NO147085B - TELECOMMUNICATIONS CABLE - Google Patents

TELECOMMUNICATIONS CABLE Download PDF

Info

Publication number
NO147085B
NO147085B NO754292A NO754292A NO147085B NO 147085 B NO147085 B NO 147085B NO 754292 A NO754292 A NO 754292A NO 754292 A NO754292 A NO 754292A NO 147085 B NO147085 B NO 147085B
Authority
NO
Norway
Prior art keywords
elements
strain
telecommunications cable
absorbing elements
optical fibers
Prior art date
Application number
NO754292A
Other languages
Norwegian (no)
Other versions
NO147085C (en
NO754292L (en
Inventor
Mason Chandler Cox
Original Assignee
Int Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Standard Electric Corp filed Critical Int Standard Electric Corp
Publication of NO754292L publication Critical patent/NO754292L/no
Publication of NO147085B publication Critical patent/NO147085B/en
Publication of NO147085C publication Critical patent/NO147085C/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Cable Accessories (AREA)
  • Communication Cables (AREA)
  • Flexible Shafts (AREA)

Description

Foreliggende oppfinnelse angår en kabel med optiske fibre, The present invention relates to a cable with optical fibres,

og angår særlig oppbygningen av en forbedret beskyttelseskappe for slike kabler. and particularly concerns the construction of an improved protective sheath for such cables.

Oppbygningen av tidligere kjente beskyttelseskapper for bunter med optiske fibre har bestått av relativt tynne plastrør, for eksempel som beskrevet i US patent nr. 3.674.581, og flek-sible, flettede rør som beskrevet i US patent nr. 3.691.001. The structure of previously known protective sheaths for bundles of optical fibers has consisted of relatively thin plastic tubes, for example as described in US patent no. 3,674,581, and flexible, braided tubes as described in US patent no. 3,691,001.

Slike strukturer har imidlertid ikke vist seg å gi tilstrekkelig beskyttelse for ekstremt tynne og lange optiske fibre av silisiumoksyd som benyttes i transmisjonslinjer med spesielt lave tap for telekommunikasjonsformål. However, such structures have not been shown to provide sufficient protection for extremely thin and long silicon oxide optical fibers used in transmission lines with particularly low losses for telecommunication purposes.

Bruken av langsgående strekkelementer og plastkapper er dessuten vanlig kjent i telekommunikasjons- og høyspenningskabler som inneholder isolerte, elektriske ledere. Slike metalliske ledere har imidlertid ikke samme sprøhet som glassfibre, som krever beskyttelsesmaterialer med en høy strekkstyrke og høy motstand mot slitasje og knusing, samtidig som de må være istand til å motstå ulike betingelser i omgivelsene. The use of longitudinal tensile elements and plastic sheaths is also commonly known in telecommunications and high-voltage cables containing insulated electrical conductors. However, such metallic conductors do not have the same brittleness as glass fibres, which require protective materials with a high tensile strength and high resistance to wear and crushing, while at the same time they must be able to withstand various environmental conditions.

Formålet med foreliggende oppfinnelse er derfor å tilveie-bringe en forbedret beskyttelseskappe for en kabel med optiske fibre, slik at kabelen får en høyere strekkfasthet og bedre motstand mot slitasje og knusing enn tidligere kjente optiske kabler. The purpose of the present invention is therefore to provide an improved protective sheath for a cable with optical fibres, so that the cable has a higher tensile strength and better resistance to wear and tear than previously known optical cables.

Dette oppnås ved å utforme kabelen i overensstemmelse med This is achieved by designing the cable in accordance with

de nedenfor fremsatte patentkrav. the patent claims set out below.

For å gi en klarere forståelse av foreliggende oppfinnelse, vises til nedenstående, detaljerte beskrivelse av flere utførel-seseksempler, samt til de ledsagende tegninger, hvor: To provide a clearer understanding of the present invention, reference is made to the detailed description below of several design examples, as well as to the accompanying drawings, where:

fig. 1 viser et tverrsnitt av en kabeltype med optiske fig. 1 shows a cross-section of a cable type with optical

fibre i henhold til foreliggende oppfinnelse, hvor strekkele-mentene er anbragt perifert omkring de optiske fibre, fibers according to the present invention, where the tension elements are placed peripherally around the optical fibers,

fig. 2 viser en ytterligere variasjon med både sentralt beliggende og perifert beliggende strekkelementer. fig. 2 shows a further variation with both centrally located and peripherally located tensile elements.

Som vist i fig. 1 er flere tettpakkede og tynne optiske fibre 10 av silisiumoksyd anbragt inne i to tett tilpassede mantler 12, 18 som er seige og har stor motstandstyrke mot knusing og slitasje og er fremstilt av et egnet termoplastisk materiale. Kappene kan for eksempel være fremstilt av polyvinylklorid, termoplastisk gummi, termoplastisk polyester, eller polypropylen. Polyvinylklorid og termoplastisk gummi foretrekkes på grunn av As shown in fig. 1, several densely packed and thin optical fibers 10 of silicon oxide are placed inside two tightly fitting sheaths 12, 18 which are tough and have great resistance to crushing and wear and are made of a suitable thermoplastic material. The covers can, for example, be made of polyvinyl chloride, thermoplastic rubber, thermoplastic polyester, or polypropylene. Polyvinyl chloride and thermoplastic rubber are preferred due to

sin seighet, fleksibilitet samt motstandstyrke mot knusing og slitasje, og er dessuten lite gjennomtrengelig for vann, og er lite påvirket av de fleste oppløsninger. Disse materialene kan også ekstruderes ved temperaturer så lave som 200°C, og derved unngås ødeleggelse av de tynne, beskyttende plastbelegg (cladding), på fibrene. its toughness, flexibility and resistance to crushing and wear, and is also not permeable to water, and is not affected by most solutions. These materials can also be extruded at temperatures as low as 200°C, thereby avoiding destruction of the thin, protective plastic coatings (cladding) on the fibers.

Strekkelementer 16 er anbragt perifert langs den ytre overflate av den indre kappe 18. Disse strekkelementer består av individuelle elementer med høy strekkstyrke, i form av kontinuer-lige, massive fibre eller snodde tråder. Foretrukkede materialer er aramidfiber, polypropylen, termoplastisk polyester, plastbe-lagt glassfiber og karbonfibre. Andre egnede materialer er polyarylsulfon, polyfenylensulfid og nylon. Oppbygningén som er vist i fig. 1 omfatter et perifert anbragt strekkelement 16 som er snodd omkring et indre termoplastisk rør 18 som inneholder de optiske fibrene 10. En ytre kappe 12 er ekstrudert utenpå strekk-elementene og det indre rør 18. Strekkelement 16 kan ha form av to motsatt rettede omviklinger som gir såvel torsjonsfrie forhold for kabelen og en høy motstand mot knusing. Dette reduserer dessuten strekket i de perifere elementene under bøying, men vil gi noe mindre fleksibilitet enn for den førstnevnte kabeltypen. Tensile elements 16 are arranged peripherally along the outer surface of the inner jacket 18. These tensile elements consist of individual elements with high tensile strength, in the form of continuous, massive fibers or twisted threads. Preferred materials are aramid fiber, polypropylene, thermoplastic polyester, plastic-coated glass fiber and carbon fibers. Other suitable materials are polyaryl sulphone, polyphenylene sulphide and nylon. The structure shown in fig. 1 comprises a peripherally arranged stretching element 16 which is twisted around an inner thermoplastic tube 18 which contains the optical fibers 10. An outer jacket 12 is extruded outside the stretching elements and the inner tube 18. Stretching element 16 can take the form of two oppositely directed windings which provides both torsion-free conditions for the cable and a high resistance to crushing. This also reduces the stretch in the peripheral elements during bending, but will give somewhat less flexibility than for the first-mentioned cable type.

Fig. 2 viser en mer komplisert oppbygning som omfatter et sammensatt strekkelement 24, som dels er arrangert som et separat, perifert lag, og som kan være et ekstrudert slitasjebestandig element, eller to lag med skrueformede, snodde fiberelementer omkring de indre, optiske fibrene 10 og dels som et langsgående, sentralt element som befinner seg midt inne i fiberbunten. Dette gir en ennå høyere motstand mot knusing enn de andre oppbygningene, men kabelen blir med en slik oppbygning noe mindre fleksibel. Fig. 2 shows a more complicated structure comprising a composite tensile element 24, which is partly arranged as a separate, peripheral layer, and which can be an extruded wear-resistant element, or two layers of helical, twisted fiber elements around the inner, optical fibers 10 and partly as a longitudinal, central element located in the middle of the fiber bundle. This gives an even higher resistance to crushing than the other structures, but the cable becomes somewhat less flexible with such a structure.

De indre deler 14 av det strekkopptagende element 24 kan også være jevnt fordelt mellom de optiske fibre. I denne ut-førelsen fås en svært jevn strekkfordeling over tverrsnittet. The inner parts 14 of the strain-absorbing element 24 can also be evenly distributed between the optical fibers. In this design, a very even strain distribution is obtained over the cross-section.

Claims (4)

1. Telekommunikasjonskabel omfattende flere optiske fiberelementer anbragt inne i en felles ytre, termoplastisk beskyttelseskappe sammen med flere langsgående strekkopptagende elementer, karakterisert ved at de optiske fibre (10) er samlet inne i en indre kappe (18) som består av et termoplastisk materiale, og at de strekkopptagende elementer (16) eller i hvert fall noen av disse elementer, er anbragt langsetter den ytre overflate til denne indre kappe (18), og eventuelt er helt eller delvis innleiret i denne kappen (18).1. Telecommunications cable comprising several optical fiber elements placed inside a common outer, thermoplastic protective sheath together with several longitudinal strain-absorbing elements, characterized in that the optical fibers (10) are collected inside an inner sheath (18) which consists of a thermoplastic material, and that the strain-absorbing elements (16) or at least some of these elements, are placed along the outer surface of this inner cover (18), and possibly are fully or partially embedded in this cover (18). 2. Telekommunikasjonskabel ifølge krav 1, karakterisert ved at materialet i de strekkopptagende elementer (14, 16, 22, 24) er valgt fra en gruppe omfattende polypropylen, aramidfibre, termoplastisk polyester, polyarylsulfon, polyfenyl-sulfid, nylon, glassfiber og karbonfibre.2. Telecommunications cable according to claim 1, characterized in that the material in the strain-absorbing elements (14, 16, 22, 24) is selected from a group comprising polypropylene, aramid fibres, thermoplastic polyester, polyarylsulfone, polyphenyl-sulfide, nylon, glass fiber and carbon fibres. 3. Telekommunikasjonskabel ifølge krav 1 eller 2, karakterisert ved at de optiske fibre er arrangert med en lang slaglengde i kabelen og at de perifere strekkelementer er påført med motsatt slagretning.3. Telecommunications cable according to claim 1 or 2, characterized in that the optical fibers are arranged with a long stroke length in the cable and that the peripheral tensile elements are applied with the opposite stroke direction. 4. Telekommunikasjonskabel ifølge krav 1, 2 eller 3, karakterisert ved at de strekkopptagende elementer (16), som er anbragt omkring kabelkjernen som inneholder de optiske fibre, er anordnet i to snodde lag med motsatte slagretninger.4. Telecommunications cable according to claim 1, 2 or 3, characterized in that the strain absorbing elements (16), which is arranged around the cable core containing the optical fibres, is arranged in two twisted layers with opposite strike directions.
NO754292A 1974-12-24 1975-12-17 TELECOMMUNICATION CABLE. NO147085C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53613774A 1974-12-24 1974-12-24

Publications (3)

Publication Number Publication Date
NO754292L NO754292L (en) 1976-06-25
NO147085B true NO147085B (en) 1982-10-18
NO147085C NO147085C (en) 1983-01-26

Family

ID=24137310

Family Applications (1)

Application Number Title Priority Date Filing Date
NO754292A NO147085C (en) 1974-12-24 1975-12-17 TELECOMMUNICATION CABLE.

Country Status (8)

Country Link
JP (1) JPS51106448A (en)
AU (1) AU498613B2 (en)
BR (1) BR7508587A (en)
CH (1) CH599559A5 (en)
FR (1) FR2296192A1 (en)
GB (1) GB1462159A (en)
IT (1) IT1054686B (en)
NO (1) NO147085C (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1103494A (en) * 1976-06-24 1981-06-23 Dennis L. Lewis Optical fibre cables and their manufacture
GB1486764A (en) * 1976-07-27 1977-09-21 Standard Telephones Cables Ltd Cable
US4331378A (en) * 1976-10-22 1982-05-25 E. I. Du Pont De Nemours And Company Reinforced optical fiber cable with glass or silica core
USRE32436E (en) * 1976-10-22 1987-06-09 Mitsubishi Rayon Co., Ltd. Reinforced optical fiber cable with glass or silica core
US4147406A (en) * 1976-10-26 1979-04-03 Belden Corporation Fiber optic cable
JPS53144755A (en) * 1977-05-23 1978-12-16 Sumitomo Electric Ind Ltd Optical cable and production of the same
US4169657A (en) * 1978-03-02 1979-10-02 Akzona Incorporated Laminated strength members for fiber optic cable
US4241979A (en) * 1979-01-18 1980-12-30 Bell Telephone Laboratories, Incorporated Optical communication cable with means for controlling coupling between cable jacket and strength members
JPS56167108A (en) * 1980-05-29 1981-12-22 Sumitomo Electric Ind Ltd Fiber for transmitting infrared light
DE3024310C2 (en) * 1980-06-27 1983-06-23 Siemens AG, 1000 Berlin und 8000 München Optical cable and process for its manufacture
JPS5886501A (en) * 1981-11-18 1983-05-24 Nippon Telegr & Teleph Corp <Ntt> Optical cable
JPS58205110A (en) * 1982-05-24 1983-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cable
DE3318233C2 (en) * 1983-05-19 1985-10-31 Philips Patentverwaltung Gmbh, 2000 Hamburg Optical cable element or cable and method for its manufacture
GB8505866D0 (en) * 1985-03-07 1985-04-11 Pearpoint Ltd Semi-rigid rods
JPS6212112U (en) * 1985-07-05 1987-01-24
DE4324574C2 (en) * 1992-12-16 1995-10-19 Rheydt Kabelwerk Ag Optical cable
FR2725553B1 (en) * 1994-10-07 1996-12-20 Silec Liaisons Elec PROCESS FOR PRODUCING A TUBULAR SHEATH COMPRISING FILIFORM CARRIERS, AND TUBULAR SHEATH OBTAINED
US6519397B2 (en) * 2001-06-01 2003-02-11 Owens Corning Fiberglas Technology, Inc. Premises cable with fiberglass reinforcement
US20030091299A1 (en) * 2001-11-14 2003-05-15 Priest James R. Crimp-style connector for fiber reinforced premise cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911143A (en) * 1972-05-29 1974-01-31

Also Published As

Publication number Publication date
JPS51106448A (en) 1976-09-21
FR2296192B1 (en) 1982-04-02
AU8733875A (en) 1977-06-16
AU498613B2 (en) 1979-03-22
BR7508587A (en) 1976-08-24
NO147085C (en) 1983-01-26
GB1462159A (en) 1977-01-19
NO754292L (en) 1976-06-25
FR2296192A1 (en) 1976-07-23
IT1054686B (en) 1981-11-30
CH599559A5 (en) 1978-05-31

Similar Documents

Publication Publication Date Title
NO147085B (en) TELECOMMUNICATIONS CABLE
CA1091071A (en) Fiber optic cable and method of making same
US5857051A (en) High density riser and plenum breakout cables for indoor and outdoor cable applications
KR960013801B1 (en) Optical cable having non-metallic sheath system
US4374608A (en) Fiber optic cable
EP0126509B1 (en) Optical cable element or cable, and method of making it
US6487346B2 (en) Optical cable
US5422973A (en) Water blocked unfilled single tube cable
US3115542A (en) Submarine electric cables
EP0503469A2 (en) Grooved-core cable with optical fibre ribbons and process for making the same
US4534618A (en) Optical communication cable
DK169751B1 (en) Submarine optical fiber cable for telecommunications
US5016973A (en) Cable reinforcement for an optical fiber cable
US4147406A (en) Fiber optic cable
CN109659085A (en) A kind of photoelectric composite tow and its manufacturing method
EP1359448A2 (en) Loose tube optical ribbon cable
NO137065B (en) PROCEDURE FOR THE MANUFACTURE OF ELECTRIC CABLES WITH TENSION RELIEF
CA1048827A (en) Composite optical fiber element for telecommunication cables
US4009932A (en) Composite optical fiber element for telecommunication cables
DE2801231C2 (en) Power cable sheathed with insulating material
DE3023669C2 (en) Self-supporting optical communication cable
EP0072594A2 (en) Optical telecommunication cable
DE3823965C2 (en)
NO860117L (en) CABLE.
GB2170614A (en) Optical fibre cables