NO146087B - PROCEDURE FOR THE MANUFACTURE OF A LIQUID MATERIAL AS SEMI-MANUFACTURED - Google Patents

PROCEDURE FOR THE MANUFACTURE OF A LIQUID MATERIAL AS SEMI-MANUFACTURED Download PDF

Info

Publication number
NO146087B
NO146087B NO770813A NO770813A NO146087B NO 146087 B NO146087 B NO 146087B NO 770813 A NO770813 A NO 770813A NO 770813 A NO770813 A NO 770813A NO 146087 B NO146087 B NO 146087B
Authority
NO
Norway
Prior art keywords
voltage
indicator
electrical connection
frequency
circuit
Prior art date
Application number
NO770813A
Other languages
Norwegian (no)
Other versions
NO770813L (en
NO146087C (en
Inventor
Karl Dawid
Fred Roderich Pohl
Jan Peter Simons
Original Assignee
Alcan Res & Dev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Res & Dev filed Critical Alcan Res & Dev
Publication of NO770813L publication Critical patent/NO770813L/en
Publication of NO146087B publication Critical patent/NO146087B/en
Publication of NO146087C publication Critical patent/NO146087C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Laminated Bodies (AREA)
  • Vibration Prevention Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Moulding By Coating Moulds (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Elektrisk kopling til forsterkning og overvåking av likestrøm. Electrical connection for amplification and monitoring of direct current.

Oppfinnelsen angår en elektrisk kopling til forsterkning og indlkering eller måling av en meget liten strømstyrke. The invention relates to an electrical connection for amplification and induction or measurement of a very small current.

Denne likestrømsforsterkeren er sær-lig godt anvendelig i alarmanlegg, sikker-hetskretser eller overvåkingskretser. This direct current amplifier is particularly useful in alarm systems, security circuits or monitoring circuits.

Det mest karakteristiske ved like-strømsforsterkeren ifølge oppfinnelsen er at likestrøm fra en strømgenerator i en inngangskrets mater en krets som består av to koldkatode tyratronrør koplet i en monostabil multivibratorkrets der det ene tyratronrør tennes av sin anodespenning mens det annet tyratronrør bare tennes ved hjelp av sin tennelektrode. Tennelektroden gis et tenningspotensial ved opplading av en kondensator matet fra inngangskretsen, slik at multivibratorens frekvens er konstant ved konstant inn-gangsstrøm og varierer når inngangsstrøm-men varierer. The most characteristic feature of the direct current amplifier according to the invention is that direct current from a current generator in an input circuit feeds a circuit consisting of two cold-cathode thyratron tubes connected in a monostable multivibrator circuit where one thyratron tube is ignited by its anode voltage while the other thyratron tube is only ignited by means of its ignition electrode. The ignition electrode is given an ignition potential by charging a capacitor fed from the input circuit, so that the frequency of the multivibrator is constant at a constant input current and varies when the input current varies.

I multivibratorkretsen er brukt koldkatode tyratronrør istedenfor elektronrør med glødekatode fordi koldkatoderør har en betraktelig lengre levetid enn rør med gløding. Som en ekstra sikkerhetsforan-staltning kan to eller flere parallellkoplete tyratronrør erstatte hvert sitt ene rør i multivibratorkretsen, slik at et annet rør kan overta driften hvis det oppstår en feil i det første røret. In the multivibrator circuit, cold-cathode thyratron tubes are used instead of electron tubes with a glowing cathode because cold-cathode tubes have a considerably longer life than tubes with annealing. As an additional safety measure, two or more thyratron tubes connected in parallel can each replace one tube in the multivibrator circuit, so that another tube can take over operation if a fault occurs in the first tube.

Likestrømsforsterkeren ifølge oppfinnelsen skal nå forklares med henvisninger til figurene, der: Fig. 1 viser et koplingseksempel for generell anvendelse av forsterkerkretsen hvor strømgeneratoren er representert av en varierende følermotstand. Fig. 2 viser et koplingseksempel der strømgeneratoren er et ionisasjonskammer og hvor kretsen er laget som en sikker-hetsforsterker for overvåking og kontroll av en kjernereaktors effekt. På fig. 1 er V, og V, to koldkatode ty-ratronrør som er koplet i en monostabil multivibratorkrets. Den tilførte anodespenning er stor nok til at tyratronrøret V., tenner, men anodespenningen er for liten til at røret V, tenner. Tyratronrøret V, tennes av sin tennelektrode. Multivibratorkretsen er koplet til en følermotstand R: som varierer med den tilstand som skal overvåkes eller kontrolleres. The direct current amplifier according to the invention will now be explained with reference to the figures, where: Fig. 1 shows a connection example for general application of the amplifier circuit where the current generator is represented by a varying sensor resistance. Fig. 2 shows a connection example where the current generator is an ionization chamber and where the circuit is designed as a safety amplifier for monitoring and controlling a nuclear reactor's effect. In fig. 1 are V, and V, two cold-cathode tyratron tubes connected in a monostable multivibrator circuit. The applied anode voltage is large enough for the thyratron tube V, to ignite, but the anode voltage is too small for the tube V, to ignite. The thyratron tube V is ignited by its ignition electrode. The multivibrator circuit is connected to a sensing resistor R: which varies with the condition to be monitored or controlled.

I et gitt øyeblikk kan V, tenkes å være ledende og V, slukket. En kondensator C:, i At a given moment, V, can be thought of as conducting and V, extinguished. A capacitor C:, i

parallell med følermotstanden vil da lade seg opp gjennom motstanden R5. Spenningen på tennelektroden til røret V, vil da stige til V1 tenner. parallel to the sensor resistor will then charge up through the resistor R5. The voltage on the ignition electrode of tube V will then rise until V1 ignites.

Når røret V1 begyner å lede, vil anoden til røret V., bli drevet negativt og V., slukker. When the tube V1 begins to conduct, the anode of the tube V., will be driven negative and V., extinguishes.

Kondensatoren C3 lader seg ut gjennom tennelektroden til røret V1 inntil tennelektrodens potensial ligger under den spenningen som skal til for å tenne V,. Når så V2 igjen tenner, vil anoden til V, bli drevet negativt og røret V, slukker. The capacitor C3 discharges through the ignition electrode of the tube V1 until the potential of the ignition electrode is below the voltage required to ignite V,. When then V2 fires again, the anode of V, will be driven negative and the tube V, extinguishes.

Nå vil C;i lade seg opp igjen og spenningen på tennelektroden vil øke til V, tenner, dermed slukker Vv igjen. Tidsrom-met mellom tenningen av V1 og slukkingen av V, er ved konstant strøm gjennom fø-lermotstanden R: hovedsakelig bestemt av tidskonstanten av motstanden R, og R., Now C;i will charge up again and the voltage on the ignition electrode will increase to V, ignites, thus extinguishing Vv again. The time interval between the switching on of V1 and the switching off of V, is at constant current through the sensor resistance R: mainly determined by the time constant of the resistance R, and R.,

og kondensatoren Cr Multivibratoren vil derfor oscillere med en bestemt, konstant frekvens så lenge strømmen gjennom føler-motstanden R; er konstant. Med liten strøm gjennom følermotstanden vil denne ha liten innflytelse på multivibratorens fre- and the capacitor Cr The multivibrator will therefore oscillate with a specific, constant frequency as long as the current through the sensor resistor R; is constant. With a small current through the sensor resistor, this will have little influence on the multivibrator's

kvens. Men hvis strømmen gjennom føler-motstanden øker, blir oppladningstiden for C< lengre og det går lengre tid før V, quens. But if the current through the sensor resistor increases, the charging time for C< becomes longer and it takes longer for V,

igjen tenner. Dermed avtar multivibrato- again teeth. Thus, multivibrato decreases

rens frekvens. Når strømgjennomgangen i følermotstanden R; er så stor at C:1 ikke lenger opplades til tenningspotensialet for røret V1; slutter multivibratoren å oscil- pure frequency. When the current flow in the sensor resistor R; is so large that C:1 is no longer charged to the ignition potential of the tube V1; the multivibrator stops oscillating

lere og røret V, vil lede hele tiden. Et relé clay and the pipe V, will lead all the time. A relay

som er koplet til likeretterens og til multivibratorkretsen som vist på fig. 1, vil således være tiltrukket så lenge multivibratorkretsen svinger med en viss mini-mumsfrekvens. Når frekvensen avtar og nærmer seg null, faller releet ut. Derved utløses en sikkerhets- eller alarmfunksjon som står i forbindelse med releet. which is connected to the rectifier and to the multivibrator circuit as shown in fig. 1, will thus be attracted as long as the multivibrator circuit oscillates with a certain minimum hum frequency. As the frequency decreases and approaches zero, the relay trips. This triggers a safety or alarm function which is connected to the relay.

Inngangskretsen Rr„ R( er en spenningsdeler hvis midtpunkt er koplet til tennelektroden for tyratronrøret V,. Den tilførte spenning til spenningsdeleren R.-„ The input circuit Rr„ R( is a voltage divider whose center point is connected to the ignition electrode of the thyratron tube V,. The supplied voltage to the voltage divider R.-„

Rj kan varieres ved hjelp av et potensio- Rj can be varied using a potential

meter R,, i serie med en motstand R4. Ved hjelp av potensiometeret R., kan forsterke- meter R,, in series with a resistor R4. By means of the potentiometer R., can amplify-

ren på den måten innstilles til utløsning ved en ønsket strøm gjennom følermot-standen. in that way is set to trigger at a desired current through the sensor resistor.

Et frekvensavhengig instrument kan A frequency dependent instrument can

brukes som indikering for hvor langt fra releets utløsningsnivå multivibratorkretsen arbeider, og på den måten angi styrken av strømmen som går gjennom følermotstan- is used as an indication of how far from the relay's trigger level the multivibrator circuit works, and in that way indicate the strength of the current passing through the sensor resistance

den R :. the R:.

På fig. 2 er strømgeneratoren et ionisasjonskammer i en kjernereaktors nøy-tronfelt. For å kunne arbeide sikkert, kre- In fig. 2, the current generator is an ionization chamber in a nuclear reactor's neutron field. In order to work safely, cre-

ver et ionisasjonskammer vanligvis en høyere spenningsforsyning enn hva som kan tillates over hvert tyratronrør. Derfor er forsterkeren gitt en tosidig spenningsforsyning, slik at ionisasjonskammeret får en høyere spenning. Tyratronrørene V, og Vo er koplet over hver sin spenningsgren, is an ionization chamber usually a higher voltage supply than can be allowed across each thyratron tube. Therefore, the amplifier is provided with a two-sided voltage supply, so that the ionization chamber receives a higher voltage. The thyratron tubes V and Vo are connected across each voltage branch,

og kontrollerer således at spenningene i sin gren er til stede. and thus checks that the voltages in its branch are present.

Strømmen gjennom ionisasjonskam- The current through the ionization cham-

meret vil som kjent forandre seg med nøy-tronfluksen. Med lav nøytronfluks, dvs. as is known, the more will change with the neutron flux. With low neutron flux, i.e.

med liten strøm gjennom ionisasjonskam- with a small current through the ionization chamber

meret, vil kammeret ha liten innflytelse på multivibratorens frekvens. Men hvis strømmen på grunn av stigende nøytron- moreover, the chamber will have little influence on the frequency of the multivibrator. But if the current due to rising neutron-

fluks øker, blir oppladningstiden lengre og V i tenner senere. Multivibratorens fre- flux increases, the charging time becomes longer and V i starts later. The multivibrator's fre-

kvens avtar således med stigende nøytron- thus decreases with increasing neutron

fluks til strømgjennomgangen i kammeret er så stor at C., ikke lenger lades opp til tenningspotensialet for røret V,. Dermed slutter multivibratorkretsen å svinge, og releet faller ut og utløser sikkerhetskret- flux to the current passage in the chamber is so great that C., is no longer charged up to the ignition potential of the tube V,. Thus, the multivibrator circuit stops oscillating, and the relay drops out, tripping the safety cir-

sen. Det frekvensavhengige instrumentet gir et mål på nøytronfluksen. Late. The frequency-dependent instrument provides a measure of the neutron flux.

Ved bruk av ionisasjonskammer kan When using an ionization chamber can

det være hensiktsmessig å sløyfe konden- it may be appropriate to loop condensate

satoren C:, og la ionisasjonskammeret med tilledning utgjøre kondensatoren. På den måten kan det oppnås større følsomhet. the sator C:, and let the ionization chamber with the lead form the condenser. In this way, greater sensitivity can be achieved.

Claims (4)

1. Elektrisk kopling til forsterkning og overvåking av likestrøm fra en indika-1. Electrical connection for amplification and monitoring of direct current from an indica- tor i en inngangskrets, karakterisert ved at likestrømmen styrer en krets som består av to koldkatode tyratronrør som er tilsluttet anodespenning og koplet i en monostabil multivibratorkrets der det ene tyratronrør (V.,) tennes av sin anodespenning mens det annet tyratronrør (V,) bare tennes ved hjelp av sin tennelektrode som er tilsluttet en parallellkopling av en kondensator og indikatoren som har til formål å avføle det forhold som skal overvåkes og som står under påtrykk av spenning slik at kondensatorens oppladning varierer i avhengighet av strømgjennom-gangen i indikatoren og slik at multivibratorens frekvens er en funksjon av strømmen gjennom indikatoren. tor in an input circuit, characterized in that the direct current controls a circuit consisting of two cold-cathode thyratron tubes which are connected to anode voltage and connected in a monostable multivibrator circuit where one thyratron tube (V.,) is ignited by its anode voltage while the other thyratron tube (V,) only is ignited by means of its ignition electrode which is connected to a parallel connection of a capacitor and the indicator which has the purpose of sensing the condition to be monitored and which is under pressure of voltage so that the charging of the capacitor varies depending on the current passing through the indicator and so that the frequency of the multivibrator is a function of the current through the indicator. 2. Elektrisk kopling ifølge påstand 1, karakterisert ved at tennelektroden til det annet tyratronrør (VO er koplet til en spenningsdeler som består av en fast motstand (R5) og indikatorens indre motstand. 2. Electrical connection according to claim 1, characterized in that the ignition electrode of the second thyratron tube (VO) is connected to a voltage divider consisting of a fixed resistor (R5) and the internal resistance of the indicator. 3. Elektrisk kopling ifølge påstand 1 —2, karakterisert ved at den er ut-styrt med et relé som er tiltrukket så lenge multivibratorkretsen svinger med en viss mdnimumsfrekvens, men som faller ut når frekvensen er mindre enn minimumsfre-kvensen. 4. Elektrisk kopling ifølge påstand 1 —3, karakterisert ved at den er ut-styrt med et frekvensavhengig instrument for angivelse av den genererte strøm-styrken. 3. Electrical coupling according to claims 1-2, characterized in that it is equipped with a relay which is attracted as long as the multivibrator circuit oscillates with a certain minimum frequency, but which drops out when the frequency is less than the minimum frequency. 4. Electrical coupling according to claims 1-3, characterized in that it is equipped with a frequency-dependent instrument for indicating the generated current strength. 4. Elektrisk kopling ifølge påstand 1 —4, karakterisert ved at indikatoren er et ionisasjonskammer. 6. Elektrisk kopling ifølge påstand 5, karakterisert ved at forsterkerkretsen er gitt en tosidig spenningsforsyning og at tyratronrørene er koplet over hver sin spenningsgren. 7. Elektrisk kopling ifølge påstand 1 og 5, karakterisert ved at ionisa sjonskammeret og dets tilledning tilveie-bringer inngangskretsens kapasitet.4. Electrical connection according to claims 1-4, characterized in that the indicator is an ionization chamber. 6. Electrical connection according to claim 5, characterized in that the amplifier circuit is provided with a two-sided voltage supply and that the thyratron tubes are connected across each voltage branch. 7. Electrical connection according to claim 1 and 5, characterized in that ionisa sion chamber and its lead provide the input circuit capacity.
NO770813A 1976-03-09 1977-03-08 PROCEDURE FOR THE MANUFACTURE OF A LIQUID MATERIAL AS SEMI-MANUFACTURED NO146087C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2609763A DE2609763B2 (en) 1976-03-09 1976-03-09 Method of making a laminate it

Publications (3)

Publication Number Publication Date
NO770813L NO770813L (en) 1977-09-12
NO146087B true NO146087B (en) 1982-04-19
NO146087C NO146087C (en) 1982-08-11

Family

ID=5971926

Family Applications (1)

Application Number Title Priority Date Filing Date
NO770813A NO146087C (en) 1976-03-09 1977-03-08 PROCEDURE FOR THE MANUFACTURE OF A LIQUID MATERIAL AS SEMI-MANUFACTURED

Country Status (15)

Country Link
AT (1) AT362214B (en)
BE (1) BE852250A (en)
CH (1) CH619643A5 (en)
DE (1) DE2609763B2 (en)
DK (1) DK102377A (en)
ES (1) ES456630A1 (en)
FR (1) FR2343597A1 (en)
GB (1) GB1562783A (en)
IE (1) IE44717B1 (en)
IT (1) IT1080326B (en)
LU (1) LU76916A1 (en)
NL (1) NL7702541A (en)
NO (1) NO146087C (en)
SE (1) SE7702578L (en)
YU (1) YU60177A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208443B1 (en) * 1985-06-28 1991-12-04 Nippon Kokan Kabushiki Kaisha Vibration-damping composite sheet steel
FR2662637A1 (en) * 1990-05-31 1991-12-06 Ugine Aciers METHOD FOR PRODUCING SHEET SANDWICH MULTILAYER STRUCTURE SHEET AND PRODUCT OBTAINED BY THE SAME.
US6077613A (en) * 1993-11-12 2000-06-20 The Noble Company Sound insulating membrane
FR2726066B1 (en) * 1994-10-19 1997-01-03 Tubeurop LONGITUDINALLY WELDED HOLLOW PROFILE AND MANUFACTURING METHOD THEREOF
DE19530122C1 (en) * 1995-08-16 1996-07-18 Alcan Gmbh Mfg. laminated facade panels or profiled roof sheets
DE10031318C2 (en) * 2000-06-28 2003-12-24 Alcan Gmbh Sound and vibration damping metal band, molded part and method for producing a sound and vibration damping metal band

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1447156A1 (en) * 1964-12-05 1968-11-07 Trierer Walzwerk Ag Process for the production of sound insulating panels
DE1609967A1 (en) * 1966-11-30 1970-06-25 Farbwerke Hoechst Vorm Meister Roofing made of composite materials
DE1694226A1 (en) * 1967-12-06 1971-07-22 Hoechst Ag Vibration-damped composite systems with intermediate layers of graft polymers of methyl methacrylate or methyl methacrylate / acrylic acid on vinyl acetate / 2-ethylhexyl acrylate / dibutyl maleate / crotonic acid copolymers
FR2088916A5 (en) * 1970-04-29 1972-01-07 Bandstahlkombinat Veb Composite steel and aluminium sheeting or - strips
BE789927A (en) * 1971-10-11 1973-04-11 Cegedur MECHANICALLY DEFORMABLE SANDWICH WITH A VIEW TO THE MANUFACTURE OF SOUNDPROOF AND OBTAINED PRESSURES

Also Published As

Publication number Publication date
DE2609763A1 (en) 1977-09-15
SE7702578L (en) 1977-09-10
LU76916A1 (en) 1977-07-12
AT362214B (en) 1981-04-27
YU60177A (en) 1982-08-31
ATA154077A (en) 1980-09-15
IE44717L (en) 1977-09-09
DE2609763B2 (en) 1979-06-13
FR2343597A1 (en) 1977-10-07
NL7702541A (en) 1977-09-13
FR2343597B1 (en) 1983-08-26
DK102377A (en) 1977-09-10
NO770813L (en) 1977-09-12
IT1080326B (en) 1985-05-16
IE44717B1 (en) 1982-03-10
CH619643A5 (en) 1980-10-15
NO146087C (en) 1982-08-11
GB1562783A (en) 1980-03-19
ES456630A1 (en) 1978-02-16
BE852250A (en) 1977-07-01

Similar Documents

Publication Publication Date Title
US2721276A (en) Condition sensing apparatus
US2451953A (en) Meter protection circuit
NO146087B (en) PROCEDURE FOR THE MANUFACTURE OF A LIQUID MATERIAL AS SEMI-MANUFACTURED
US2221569A (en) Direct current welding with tube control
US2408711A (en) Apparatus to detect change of voltage
US2026421A (en) Frequency responsive apparatus
US2068147A (en) Electric rate meter
US2799781A (en) Explosion detection and suppression
US2455351A (en) Fire detecting apparatus
US2691158A (en) Peak voltage indicating and measuring system
US2662985A (en) Radiation-absorption type liquid level indicator
US2558637A (en) Flash-back indicator
US2554800A (en) Supervisory circuit
US2102371A (en) Impulse rate meter
US3336479A (en) Flame condition detection using a nonself-quenching ultra-violet sensitive geiger tube
US2478373A (en) Fire detecting apparatus
US3183404A (en) Control circuits for multicathode indicating devices
US2053016A (en) Controlling operating time of arc discharge devices
US3283154A (en) Flame detector system using an ultraviolet detector of the avalanche discharge type
US2793290A (en) Rectangular pulse generator
US3428901A (en) Condition detecting apparatus,including capacitor in series with sensor means,for short circuit protection
US2956156A (en) Cold cathode gas discharge tube circuit-arrangement
US2925539A (en) Electrical gas tube control circuits with reset
US3892999A (en) Power source for electronic flame detection devices and the like
US3095557A (en) System for locating modulator malfunction