NO146745B - PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE HETEROCYCLIC SUBSTITUTED 5-SULFAMOYLBENZOIC ACID DERIVATIVES - Google Patents

PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE HETEROCYCLIC SUBSTITUTED 5-SULFAMOYLBENZOIC ACID DERIVATIVES Download PDF

Info

Publication number
NO146745B
NO146745B NO751470A NO751470A NO146745B NO 146745 B NO146745 B NO 146745B NO 751470 A NO751470 A NO 751470A NO 751470 A NO751470 A NO 751470A NO 146745 B NO146745 B NO 146745B
Authority
NO
Norway
Prior art keywords
hydrocarbons
sodium
sulphur
mixture
carbon
Prior art date
Application number
NO751470A
Other languages
Norwegian (no)
Other versions
NO751470L (en
NO146745C (en
Inventor
Dieter Bormann
Wulf Merkel
Roman Muschaweck
Dieter Mania
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2419970A external-priority patent/DE2419970C3/en
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO751470L publication Critical patent/NO751470L/no
Publication of NO146745B publication Critical patent/NO146745B/en
Publication of NO146745C publication Critical patent/NO146745C/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4021-aryl substituted, e.g. piretanide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/20Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Description

Fremgangsmåte til omsetning av svovelholdige hydrokarboner til hovedsakelig svovelfrie hydrogen- og karbonoksydholdige gasser. Process for converting sulphur-containing hydrocarbons into mainly sulphur-free hydrogen and carbon oxide-containing gases.

Oppfinnelsen vedrører en forbedring The invention relates to an improvement

av den i og for seg kjente fremgangsmåte til frembringelse av hovedsakelig hydrogen- og karbonoksydholdige gasser fra hydrokarboner hvor hydrokarbonene omdan-nes under tilsetning av fritt og bundet of the per se known method for producing mainly hydrogen and carbon oxide-containing gases from hydrocarbons where the hydrocarbons are converted with the addition of free and bound

oksygen alene eller i et bestemt blandingsforhold i nærvær av aktive masser, spesielt nikkelkatalysatorer ved forhøyet temperatur. Omdannelsen lar seg gjennomføre en-kelt og driftssikkert med slike hydrokarboner som praktisk talt er svovelfrie. Ved hydrokarboner som har et høyere innhold av svovel enn ca. 50 mg/kg spesielt ved sli-, ke med et høyere antall karbonatomer i: molekylet opptrer det betraktelige vanske ligheter som fører til en vidtgående be-skadigelse, eventuelt sogar til en fullstendig ødeleggelse av katalysatoren. Det viser seg at allerede etter kort driftstid utbrin-ges ved den vanlige arbeidsmåte høyere kondenserte produkter, som f. eks. naftalin, med spaltningsgassen. I det videre oxygen alone or in a specific mixing ratio in the presence of active masses, especially nickel catalysts at elevated temperature. The conversion can be carried out easily and reliably with such hydrocarbons which are practically sulphur-free. In the case of hydrocarbons that have a higher sulfur content than approx. 50 mg/kg, especially for those with a higher number of carbon atoms in the molecule, considerable difficulties occur which lead to extensive damage, possibly even to complete destruction of the catalyst. It turns out that even after a short operating time, higher condensed products, such as e.g. naphthalene, with the cracking gas. In what follows

prosessforløp oppstår mørkebrune til sort-farvede tjærelignende produkter. Samtidig avleirer det seg større sotmengder på katalysatoren og i mellomrommene, således at prosessen litt etter litt kommer til still-stand. during the process, dark brown to black-colored tar-like products occur. At the same time, larger amounts are deposited on the catalyst and in the spaces, so that the process gradually comes to a standstill.

Til grunn for oppfinnelsen ligger den It is the basis of the invention

oppgave å utforme fremgangsmåteforløpet således at også omformningen av hydrokarboner med høyere svovelinnhold er mu- task to design the procedure so that the conversion of hydrocarbons with a higher sulfur content is also mu-

lig under unngåelse av de ovennevnte vanskeligheter. lig under the avoidance of the above-mentioned difficulties.

Oppfinnelsen vedrører altså en fremgangsmåte til omsetning av svovelholdige hydrokarboner til hovedsakelig svovelfrie, hydrogen- og karbonoksydholdige gasser under tilsetning av forgasningsmidler som fritt eller bundet oksygen alene eller i bestemte blandingsforhold i form av vanndamp og/eller karbondioksyd i nærvær av aktive katalysatormasser, spesielt nikkelkatalysatorer ved forhøyet temperatur, og fremgangsmåten er karakterisert ved at de anvendte hydrokarboner før blandingen med forgasningsmidlene utsettes for innvirkning av natriumforbindelser som har en kovalent binding og som ved hydrolyse tilleirer hydrogen, som f. eks. natriumhydrid, eller spesielt natriummonoksyd, fortrinnsvis i findelt form, eventuelt an-bragt på en inert bærer som karbon eller natriumklorid, eller i blanding med inerte stoffer i form av formlegemer som tabletter, kuler eller granuler. The invention therefore relates to a method for converting sulphur-containing hydrocarbons into essentially sulphur-free, hydrogen- and carbon-oxide-containing gases with the addition of gasifying agents such as free or bound oxygen alone or in specific mixing ratios in the form of water vapor and/or carbon dioxide in the presence of active catalyst masses, especially nickel catalysts by elevated temperature, and the method is characterized by the fact that the hydrocarbons used, before the mixture with the gasification agents, are exposed to the influence of sodium compounds which have a covalent bond and which deposit hydrogen upon hydrolysis, such as e.g. sodium hydride, or especially sodium monoxide, preferably in finely divided form, optionally placed on an inert carrier such as carbon or sodium chloride, or in a mixture with inert substances in the form of shaped bodies such as tablets, balls or granules.

Ved en spesielt gunstig utførelsesform ifølge oppfinnelsen føres de anvendte hydrokarboner i fordampet form over finfordelt natrium-monooksyd eller natriumhydrid. Det felles trekk for de forbindelser som er egnet for gjennomførelse av fremgangsmåten ifølge oppfinnelsen er at de har en konvalent binding, og er i stand til ved hydrolyse å tilleire hydrogen. Mens den i og for seg nærliggende overføring av svovelet i hydrokarboner til uorganisk bundet svovel f. eks. svovelhydrogen, ifølge vanlige fremgangsmåter ikke er egnet til å oppheve de ovennevnte vanskeligheter ved omdannelsen i hovedsakelig hydrogen og karbonoksydholdige gassblandinger og å muliggjøre en forstyrrelsesfri omdannelse av høysvovelholdige hydrokarboner, har det overraskende vist seg at ved anvendelsen av natriummonoksyd eller natriumhydrid ifølge oppfinnelsen bibeholdes katalysatorens arbeidsevne i omdannelses-trinnet, over en lang, praktisk talt ube-grenset driftstid. Det har til følge at gjen-nomføring av spaltningsforgassingen av høysvovelholdige hydrokarboner helt mu-liggjøres selv i kontinuerlige fremgangsmåter uten forstyrrelser over lange driftstider når de anvendte hydrokarboner før blandingen med forgassingsmidlene fortrinnsvis i fordampet form utsettes for den av-svovlende virkning av natriumhydrid eller natriummonoksyd. In a particularly favorable embodiment according to the invention, the hydrocarbons used are passed in vaporized form over finely divided sodium monoxide or sodium hydride. The common feature of the compounds which are suitable for carrying out the method according to the invention is that they have a covalent bond, and are capable of depositing hydrogen by hydrolysis. While the per se proximate transfer of the sulfur in hydrocarbons to inorganically bound sulphur, e.g. hydrogen sulphide, according to conventional methods, is not suitable to eliminate the above-mentioned difficulties in the conversion into predominantly hydrogen and carbon oxide-containing gas mixtures and to enable a disturbance-free conversion of high-sulphur hydrocarbons, it has surprisingly been shown that when using sodium monoxide or sodium hydride according to the invention, the working capacity of the catalyst is maintained in the conversion step, over a long, practically unlimited operating time. The result is that carrying out the cracking gasification of high-sulphur hydrocarbons is completely possible even in continuous processes without disturbances over long operating times when the hydrocarbons used are preferably exposed in vaporized form to the desulfurizing effect of sodium hydride or sodium monoxide before mixing with the gasification agents.

Som allerede nevnt anvendes natriummonoksyd eller natriumhydrid i mest mu-lig finfordelt form, og fortrinnsvis utfelles disse stoffer på inerte bærere som inneholder koksalt eller karbon i form av tre-kull eller koks. Man kan også for å øke den reagerende overflate blande dem med de nevnte inerte stoffer. Det kan endelig også være hensiktsmessig å overføre natrium-monoksydet eller natriumhydridet som så-dan eller etter utfelling på eller i blanding med inerte stoffer ved pressing eller strangpressing eller granulering i formlegemer som kuler, sylindre, tabletter eller lignende, og å bringe dem i denne form til innvirkning på hydrokarbonene som skal avsvovles. As already mentioned, sodium monoxide or sodium hydride is used in the most finely divided form possible, and preferably these substances are precipitated on inert carriers containing coking salt or carbon in the form of charcoal or coke. You can also mix them with the aforementioned inert substances to increase the reacting surface. Finally, it may also be appropriate to transfer the sodium monoxide or sodium hydride as such or after precipitation on or in a mixture with inert substances by pressing or extrusion or granulation into shaped bodies such as spheres, cylinders, tablets or the like, and to bring them in this form to impact on the hydrocarbons to be desulphurised.

Natriummonoksyd har i forhold til natriumhydrid nettopp ved anvendelsen på bærere, den fordel at det kan påføres i større konsentrasjoner på bærere enn natriumhydrid. Eksempelvis lar det seg uten vanskelighet fremstille tabletter av 50 pst. natriummonoksyd og 50 pst. koksalt, hvil-ket er av betydning for behandling av hydrokarboner med høyt svovelinnhold. Compared to sodium hydride, sodium monoxide has the advantage that it can be applied in greater concentrations to carriers than sodium hydride precisely when used on carriers. For example, it is possible to prepare tablets of 50% sodium monoxide and 50% common salt without difficulty, which is important for the treatment of hydrocarbons with a high sulfur content.

Da avsvovlingen arbeider spesielt virk-somt når hydrokarbonene i dampformet tilstand ved temperaturer over 150° C trer i reaksjon med natriumforbindelsen opp-varmes de ved vanlig temperatur gassformede hydrokarboner til 150° C og føres over reaksjonsmassen. Flytende hydrokarboner fordampes først og bringes til den nødvendige reaksjonstemperatur. Ligger kokeavslutningen av hydrokarbonene som skal avsvovles over 150° C skal reaksjons-temperaturen ligge ca. 20—30° C høyere enn kokeavslutningen. Ved høyere hydrokarboner hvor det ikke er gjennomført fullstendig overføring i dampformet tilstand uten delvis krakking kan natriumforbindelsen innføres i det flytende hydro-karbon, resp. lar man hydrokarbonet risle over en lagring av disse forbindelser. As the desulphurisation works particularly effectively when the hydrocarbons in vapor form at temperatures above 150° C react with the sodium compound, the gaseous hydrocarbons at ordinary temperatures are heated to 150° C and passed over the reaction mass. Liquid hydrocarbons are first evaporated and brought to the required reaction temperature. If the end of boiling of the hydrocarbons to be desulphurised is above 150° C, the reaction temperature must be approx. 20-30° C higher than the end of cooking. In the case of higher hydrocarbons where there has not been complete transfer in vapor form without partial cracking, the sodium compound can be introduced into the liquid hydrocarbon, resp. allowing the hydrocarbon to trickle over a deposit of these compounds.

På tegnnigen er det skjematisk vist fremgangsmåtens gang. Gjennom ledningen 10 blir de innsatte hydrokarboner enten hvis det dreier seg om gassformede hydrokarboner oppvarmet i oppvarmeren 11 til ca. 150° C og hvis det dreier seg om flytende hydrokarboner først fordampet i fordamperen 12 og kommer deretter i av-svovlingstårnet 13, hvori det finfordelte natriumhydrid eller natriummonoksyd be-finner seg. Disse forbindelser er utfelt i fineste fordeling på et bærematerial. De avsvovlede innsatte hydrokarboner kommer nu inn i blandingskammeret 15, hvor-til det gjennom ledningen 14 tilføres for-gassingsmidlet, spesielt luft og/eller damp. Deretter innføres prosessgassblandingen i spalteforgassingsanlegget 16, hvor omset-ningen til gass finner sted ved høyere temperatur i nærvær av aktive katalysatorer, idet gassen hovedsakelig inneholder hydrogen og karbon. Forgassingsanlegget 16 kan være utformet således at katalysatoren be-finner seg i rør, hvorigjennom gassblandingen føres og som man oppvarmer utenifra. Katalysatoren kan imidlertid også befinne seg i en sjaktformet beholder hvorgjennom gassblandingen føres idet den varme som er nødvendig for spaltningsprosessen enten frembringes ved forbrenningsprosesser i gassen selv eller ved regenerativ oppvarmning av sjakten. Gjennom ledning 17 kommer det ut en svovelfri spaltgass. The drawing schematically shows the procedure. Through the line 10, the inserted hydrocarbons are either, if they are gaseous hydrocarbons, heated in the heater 11 to approx. 150° C and if it concerns liquid hydrocarbons first evaporated in the evaporator 12 and then enters the desulphurisation tower 13, in which the finely divided sodium hydride or sodium monoxide is found. These compounds are deposited in the finest distribution on a carrier material. The desulphurised inserted hydrocarbons now enter the mixing chamber 15, to which the gasification agent, in particular air and/or steam, is supplied through the line 14. The process gas mixture is then introduced into the split gasification plant 16, where the conversion to gas takes place at a higher temperature in the presence of active catalysts, the gas mainly containing hydrogen and carbon. The gasification plant 16 can be designed so that the catalyst is located in pipes, through which the gas mixture is led and which is heated from the outside. However, the catalyst can also be located in a shaft-shaped container through which the gas mixture is passed, the heat required for the splitting process being either produced by combustion processes in the gas itself or by regenerative heating of the shaft. A sulphur-free split gas comes out through line 17.

Den omtalte fremgangsmåte medfører ved siden av den mulighet å gjennomføre omdannelsen av svovelrike hydrokarboner i en kontinuerlig drift, dessuten den fordel med omtrent fullstendig avsvovling og spa-rer således en omstendelig avsvovling av den fremstilte spaltgass. Riktignok blir ved diskontinuerlig arbeidende anlegg hvor man fra tid til annen avtorenner sot som er dannet på katalysatoren ved lufttilfør-sel, også svovelet ført bort, såvidt det ut-skiller seg på kontakten med soten imidlertid er svovelutskillelsen ikke fullstendig ved spaltningsprosessen, således at det og-så her hittil ikke var nødvendig med en et-terfølgende avsvovling av spaltningsgassen. Et svovelinnhold i spaltgassen er util-latelig i de tilfelle hvor spaltgassen danner utgangspunkt for etterfølgende synteser, hvor det ofte kommer til anvendelse svo-velfølsomme katalysatorer. Den i dette tilfelle nødvendige avsvovling av et betydelig større volum, er meget mere omstendelig enn den forutgående avsvovling av de anvendte hydrokarboner. In addition to that, the mentioned method entails the possibility of carrying out the conversion of sulphur-rich hydrocarbons in a continuous operation, and also the advantage of almost complete desulphurisation and thus saves a cumbersome desulphurisation of the produced cracking gas. Admittedly, in discontinuously working plants where from time to time soot formed on the catalyst by air supply is drained away, the sulfur is also carried away, insofar as it separates on contact with the soot, however, the sulfur separation is not complete during the decomposition process, so that and so here until now a subsequent desulphurisation of the cracking gas was not necessary. A sulfur content in the cracking gas is inadmissible in cases where the cracking gas forms the starting point for subsequent syntheses, where sulphur-sensitive catalysts are often used. The necessary desulphurisation of a significantly larger volume in this case is much more cumbersome than the previous desulphurisation of the hydrocarbons used.

Fremgangsmåten ifølge oppfinnelsen skal forklares nærmere ved hjelp av det følgende eksempel: The method according to the invention shall be explained in more detail by means of the following example:

Det ble foretatt en katalytisk spaltning av en bensin som overveiende inneholder Cc- til C8-hydrokarboner og ga følg-ende kokeanalyse: A catalytic cracking of a petrol containing predominantly Cc to C8 hydrocarbons was carried out and gave the following boiling analysis:

Etter ca. 4 timer ble det bortført sot og høyere kondenserte produkter som dekalin og naftalin med spaltgassen. Etter ca. 5 timer var det dannet mørkebrune til sort-farvede tjærelignende produkter. Større sotmengder avleiret seg i katalysatoren og mellomrommene, katalysatorens motstand øket under nedgang av aktiviteten, således at prosessen til b sluttet stoppet. After approx. For 4 hours, soot and higher condensed products such as decalin and naphthalene were removed with the split gas. After approx. After 5 hours, dark brown to black tar-like products had formed. Larger sub-quantities were deposited in the catalyst and the spaces, the catalyst's resistance increased during the decrease in activity, so that the process until b ended stopped.

For å hindre dette ble det ifølge oppfinnelsen gjennomført en avsvovling med Na20 mellom 180 og 220° C, idet det foran med det under de ovenfor beskrevne be-tingelser drevne egentlige spalteapparatur 16 ble innkoblet et avsvovlingstrinn 13. Bensindampen forlater avsvovlingstrinnet med et svovelinnhold på 0,003 pst. In order to prevent this, according to the invention, a desulphurisation with Na2O was carried out between 180 and 220° C, with a desulphurisation stage 13 being connected in front of the actual splitting apparatus 16 operated under the conditions described above. The petrol vapor leaves the desulphurisation stage with a sulfur content of 0.003 pst

Den uttredende gass hadde følgende beskaffenhet: Ved spaltning av denne bensin i blanding med damp og luft i kontinuerlige frem gangsmåter opptrer det vanskeligheter. De olefiner som ved prosessgassblandingeris oppvarmning først danner seg fører i for-bindelse med det i utgangsproduktet inne-holdte svovel i organisk binding til forstyr-rende sotdannelse, og følgelig forbunden innaktivering av kontakten. Sotutskillel-sen kan føre til fullstendig ødeleggelse av katalysatoren. Ved katalysatorens inak-tivering forandres typen av hydrokarbon-omdannelsen seg. The exiting gas had the following properties: Difficulties arise when splitting this gasoline in a mixture with steam and air in continuous processes. The olefins that are first formed when the process gas mixture is heated lead in connection with the sulfur contained in the starting product in organic bonding to disturbing soot formation, and consequently the associated inactivation of the contact. The soot release can lead to complete destruction of the catalyst. When the catalyst is deactivated, the type of hydrocarbon conversion changes.

Den i dets egenskaper ovenfor beteg-nede bensin ble i blanding med damp og luft underkastet vanlig katalytisk spaltning. (Erdøl und Kohle, 12. årgang, 1959, side 815—818). Spalteovntemperatu-ren utgjorde 1000° C. Den spesifike kata-lysatorbelastning 0,143 t ~<1> beregnet på volum flytende bensin gjennomført pr. time. The gasoline described in its properties above was, in mixture with steam and air, subjected to normal catalytic cracking. (Erdøl und Kohle, 12th year, 1959, pages 815-818). The cracking furnace temperature was 1000° C. The specific catalyst load 0.143 t ~<1> calculated on the volume of liquid petrol carried out per hour.

Strømningshastigheten referert til Nm<3>, anvendt blanding pr. time og fritt tverrsnitt av katalysatorrommet, utgjør 2 m/sek, s katalysatortiden 3 sek. Den dan-nede gass hadde etter 1 resp. 8 timer følg-ende sammensetning: The flow rate referred to Nm<3>, used mixture per hour and free cross-section of the catalyst space, amounts to 2 m/sec, s catalyst time 3 sec. The formed gas had after 1 resp. 8 hours follow-up composition:

Spaltningsgassammensetningen forblir ved denne fremgangsmåte konstant og forandret seg heller ikke under en driftstid på flere uker. In this method, the fission gas composition remains constant and also did not change during an operating time of several weeks.

Claims (3)

1. Fremgangsmåte til omsetning av svovelholdige hydrokarboner til hovedsakelig svovelfrie, hydrogen- og karbonoksyd-1. Process for conversion of sulphur-containing hydrocarbons into mainly sulphur-free, hydrogen and carbon oxide holdige gasser under tilsetning av forgasningsmidler som fritt eller bundet oksygen alene eller i bestemte blandingsforhold i form av vanndamp og/eller karbondioksyd i nærvær av aktive katalysatormasser, spesielt nikkelkatalysatorer ved forhøyet temperatur, karakterisert ved at de anvendte hydrokarboner før blandingen med forgasningsmidlene utsettes for innvirkning av natriumforbindelser som har en kovalent binding og som ved hydrolyse tilleirer hydrogen, som f. eks. natriumhydrid, eller spesielt natriummonoksyd, fortrinnsvis i finfordelt form, eventuelt an-bragt på en inert bærer som karbon ellercontaining gases with the addition of gasification agents such as free or bound oxygen alone or in certain mixing conditions in the form of water vapor and/or carbon dioxide in the presence of active catalyst masses, especially nickel catalysts at elevated temperature, characterized in that the hydrocarbons used before the mixture with the gasification agents are exposed to the influence of sodium compounds which have a covalent bond and which deposit hydrogen upon hydrolysis, such as e.g. sodium hydride, or especially sodium monoxide, preferably in finely divided form, optionally placed on an inert support such as carbon or natriumklorid, eller i blanding med inerte stoffer i form av formlegemer som tabletter, kuler eller granuler.sodium chloride, or in a mixture with inert substances in the form of shaped bodies such as tablets, balls or granules. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at de anvendte hydrokarboner føres over natriumforbin-delsene i fordampet form. 2. Method according to claim 1, characterized in that the hydrocarbons used are passed over the sodium compounds in vaporized form. 3. Fremgangsmåte ifølge påstand 1, karakterisert ved at avsvovlingen gjennomføres ved temperaturer over 150° C.3. Method according to claim 1, characterized in that the desulfurization is carried out at temperatures above 150° C.
NO751470A 1974-04-25 1975-04-24 PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE HETEROCYCLIC SUBSTITUTED 5-SULFAMOYLBENZOIC ACID DERIVATIVES NO146745C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2419970A DE2419970C3 (en) 1974-04-25 1974-04-25 3- <1-Pyrrolidinyl) -4-phenoxy-5sulfamoylbenzoic acid and process for its preparation
DE2461601A DE2461601C2 (en) 1974-04-25 1974-12-27 3-Pyrrolidino-4-phenoxy-5-sulfamoylbenzoic acid ester and process for their preparation

Publications (3)

Publication Number Publication Date
NO751470L NO751470L (en) 1975-10-28
NO146745B true NO146745B (en) 1982-08-23
NO146745C NO146745C (en) 1982-12-01

Family

ID=25767039

Family Applications (5)

Application Number Title Priority Date Filing Date
NO751470A NO146745C (en) 1974-04-25 1975-04-24 PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE HETEROCYCLIC SUBSTITUTED 5-SULFAMOYLBENZOIC ACID DERIVATIVES
NO784198A NO151825C (en) 1974-04-25 1978-12-13 INTERMEDIATE FOR THE PREPARATION OF THERAPEUTIC ACTIVE 5-SULFAMOYL-BENZO ACID DERIVATIVES
NO784196A NO149736C (en) 1974-04-25 1978-12-13 ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE HETEROCYCLIC SUBSTITUTED 5-SULPHAMOYLBENOS ACID DERIVATIVES
NO784197A NO150681C (en) 1974-04-25 1978-12-13 INTERMEDIATES FOR THE PREPARATION OF HETEROCYCLIC SUBSTITUTED 5-SULFAMOYLBENZO ACID DERIVATIVES
NO833116A NO152749C (en) 1974-04-25 1983-08-30 SUBSTITUTED BENZO ACID DERIVATIVES AS INTERMEDIATES FOR DIURETICS.

Family Applications After (4)

Application Number Title Priority Date Filing Date
NO784198A NO151825C (en) 1974-04-25 1978-12-13 INTERMEDIATE FOR THE PREPARATION OF THERAPEUTIC ACTIVE 5-SULFAMOYL-BENZO ACID DERIVATIVES
NO784196A NO149736C (en) 1974-04-25 1978-12-13 ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE HETEROCYCLIC SUBSTITUTED 5-SULPHAMOYLBENOS ACID DERIVATIVES
NO784197A NO150681C (en) 1974-04-25 1978-12-13 INTERMEDIATES FOR THE PREPARATION OF HETEROCYCLIC SUBSTITUTED 5-SULFAMOYLBENZO ACID DERIVATIVES
NO833116A NO152749C (en) 1974-04-25 1983-08-30 SUBSTITUTED BENZO ACID DERIVATIVES AS INTERMEDIATES FOR DIURETICS.

Country Status (22)

Country Link
AR (7) AR215839A1 (en)
AU (1) AU507614B2 (en)
BR (1) BR7502487A (en)
CS (1) CS188242B2 (en)
DD (2) DD124230A5 (en)
DK (1) DK158978C (en)
EG (1) EG11682A (en)
ES (1) ES453840A1 (en)
FI (1) FI62075C (en)
HK (1) HK51279A (en)
HU (1) HU174751B (en)
IE (1) IE42601B1 (en)
IL (2) IL47128A (en)
IT (1) IT1041753B (en)
KE (1) KE2971A (en)
MT (1) MTP779B (en)
MY (1) MY8000060A (en)
NO (5) NO146745C (en)
NZ (1) NZ177095A (en)
RO (6) RO66590A (en)
SE (2) SE404796B (en)
ZM (1) ZM4875A1 (en)

Also Published As

Publication number Publication date
DD124230A5 (en) 1977-02-09
MTP779B (en) 1976-08-31
IL47128A (en) 1984-02-29
NO152749B (en) 1985-08-05
NO152749C (en) 1985-11-13
AR218225A1 (en) 1980-05-30
IT1041753B (en) 1980-01-10
AR216633A1 (en) 1980-01-15
MY8000060A (en) 1980-12-31
DK158978B (en) 1990-08-13
AR219057A1 (en) 1980-07-31
RO81781A (en) 1983-06-01
AU8047475A (en) 1976-10-28
IL47128A0 (en) 1975-07-28
RO70678A (en) 1982-09-09
AU507614B2 (en) 1980-02-21
HU174751B (en) 1980-03-28
DD119589A5 (en) 1976-05-05
EG11682A (en) 1978-03-29
NZ177095A (en) 1979-03-16
FI62075C (en) 1982-11-10
NO751470L (en) 1975-10-28
NO151825C (en) 1985-06-12
CS188242B2 (en) 1979-02-28
IE42601B1 (en) 1980-09-10
DK158978C (en) 1991-01-07
BR7502487A (en) 1976-03-09
ZM4875A1 (en) 1975-12-22
IL56919A0 (en) 1979-05-31
NO150681C (en) 1984-11-28
IE42601L (en) 1975-10-25
FI751213A (en) 1975-10-26
ES453840A1 (en) 1978-01-16
RO81781B (en) 1983-05-30
NO146745C (en) 1982-12-01
HK51279A (en) 1979-08-03
NO833116L (en) 1975-10-28
SE404796B (en) 1978-10-30
SE7504841L (en) 1975-10-27
RO70426A (en) 1980-12-30
NO784198L (en) 1975-10-28
RO70346A (en) 1982-08-17
RO70353A (en) 1981-08-17
AR217056A1 (en) 1980-02-29
KE2971A (en) 1979-07-06
SE7712097L (en) 1977-10-27
AR217055A1 (en) 1980-02-29
NO149736C (en) 1984-06-20
NO151825B (en) 1985-03-04
FI62075B (en) 1982-07-30
NO784196L (en) 1975-10-28
AR231135A1 (en) 1984-09-28
NO150681B (en) 1984-08-20
SE435379B (en) 1984-09-24
NO149736B (en) 1984-03-05
NO784197L (en) 1975-10-28
AR215839A1 (en) 1979-11-15
DK179875A (en) 1975-10-26
RO66590A (en) 1980-07-15

Similar Documents

Publication Publication Date Title
CN1037956C (en) Partial oxidation process for producing a stream of hot purified gas
US3745109A (en) Hydrocarbon conversion process
CN101244805B (en) Method for producing methanol synthesis gas by oven gas non-catalytic pure oxygen-steam conversion
US1957743A (en) Production of hydrogen
NO169701B (en) PROCEDURE FOR COMBUSTION OF A H2S-CONTAINING GAS
ES338043A1 (en) Process for producing hydrogen by reaction of a hydrocarbon and steam employing a rhenium-containing catalyst
US3988425A (en) Process of producing carbon monoxide from light hydrocarbons
US4082520A (en) Process of producing gases having a high calorific value
JPH01246112A (en) Purification of hydrogen sulfide-containing gas
US4161393A (en) Shift conversion of raw gas from gasification of coal
US4117100A (en) Process for reduction of sulfur dioxide to sulfur
US2692193A (en) Method of preparing a gas interchangeable with coke oven gas, carbureted gas, or mixtures thereof
KR910001816B1 (en) Method of carlon monoxide production
US2711419A (en) Process and apparatus for making fuel gas
US3061421A (en) Purification of fuel gases
US4104129A (en) Low temperature carbonization and desulfurization of coal under elevated pressures
US4117101A (en) Process for reduction of SO2
RU2070538C1 (en) Method for production of elemental sulfur
US2169379A (en) Elemental sulphur from hydrocarbon gases containing hydrogen sulphide
AU2016384589B2 (en) Novel method for avoiding expensive sour water stripper metallurgy in a gasification plant
NO146745B (en) PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE HETEROCYCLIC SUBSTITUTED 5-SULFAMOYLBENZOIC ACID DERIVATIVES
US2963416A (en) Coke production from petroleum stocks
US3103423A (en) Steam reforming of hydrocarbons
US2137275A (en) Process of reconstituting and dehydrogenating heavier hydrocarbons and making an antiknock gasoline
US2941868A (en) Purification of crude sulfur