og blandingen som forblir i destillasjonsapparatet inneholder 20 vekts-% eddiksyreanhydrid (2,2 deler ) bestemt ved gasskromatograf-isk analyse (GC-analyse). Resten av destillasjonsblanding-en består av ikke-omsatt metylacetat og acetyljodid sammen med mindre mengder metyljodid. Methyl acetate (3.7 parts) and the acetyl iodide obtained above (8.5 parts) are heated together under reflux for 4 hours. The reflux condenser is kept at a temperature of 45 - 50°C and non-condensed steam from this condenser is condensed in a second condenser kept at 10°C. Methyl iodide (2.8 parts) together with smaller amounts (about 15%) of methyl acetate are collected from the second condenser and the mixture remaining in the still contains 20% by weight of acetic anhydride (2.2 parts) as determined by gas chromatographic analysis (GC- analysis). The rest of the distillation mixture consists of unreacted methyl acetate and acetyl iodide together with smaller amounts of methyl iodide.

EKSEMPEL 2 EXAMPLE 2

Eksemplet ble gjentatt under anvendelse av de respektive bromider med acetylbromid og metylbromid. Det ble erholdt tilsvarende resultater med hensyn til reaksjonsproduktene, men omsetningen er betydelig lavere. The example was repeated using the respective bromides of acetyl bromide and methyl bromide. Similar results were obtained with regard to the reaction products, but the turnover is significantly lower.

EKSEMPEL 3 EXAMPLE 3

Eksemplene 1 og 2 ble gjentatt men etylpropianat og etyl-jodid ble brukt i stedet for metylacetat, og metyljodid. Propionsyreanhydrid ble fremstilt på tilsvarende måte. Examples 1 and 2 were repeated but ethyl propionate and ethyl iodide were used instead of methyl acetate and methyl iodide. Propionic anhydride was prepared in a similar way.

EKSEMPEL 4 EXAMPLE 4

Eksemplene 1-3 ble gjentatt men det ble brukt en ekvivalent mengde dimetyleter i stedet for metylacetat. Tilsvarende fremstilling av eddiksyreanhydrid og acetyljodid ble iakt-tatt. Examples 1-3 were repeated but an equivalent amount of dimethyl ether was used instead of methyl acetate. Corresponding production of acetic anhydride and acetyl iodide was observed.

Claims (1)

Fremgangsmåte ved fremstilling av et anhydrid med den generelle formel hvori R er en alkylgruppe med 1-11 karbonatomer eller er en monocyklisk arylgruppe, ved karbonylering i nærvær av en metall-katalysator, karakterisert ved at et hydro-karbonbromid eller -jodid med den generelle formel hvori R har den ovenfor angitte betydning og X betyr brom eller jod, i et første trinn karbonyleres med karbonmonoksyd i nærvær av en gruppe VIII edelmetallkatalysator, eventuelt i nærvær av en promotor til et acylbromid eller -jodid med den generelle formel hvori R og X har den ovenfor angitte betydning, hvoretter det erholdte acylklorid eller -bromid omsettes under i alt vesentlige vannfrie betingelser med en karboksylester eller med en hydrokarboneter med henholdsvis de generelle formler hvori R har de ovenfor angitte betydninger.Process for the preparation of an anhydride of the general formula in which R is an alkyl group with 1-11 carbon atoms or is a monocyclic aryl group, by carbonylation in the presence of a metal catalyst, characterized in that a hydrocarbon bromide or iodide of the general formula in which R has the above meaning and X means bromine or iodine, in a first step is carbonylated with carbon monoxide in the presence of a group VIII noble metal catalyst, optionally in the presence of a promoter to an acyl bromide or -iodide with the general formula in which R and X have the meaning given above, after which the acyl chloride or bromide obtained is reacted under essentially anhydrous conditions with a carboxyl ester or with a hydrocarbon ether with respectively the general formulas in which R has the meanings given above.
NO751378A 1973-09-04 1975-04-17 PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACID ANHYDRIDS BY CARBONYLATION NO147833C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39422073A 1973-09-04 1973-09-04
US46797774A 1974-05-08 1974-05-08
NO743165A NO147183C (en) 1973-09-04 1974-09-03 PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACID ANHYDRIDES BY CARBONYLATION OF ETHERS OR ESTERS

Publications (3)

Publication Number Publication Date
NO751378L NO751378L (en) 1975-03-05
NO147833B true NO147833B (en) 1983-03-14
NO147833C NO147833C (en) 1983-06-29

Family

ID=27352710

Family Applications (3)

Application Number Title Priority Date Filing Date
NO751377A NO147835C (en) 1973-09-04 1975-04-17 PROCEDURE FOR THE PREPARATION OF MONOCARBOXYLIC ACID ESTERS BY CARBONYLATION
NO751376A NO147834C (en) 1973-09-04 1975-04-17 PROCEDURE FOR THE PREPARATION OF ACETIC ACID ANHYDRID BY ACYLATION OF ESTERS AND ETHERS
NO751378A NO147833C (en) 1973-09-04 1975-04-17 PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACID ANHYDRIDS BY CARBONYLATION

Family Applications Before (2)

Application Number Title Priority Date Filing Date
NO751377A NO147835C (en) 1973-09-04 1975-04-17 PROCEDURE FOR THE PREPARATION OF MONOCARBOXYLIC ACID ESTERS BY CARBONYLATION
NO751376A NO147834C (en) 1973-09-04 1975-04-17 PROCEDURE FOR THE PREPARATION OF ACETIC ACID ANHYDRID BY ACYLATION OF ESTERS AND ETHERS

Country Status (1)

Country Link
NO (3) NO147835C (en)

Also Published As

Publication number Publication date
NO751376L (en) 1975-03-05
NO147834C (en) 1983-06-29
NO751377L (en) 1975-03-05
NO147835B (en) 1983-03-14
NO751378L (en) 1975-03-05
NO147835C (en) 1983-06-29
NO147833C (en) 1983-06-29
NO147834B (en) 1983-03-14

Similar Documents

Publication Publication Date Title
US4559183A (en) Preparation of carboxylic acid anhydrides
NO147183B (en) PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACID ANHYDRIDES BY CARBONYLATION OF ETHERS OR ESTERS
US6130355A (en) Anhydrous carbonylation process for the production of acetic acid
US5917089A (en) Process for the carbonylation of an alcohol and/or a reactive derivative thereof
CA2281379C (en) Carbonylation process
KR100403367B1 (en) Acetic acid production method
EP0087870A1 (en) Process for the production of acetic anhydride and acetic acid
NO148712B (en) PROCEDURE FOR THE PREPARATION OF ETHYLIDE DENDIACETATE
US5663430A (en) Process for purifying a carboxylic acid
US4002677A (en) Process for preparing carboxylic acid anhydrides
US4134912A (en) Process for preparing carboxylic acids
EP0087869B1 (en) Process for the coproduction of carboxylic acids and acid anhydrides
JPS6247862B2 (en)
US4251458A (en) Process for preparing carboxylic acid anhydrides
NL8105842A (en) PROCESS FOR PREPARING A CARBONIC ACID ANHYDRIDE.
US4284585A (en) Process for the preparation of acetic anhydride
EP0096974B1 (en) Process for the production of one or more carboxylic acid anhydrides
NO147833B (en) PROCEDURE FOR THE PREPARATION OF CARBOXYLIC ACID ANHYDRIDS BY CARBONYLATION
US4698187A (en) Preparation of carboxylic acid anhydrides
JPH0371418B2 (en)
EP1071647A1 (en) Process for the production of acetic acid and/or acetic anhydride
EP0060719B1 (en) Process for the production of methyl acetate by esterifying methanol with acetic acid
US4284586A (en) Process for the preparation of acetic anhydride
US6180071B1 (en) Process for recovering rhodium catalyst
KR810000380B1 (en) Process for the preparation of an anhydride of mono carboxylic acid