NO145172B - TURBINSKOVLKONSTRUKSJON. - Google Patents

TURBINSKOVLKONSTRUKSJON. Download PDF

Info

Publication number
NO145172B
NO145172B NO742783A NO742783A NO145172B NO 145172 B NO145172 B NO 145172B NO 742783 A NO742783 A NO 742783A NO 742783 A NO742783 A NO 742783A NO 145172 B NO145172 B NO 145172B
Authority
NO
Norway
Prior art keywords
platform
group
root
cooling
underside
Prior art date
Application number
NO742783A
Other languages
Norwegian (no)
Other versions
NO742783L (en
NO145172C (en
Inventor
Clayton Merrill Grondahl
John Howard Eskesen
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of NO742783L publication Critical patent/NO742783L/no
Publication of NO145172B publication Critical patent/NO145172B/en
Publication of NO145172C publication Critical patent/NO145172C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/185Liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Description

Konstruksjoner for væskekjøling av gassturbin-skovler er beskrevet i US-PS 3 446 481, 3 446 482 og 3 658 439. Disse patentskrifter tjener som referanse. Constructions for liquid cooling of gas turbine blades are described in US-PS 3,446,481, 3,446,482 and 3,658,439. These patent documents serve as a reference.

Systemer for tilførsel av kjølevæske til kjøle-kanalene i væskekjølte turbinskovler er delvis bestemt av den Systems for supplying coolant to the cooling channels in liquid-cooled turbine blades are partly determined by the

type feste som benyttes for å forbinde skovlene med rotoren. Ved denne teknikk trenges et fordelingssystem som er særlig innrettet for skovler med svalehaleformet feste og integrert plattformkonstruksjon. type of attachment used to connect the blades to the rotor. With this technique, a distribution system is needed that is specially designed for shovels with a dovetail-shaped attachment and an integrated platform construction.

En væskekjølt turbinskovlkonstruksjon er beskrevet, ved hvilken skovlbladkjernen, plattformen (med utmålingsanord-ningen) og roten med svalehaleform er utformet i ett stykke. Hver skovls trykk- og sugeside har et væskeforråd avgrenset delvis ved hjelp av en utmålingsanordning (f. eks. en demning) spor i plattformens øvre overflate og i skovlbladets overflate og hull som forbinder disse spor med undersiden av plattformen ved utmålingsanordningene. A liquid-cooled turbine blade construction is described, in which the blade core, the platform (with the metering device) and the dovetail-shaped root are formed in one piece. Each vane's pressure and suction side has a liquid reservoir delimited in part by means of a metering device (e.g. a dam), grooves in the upper surface of the platform and in the blade surface and holes that connect these grooves to the underside of the platform at the metering devices.

Nærmere bestemt angår oppfinnelsen en turbinskovl-konstruksjon som omfatter i ett stykke utformede skovlblad med kjerne, plattform og rot, hvor roten har svalehaleform, More specifically, the invention relates to a turbine blade construction which comprises in one piece designed blade blades with core, platform and root, where the root has a dovetail shape,

en første gruppe kjølespor utarbeidet i plattformens øvre overflate, en annen gruppe kjølespor utarbeidet i den skovlformede kjernes trykk- og sugeflate, hvor hvert kjølespor i den første gruppe er forbundet med hvert sitt kjølespor i den annen gruppe, en mantel anordnet over plattformens øvre overflate og en mantel over trykk- og sugeflatene for å dekke den første og annen gruppe kjølespor, to langsgående spor som er utformet i plattformens underside og som forløper på hver sin side av, a first group of cooling grooves prepared in the upper surface of the platform, a second group of cooling grooves prepared in the pressure and suction surface of the vane-shaped core, where each cooling groove in the first group is connected to its respective cooling groove in the second group, a mantle arranged over the upper surface of the platform and a jacket over the pressure and suction surfaces to cover the first and second groups of cooling grooves, two longitudinal grooves formed in the underside of the platform and extending on either side of,

i samme retning som og inntil roten, to i lengderetningen forløpende renner som er utformet i undersiden av plattformen, hvilke renner forløper parallelt og inntil hvert sitt spor, in the same direction as and next to the root, two longitudinally running chutes that are designed in the underside of the platform, which chutes run parallel and next to each track,

og et antall hull som er ført gjennom plattformen og forbinder den første gruppe kjølespor med undersiden av plattformen inntil hvert av fremspringene på den side som vender bort fra det tilstøtende spor. and a number of holes passed through the platform and connecting the first group of cooling tracks to the underside of the platform to each of the projections on the side facing away from the adjacent track.

Det særegne ved oppfinnelsen er to langs undersiden av plattformen utformede langsgående fremspring som hvert skiller ad et spor og en renne og er utformet med en rygg med bueformet tverrsnitt og konveks, sylindrisk overflate, hvor begge disse ryggers sylindriske overflate er parallelle med elementene av de konvekse, sylindriske rygger av den svalehaleformede rot. The peculiarity of the invention are two longitudinal protrusions formed along the underside of the platform, which each separate a groove and a channel and are designed with a ridge with an arched cross-section and a convex, cylindrical surface, where the cylindrical surface of both these ridges are parallel to the elements of the convex , cylindrical ridges of the dovetail root.

Derved oppnås en jevn passasje av kjolevæske over hele lengden av ryggen og dermed en jevn og ensartet tilførsel av kjølevæske til samtlige skovlblad og disses overflate. Thereby, an even passage of cooling liquid is achieved over the entire length of the back and thus an even and uniform supply of cooling liquid to all vane blades and their surface.

Oppfinnelsen skal forklares nærmere i det følgende under henvisning til de skjematiske figurer, av hvilke fig. 1 viser et sideriss, delvis i snitt, av en del av den svalehaleformede rot, plattformen og skovlbladet, og kjølevæske-mate-anordningen i flukt dermed, fig. 2 viser et riss, delvis i snitt med holde/materingen og en dekkplate kuttet ut for å vise den integrerte utformning av forrådet' i plattformen, de langsgående utmålingsanordninger, plattformrenne, plattformkjøle-kanaler og matehull som fører til disse, og fig. 3 viser et snitt etter linjen 3 - 3 på fig. 2 med skovlbladmantelen delvis fjernet. .. <:>■ The invention will be explained in more detail below with reference to the schematic figures, of which fig. 1 shows a side view, partially in section, of a portion of the dovetail root, the platform and vane blade, and the coolant feeding device flush therewith, FIG. 2 shows a view, partly in section with the holding/feed ring and a cover plate cut out to show the integrated design of the storage in the platform, the longitudinal measuring devices, platform chute, platform cooling channels and feed holes leading to these, and fig. 3 shows a section along the line 3 - 3 in fig. 2 with the blade sheath partially removed. .. <:>■

Turbinskovlen 10 består av en mantel 11, 11a The turbine blade 10 consists of a casing 11, 11a

(f. eks. av platemetall) festet f. eks. ved slaglodding til en enhets-rot/plattform/skovlblad-kjerne 12, og en rot 13 som har den konvensjonelle svalehaleform ved hvilken skovlen 10 holdes fast i en sliss 14 i en hjulkrans 16. Spor 17 som er utsparet i plattformens 18 overflate, er forbundet med et tilsvarende spor 19 i overflaten av skovlbladets kjerne 21. De kjøle-kanaler (fortrinnsvis av rektangulær form) som er begrenset av manteldelen 11a og sporene 17, er således i forbindelse med hver sin av de kjølekanaler som er begrenset av manteldelen 11 og sporene 19; kjølevæske ledes gjennom disse spor i ensartet avstand fra den ytre overflate. Ved de radialt ytre ender er de rektangulære kjølekanaler på skovlens 10 trykkside i strømningsforbindelse med og avsluttet i en felles ledning 22 (e.g. of sheet metal) attached e.g. by brazing to a unit root/platform/vane blade core 12, and a root 13 having the conventional dovetail shape by which the vane 10 is held firmly in a slot 14 in a wheel rim 16. Groove 17 which is cut in the surface of the platform 18, is connected with a corresponding groove 19 in the surface of the blade core 21. The cooling channels (preferably of rectangular shape) which are limited by the casing part 11a and the grooves 17 are thus in connection with each of the cooling channels which are limited by the casing part 11 and the tracks 19; coolant is led through these grooves at a uniform distance from the outer surface. At the radially outer ends, the rectangular cooling channels on the pressure side of the vane 10 are in flow connection with and terminated in a common line 22

i bladet 21. På skovlens.10 sugeside er kjølekanalene i strøm-ningsf orbindelse med og avsluttet ved en tilsvarende felles ledning (ikke vist) utarbeidet i bladet 21. I nærheten av skovlens 10 bakkant forbinder en overløpskanal (åpningen 23) ledningen på sugesiden med ledningen 22. in the blade 21. On the suction side of the blade 10, the cooling channels are in flow connection with and terminated by a corresponding common line (not shown) prepared in the blade 21. Near the rear edge of the blade 10, an overflow channel (the opening 23) connects the line on the suction side with wire 22.

Kjøling i åpent kretsløp tilveiebringes ved at kjølevæske (vanlig vann) sprøytes ved lavt trykk i hovedsaken utad i radial retning fra dyser 24 montert på hver side av rotorskiven (én dyse er vist på fig. 1). Kjølevæsken mottas i en ringformet renne 26 utformet i en ring 27. En sådan ring er montert på hver sideav hjulkransen 16. Ringene. 27 holder også skovlene 10 riktig på plass i kransen 16 foruten at de foretar fordelingen av kjølevæsken til hver av skovlene. Cooling in an open circuit is provided by coolant (ordinary water) being sprayed at low pressure mainly outwards in a radial direction from nozzles 24 mounted on each side of the rotor disc (one nozzle is shown in Fig. 1). The coolant is received in an annular channel 26 formed in a ring 27. Such a ring is mounted on each side of the wheel rim 16. The rings. 27 also holds the vanes 10 correctly in place in the ring 16, in addition to distributing the coolant to each of the vanes.

Den kjølevæske som mottas i rennene 26, ledes gjennom matehull 28 som hvert står i strømningsforbindelse med et forråd 29 som forløper i retning parallelt med turbinskivens rotasjonsakse. Åpningene fra rennene 26 inn til hullene 28 har samme innbyrdes avstand langs rennenes omkrets for å sikre jevn fordeling av kjølevæsken til skovlene gjennom disse hull. The coolant which is received in the channels 26 is led through feed holes 28, each of which is in flow connection with a supply 29 which runs in a direction parallel to the axis of rotation of the turbine disc. The openings from the channels 26 to the holes 28 have the same mutual distance along the circumference of the channels to ensure even distribution of the coolant to the vanes through these holes.

Mens kjølevæsken spres ut som en tynn film i rennene 26,, samler den seg for å fylle hvert forråd 29 (disses ender er lukket ved to dekkplater 31). Idet kjølevæsken fortsetter å nå frem til forrådene 29, tømmes overskuddet ut over en demningsrygg 32 i hele lengden og blir således utmålt. Ryggen 32 er fortrinnsvis bueformet i tverrsnitt (konveks) As the coolant spreads out as a thin film in the channels 26, it collects to fill each reservoir 29 (the ends of which are closed by two cover plates 31). As the coolant continues to reach the reservoirs 29, the excess is emptied over a dam ridge 32 along its entire length and is thus metered out. The ridge 32 is preferably arched in cross-section (convex)

mot rotasjonsaksen og har form av en del av en sylinder for å kunne tilpasse seg mindre forskjeller i den innbyrdes plasse-ring av skovlene 10. Selv om ryggenes 32 avstand fra rotasjonsaksen kan variere litt fra skovl til skovl, må deres sylindriske form som krummer mot roten, maskinbearbeides nøyaktig, således at hvert element av hver sådan sylindrisk flate forløper parallelt med de elementer som danner de sylindriske, konvekse rygger i svalehaleformen. På denne måte kan hvert element av ryggoverflaten innstilles parallelt til rotasjonsaksen. Denne bearbeidingsnøyaktighet er nødvendig for å sikre at kjølevæsken passerer jevnt over hele ryggens lengde. towards the axis of rotation and has the shape of part of a cylinder to be able to adapt to minor differences in the mutual placement of the vanes 10. Although the distance of the ridges 32 from the axis of rotation may vary slightly from vane to vane, their cylindrical shape that curves towards the root, is precisely machined, so that each element of each such cylindrical surface runs parallel to the elements that form the cylindrical, convex ridges in the dovetail shape. In this way, each element of the back surface can be set parallel to the axis of rotation. This machining accuracy is necessary to ensure that the coolant passes evenly over the entire length of the spine.

Kjølevæske som har passert ryggen 32, fortsetter hovedsakelig i radial retning for å tre inn i den langsgående plattformrenne 33 med fordeling i form av en film, og passerer deretter gjennom matehullene 34 for kjølekanalene. De fleste av hullene 34 er i strømningsforbindelse med hvert sitt spor 17, men noen få av disse hull slutter seg direkte til sporene 19. Coolant which has passed the ridge 32 continues mainly in the radial direction to enter the longitudinal platform trough 33 with distribution in the form of a film, and then passes through the feed holes 34 for the cooling channels. Most of the holes 34 are in flow communication with each of the grooves 17, but a few of these holes join the grooves 19 directly.

I alle fall passerer kjølevæsken fra hullene 34 til ledningen 22 (og til den ikke viste sugesideledning) gjennom skovlenes kjølekanaler. In any case, the coolant passes from the holes 34 to the line 22 (and to the suction side line not shown) through the cooling channels of the vanes.

Ved at kjølevæsken strømmer over flatene på plattformen og skovlbladet, holdes disse elementer avkjølte. En As the coolant flows over the surfaces of the platform and the blade, these elements are kept cool. One

del av kjølevæsken vil, avhengig av strømningshastigheten, om-dannes til gass eller dampform, idet den opptar varme. Dampen eller gassen og den resterende kjølevæske trer ut av ledningen 22 gjennom en åpning 36, fortrinnsvis for å tre inn i en samle-sliss (ikke vist) i mantelen for eventuell resirkulasjon eller fjernelse av den utslyngede væske. part of the coolant will, depending on the flow rate, be converted into gas or vapor form, as it absorbs heat. The vapor or gas and the remaining cooling liquid exit the line 22 through an opening 36, preferably to enter a collecting slot (not shown) in the jacket for possible recirculation or removal of the ejected liquid.

Selv om kjølekanalene her er vist som spenn - vist forløpende i turbinskovlen, er oppfinnelsen like anvendelig ved skovlkonstruksjoner, ved hvilke kjølekanalene har form som vindinger eller spiraler. Although the cooling channels are shown here as spanning - shown continuously in the turbine blade, the invention is equally applicable to blade constructions, in which the cooling channels have the shape of windings or spirals.

Claims (1)

Turbinskovl-konstruksjon, omfattende i ett stykke utformede skovlblad med kjerne (12), plattform (18) og rot (13), hvor roten har svalehaleform, en første gruppe kjøle-spor (17) utarbeidet i plattformens (18) øvre overflate, en annen gruppe kjølespor (19) utarbeidet i den skovlformede kjernes (12) trykk- og sugeflate, hvor hvert kjølespor (17) i den første gruppe er forbundet med hvert sitt kjølespor (19) i den annen gruppe, en mantel (11a) anordnet over plattformens (18) øvre overflate og en mantel (11) over trykk- og suge-flåtene for å dekke den første og annen gruppe kjølespor (17, 19), to langsgående spor (29) som er utformet i plattformens (18) underside og som forløper på hver sin side av, i samme retning som og inntil roten (13), to i lengderetningen forlø-pende renner (33) som er utformet i undersiden av plattformen (18), hvilke renner forløper parallelt og inntil hvert sitt spor (29), og et antall hull (34) som er ført gjennom plattformen (18) og forbinder den første gruppe kjølespor (17) med undersiden av plattformen (18) inntil hvert av fremspringeneTurbine blade construction, comprising integrally formed blades with core (12), platform (18) and root (13), the root having a dovetail shape, a first group of cooling grooves (17) prepared in the upper surface of the platform (18), a second group of cooling grooves (19) prepared in the pressure and suction surface of the vane-shaped core (12), where each cooling groove (17) in the first group is connected to each cooling groove (19) in the second group, a mantle (11a) arranged above the platform (18) upper surface and a mantle (11) above the pressure and suction rafts to cover the first and second groups of cooling grooves (17, 19), two longitudinal grooves (29) formed in the underside of the platform (18) and which run on either side of, in the same direction as and next to the root (13), two longitudinally running channels (33) which are formed in the underside of the platform (18), which channels run parallel to and next to each track ( 29), and a number of holes (34) which are passed through the platform (18) and connect the first group kj beer track (17) with the underside of the platform (18) next to each of the protrusions (32) på den side som vender bort fra det tilstøtende spor (29), karakterisert ved to langs undersiden av plattformen utformede langsgående fremspring (32) som hvert skiller ad et spor (29) og en renne (33) og er utformet med en rygg med bueformet tverrsnitt og konveks, sylindrisk overflate, hvor begge disse ryggers sylindriske overflate er parallelle med elementene av de konvekse, sylindriske rygger av den svalehaleformede rot (13)•(32) on the side facing away from the adjacent track (29), characterized by two longitudinal protrusions (32) formed along the underside of the platform which each separate a track (29) and a chute (33) and are designed with a spine with arcuate cross-section and convex, cylindrical surface, the cylindrical surface of both of these spines being parallel to the elements of the convex, cylindrical spines of the dovetail root (13)•
NO742783A 1973-08-02 1974-08-01 TURBINSKOVLKONSTRUKSJON. NO145172C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00384990A US3856433A (en) 1973-08-02 1973-08-02 Liquid cooled turbine bucket with dovetailed attachment

Publications (3)

Publication Number Publication Date
NO742783L NO742783L (en) 1975-03-03
NO145172B true NO145172B (en) 1981-10-19
NO145172C NO145172C (en) 1982-01-27

Family

ID=23519586

Family Applications (1)

Application Number Title Priority Date Filing Date
NO742783A NO145172C (en) 1973-08-02 1974-08-01 TURBINSKOVLKONSTRUKSJON.

Country Status (8)

Country Link
US (1) US3856433A (en)
JP (1) JPS5759883B2 (en)
CA (1) CA1018067A (en)
FR (1) FR2239589B1 (en)
GB (1) GB1472990A (en)
IT (1) IT1017811B (en)
NL (1) NL7410062A (en)
NO (1) NO145172C (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936227A (en) * 1973-08-02 1976-02-03 General Electric Company Combined coolant feed and dovetailed bucket retainer ring
US4017210A (en) * 1976-02-19 1977-04-12 General Electric Company Liquid-cooled turbine bucket with integral distribution and metering system
NL7712519A (en) * 1976-11-19 1978-05-23 Gen Electric LIQUID COOLED TURBINE BLADE WITH IMPROVED HEAT TRANSFER BEHAVIOR.
US4119390A (en) * 1976-11-19 1978-10-10 General Electric Company Liquid-cooled, turbine bucket with enhanced heat transfer performance
US4259037A (en) * 1976-12-13 1981-03-31 General Electric Company Liquid cooled gas turbine buckets
US4156582A (en) * 1976-12-13 1979-05-29 General Electric Company Liquid cooled gas turbine buckets
US4090810A (en) * 1977-03-23 1978-05-23 General Electric Company Liquid-cooled turbine bucket with enhanced heat transfer performance
US4142831A (en) * 1977-06-15 1979-03-06 General Electric Company Liquid-cooled turbine bucket with enhanced heat transfer performance
JPS5477820A (en) * 1977-12-02 1979-06-21 Hitachi Ltd Method of cooling gas turbine blade
US4185369A (en) * 1978-03-22 1980-01-29 General Electric Company Method of manufacture of cooled turbine or compressor buckets
US4212587A (en) * 1978-05-30 1980-07-15 General Electric Company Cooling system for a gas turbine using V-shaped notch weirs
US4242045A (en) * 1979-06-01 1980-12-30 General Electric Company Trap seal for open circuit liquid cooled turbines
US4244676A (en) * 1979-06-01 1981-01-13 General Electric Company Cooling system for a gas turbine using a cylindrical insert having V-shaped notch weirs
US4350473A (en) * 1980-02-22 1982-09-21 General Electric Company Liquid cooled counter flow turbine bucket
GB2246174B (en) * 1982-06-29 1992-04-15 Rolls Royce A cooled aerofoil for a gas turbine engine
JPS59123175U (en) * 1983-02-03 1984-08-18 株式会社エフ.ジ−.ノ−シヨン cloth tape
US5003766A (en) * 1984-10-10 1991-04-02 Paul Marius A Gas turbine engine
US5177954A (en) * 1984-10-10 1993-01-12 Paul Marius A Gas turbine engine with cooled turbine blades
US5387431A (en) * 1991-10-25 1995-02-07 Fuisz Technologies Ltd. Saccharide-based matrix
US5122033A (en) * 1990-11-16 1992-06-16 Paul Marius A Turbine blade unit
US10907609B2 (en) * 2014-07-15 2021-02-02 Ge Renewable Technologies Apparatus and method for modifying a geometry of a turbine part
CA2857297C (en) * 2014-07-21 2021-08-17 Alstom Renewable Technologies Apparatus and method for modifying a geometry of a turbine part
US20170044903A1 (en) 2015-08-13 2017-02-16 General Electric Company Rotating component for a turbomachine and method for providing cooling of a rotating component
US11480057B2 (en) * 2017-10-24 2022-10-25 Raytheon Technologies Corporation Airfoil cooling circuit
US10753210B2 (en) * 2018-05-02 2020-08-25 Raytheon Technologies Corporation Airfoil having improved cooling scheme

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3446481A (en) * 1967-03-24 1969-05-27 Gen Electric Liquid cooled turbine rotor
DE1801475B2 (en) * 1968-10-05 1971-08-12 Daimler Benz Ag, 7000 Stuttgart AIR-COOLED TURBINE BLADE
US3658439A (en) * 1970-11-27 1972-04-25 Gen Electric Metering of liquid coolant in open-circuit liquid-cooled gas turbines
US3736071A (en) * 1970-11-27 1973-05-29 Gen Electric Bucket tip/collection slot combination for open-circuit liquid-cooled gas turbines

Also Published As

Publication number Publication date
FR2239589B1 (en) 1978-11-24
CA1018067A (en) 1977-09-27
GB1472990A (en) 1977-05-11
US3856433A (en) 1974-12-24
NO742783L (en) 1975-03-03
NO145172C (en) 1982-01-27
JPS5759883B2 (en) 1982-12-16
IT1017811B (en) 1977-08-10
JPS5070708A (en) 1975-06-12
FR2239589A1 (en) 1975-02-28
NL7410062A (en) 1975-02-04

Similar Documents

Publication Publication Date Title
NO145172B (en) TURBINSKOVLKONSTRUKSJON.
SU670237A3 (en) Liquid-cooled rotor
US4940388A (en) Cooling of turbine blades
CA1051344A (en) Cooled turbine blade
US5482435A (en) Gas turbine blade having a cooled shroud
US4017210A (en) Liquid-cooled turbine bucket with integral distribution and metering system
EP1106781B1 (en) Coolable vane or blade for a turbomachine
US7753650B1 (en) Thin turbine rotor blade with sinusoidal flow cooling channels
US3658439A (en) Metering of liquid coolant in open-circuit liquid-cooled gas turbines
US7568887B1 (en) Turbine blade with near wall spiral flow serpentine cooling circuit
US4504189A (en) Stator vane for a gas turbine engine
EP1420143B1 (en) Cooled airfoil for turbine
US5816777A (en) Turbine blade cooling
SE453847B (en) COOLABLE AEROFOIL
US4218178A (en) Turbine vane structure
SE9000112L (en) Cooled blades for a gas turbine engine
US10260523B2 (en) Fluid cooling system integrated with outlet guide vane
US7845908B1 (en) Turbine blade with serpentine flow tip rail cooling
EP0810349A3 (en) Cooling of a turbine blade
CA1130212A (en) Cooling system for a gas turbine using a cyclindrical insert having v-shaped notch weirs
US7547190B1 (en) Turbine airfoil serpentine flow circuit with a built-in pressure regulator
US4242045A (en) Trap seal for open circuit liquid cooled turbines
NO154705B (en) TURBINE SHOOT FITTED FOR COOLING WITH A CASE.
US4212587A (en) Cooling system for a gas turbine using V-shaped notch weirs
NO148421B (en) SHAVELING CONSTRUCTION FOR GAS TURBINES REFRIGERATED WITH LIQUID LIKE FLOWS IN THE OPEN CIRCUIT