NO144974B - PAINTING ELEMENT FOR PAINTING APPLIANCES. - Google Patents

PAINTING ELEMENT FOR PAINTING APPLIANCES. Download PDF

Info

Publication number
NO144974B
NO144974B NO761235A NO761235A NO144974B NO 144974 B NO144974 B NO 144974B NO 761235 A NO761235 A NO 761235A NO 761235 A NO761235 A NO 761235A NO 144974 B NO144974 B NO 144974B
Authority
NO
Norway
Prior art keywords
grinding
titanium
maximum
titanium carbide
carbide grains
Prior art date
Application number
NO761235A
Other languages
Norwegian (no)
Other versions
NO761235L (en
NO144974C (en
Inventor
Vaeino Lampe
Karl-Erik Johansson
Original Assignee
Uddeholms Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE7504056A external-priority patent/SE402019B/en
Priority claimed from SE7509957A external-priority patent/SE407951B/en
Application filed by Uddeholms Ab filed Critical Uddeholms Ab
Publication of NO761235L publication Critical patent/NO761235L/no
Publication of NO144974B publication Critical patent/NO144974B/en
Publication of NO144974C publication Critical patent/NO144974C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • B22D23/10Electroslag casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • D21D1/306Discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Paper (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Oppfinnelsen angår et maleelement for apparater for maling av fibermateriale, særlig apparater for defibrering av tre eller bearbeidelse av cellulosefibermasse, f.eks. papirmasse eller boardmasse, hvilket maleelement er fremstilt ved støping av en stållegering og inneholder titan i form av titankarbidkorn i en grunnmasse av stål, hvilke titankarbidkorn er vesentlig likeformet fordelt i maleelementet og har en største gjennomsnittstørrelse på ca. lO^um. Nærmere bestemt angår oppfinnelsen et maleelement be-regnet for å monteres på i forhold til hverandre roterbare bærere i et måleapparat, f.eks. et malesegment for en skivekvern. The invention relates to a grinding element for devices for grinding fiber material, in particular devices for defibrating wood or processing cellulose fiber pulp, e.g. paper pulp or board pulp, which grinding element is produced by casting a steel alloy and contains titanium in the form of titanium carbide grains in a base mass of steel, which titanium carbide grains are substantially evenly distributed in the grinding element and have a largest average size of approx. lO^um. More specifically, the invention relates to a grinding element calculated to be mounted on carriers rotatable in relation to each other in a measuring device, e.g. a grinding segment for a disc grinder.

Innen celluloseindustrien anvendes ofte skivekverner for defibrering av treflis og for bearbeidelse av fibrene i massen til ønsket tilstand (raffinering). En skivekvern for dette formål brukes å kalles for defibrator og en skivekvern for det andre formål brukes å benevnes som raffinator. I det følgende menes med "skivekvern" en skivekvern for et eller annet av disse formål. En vanlig type av skivekverner har to i forhold til hverandre roterbare, konsentriske skiver, hvis mot hverandre, vendende sider er belagt med utskiftbare, slitesterke malesegmentplater, som på sin utover vendte side har et mønster av kammer og spor. Within the cellulose industry, disc grinders are often used for defibrating wood chips and for processing the fibers in the pulp to the desired state (refining). A disc grinder for this purpose is called a defibrator and a disc grinder for the other purpose is called a raffinator. In the following, "disc grinder" means a disc grinder for one or other of these purposes. A common type of disc grinder has two concentric discs rotatable in relation to each other, the opposite sides of which are coated with replaceable, wear-resistant grinding segment plates, which on their outward facing side have a pattern of combs and grooves.

De med slike malesegmentplater belagte skiver danner en mellomliggende, ringformet spalte, malespalten, som er meget trang. Det materiale som skal males mates inn i malespalten ved sentrum av skiven og utsettes for kammenes malevirkning (dvs. defibreringen av treet og/eller be-arbeidelsen av fibrene) mens det strømmer radielt utover gjennom malespalten. The disks coated with such grinding segment plates form an intermediate, ring-shaped gap, the grinding gap, which is very narrow. The material to be ground is fed into the grinding gap at the center of the disc and exposed to the grinding action of the combs (ie the defibration of the wood and/or the processing of the fibres) while it flows radially outwards through the grinding gap.

Malesegmentflater og andre elementer for massemaleapparater bruker vanligvis å fremstilles ved støping av forskjellige slags legeringer. Støpejern, rustfritt stål og andre stållegeringer som inneholder nikkel og molybden og forskjellige andre legeringsstoffer er vanlige materialer. Grinding segment faces and other elements for mass grinding devices are usually produced by casting different kinds of alloys. Cast iron, stainless steel and other steel alloys containing nickel and molybdenum and various other alloying substances are common materials.

Maleelementer for massemaleapparater må oppfylle forskjellige krav, som er vanskelige eller rent umulige å forene i ett og samme maleelement når de vanlige materialene benyttes. Et krav er at maleelementene skal ha en god og jevn malevirkning for å gi masse av høy og jevn kvalitet under hele levetiden. Videre bør de være slitesterke for å ha lang levetid, og de bør videre ha god slagseighet for å kunne motstå de slagartede påkjenninger som kan oppstå også under normal drift. Et ytterligere krav er god bestandighet mot korrosjon og erosjon. Det materiale av hvilket maleelementene fremstilles bør også ha god støtbarhet, slik at maleelementene kan støpes med komplisert form, og natur-ligvis bør materialet ikke være altfor kostbart i forhold til de ferdige maleelementenes egenskaper. Grinding elements for mass grinding devices must meet different requirements, which are difficult or downright impossible to combine in one and the same grinding element when the usual materials are used. A requirement is that the grinding elements must have a good and uniform grinding effect to provide pulp of high and uniform quality throughout its lifetime. Furthermore, they should be durable in order to have a long service life, and they should also have good impact strength to be able to withstand the impact-like stresses that can occur even during normal operation. A further requirement is good resistance to corrosion and erosion. The material from which the painting elements are made should also have good impact resistance, so that the painting elements can be cast with a complicated shape, and naturally the material should not be too expensive in relation to the properties of the finished painting elements.

Et krav som henger sammen med det ovennevnte krav på god og varig malevirkning er at maleelementene bør være selvskjerpende. Dette innebærer at de maleelementflater som danner den trange malespalten, således kammenes sider eller arbeidsflater, ikke må poleres altfor lett av massen, men må opprettholde en viss begrenset og likeformet skarphet under hele levetiden. De fleste kjente maleelementene av legert stål krever ofte gjentatte omslipinger av bommenes arbeidsflater, da disse flater raskt poleres av fibermaterialet og da bommenes kanter eller egger raskt blir uskarpe. A requirement that is linked to the above requirement for good and lasting painting effect is that the painting elements should be self-sharpening. This means that the grinding element surfaces that form the narrow grinding gap, i.e. the sides or working surfaces of the combs, must not be polished too lightly by the compound, but must maintain a certain limited and uniform sharpness throughout its lifetime. Most of the known grinding elements made of alloy steel often require repeated re-grinding of the working surfaces of the booms, as these surfaces are quickly polished by the fiber material and as the edges or edges of the booms quickly become blurred.

Det er i og for seg kjent å benytte titan som legeringselement i støpte maleelementer for skivekverner (GB-PS 1.339.420). Titanet har da form av titankarbid som er et materiale med stor hårdhet og slitestyrke. De kjente titanholdige maleelementene greier imidlertid av forskjellige årsaker ikke å oppfylle de ovennevnte krav tilstrekkelig godt, og fremfor alt har kravet til tilstrekkelig selvskjerpingsevne ikke kunnet oppnås. It is known per se to use titanium as an alloying element in cast grinding elements for disc grinders (GB-PS 1,339,420). The titanium then takes the form of titanium carbide, which is a material with great hardness and wear resistance. However, for various reasons, the known titanium-containing grinding elements do not manage to fulfill the above-mentioned requirements sufficiently well, and above all, the requirement for sufficient self-sharpening ability has not been achieved.

Til grunn for oppfinnelsen ligger den oppgave å fremskaffe et maleelement som får en av de ovennevnte krav på en formålstjenelig måte. Oppfinnelsen grunner seg på innsikten i at oppgaven kan løses ved hensiktsmessig valg av området for titaninnholdet og i tillegg hensiktsmessig relaterte områder for kornstørrelsen og kornavstand, samt dessuten hensiktsmessig valg av grunnmassens sammensetning. Maleelementet ifølge oppfinnelsen er karakterisert ved at minst 9 5% av det totale antallet titankarbidkorn har en størrelse under lO^um, at middelavstanden mellom nærliggende titankarbidkorn er 3-30 yum, fortrinnsvis 10-30^um, og at legeringen foruten 1,5 - 3,5 vekt% titan inneholder 0,5 - 1,8 vekt% karbon, maksimalt 2,0 vekt% silisium, maksimalt 2,0 vekt% mangan, maksimalt 0,03 vekt% fosfor, maksimalt 0,03 vekt% svovel, 14-20 vekt% krom, maksimalt 3,0 vekt% nikkel, maksimalt 2,0 vekt% molybden, idet resten i det vesentlige utgjøres av jern. Med "middelavstanden" menes her middelavstanden bestemt med en metode som her benevnes "Nearest Neighbor Measuring Technique", forkortet til NNMT. NNMT-metoden beskrives detaljert i Underwood E.E.: "Quantitive Stereology", Addison-Wesley, Reading, Mass. (1970), side 84. The invention is based on the task of providing a painting element that achieves one of the above-mentioned requirements in an expedient manner. The invention is based on the insight that the task can be solved by appropriate selection of the area for the titanium content and, in addition, appropriately related areas for the grain size and grain spacing, as well as appropriate selection of the composition of the base mass. The grinding element according to the invention is characterized in that at least 95% of the total number of titanium carbide grains have a size below 10 µm, that the average distance between adjacent titanium carbide grains is 3-30 µm, preferably 10-30 µm, and that the alloy, in addition to 1.5 - 3.5 wt% titanium contains 0.5 - 1.8 wt% carbon, maximum 2.0 wt% silicon, maximum 2.0 wt% manganese, maximum 0.03 wt% phosphorus, maximum 0.03 wt% sulfur, 14-20% by weight chromium, a maximum of 3.0% by weight nickel, a maximum of 2.0% by weight molybdenum, the rest essentially being made up of iron. By "mean distance" here is meant the mean distance determined with a method which is here referred to as "Nearest Neighbor Measuring Technique", abbreviated to NNMT. The NNMT method is described in detail in Underwood E.E.: "Quantitive Stereology", Addison-Wesley, Reading, Mass. (1970), page 84.

En alternativ metode, her benevnt som "Linear Measuring Technique", forkortet til LMT, går ut på at man. bestemmer middelavstanden mellom nærliggende korn på et stort antall tilfeldig fordelte og orienterte linjer på An alternative method, here referred to as "Linear Measuring Technique", abbreviated to LMT, involves that one. determines the mean distance between neighboring grains on a large number of randomly distributed and oriented lines on

et mikrofotografi. LMT-verdien for en bestemt prøve er i alminnelighet vesentlig høyere enn NNMT-verdien for samme prøve, og målinger på maleelementer ifølge oppfinnelsen har vist at NNMT-verdier på 3 ^um og 10 um omtrent tilsvarer LMT-verdiene på 15^um resp. 3 0^um.^ NNMT-verdien på ca. 30^um NNMT tilsvarer omtrent lOOyum LMT. Der hvor ikke annet spesielt angis, benyttes fortrinnsvis NNMT-verdier. a photomicrograph. The LMT value for a particular sample is generally significantly higher than the NNMT value for the same sample, and measurements on grinding elements according to the invention have shown that NNMT values of 3 µm and 10 µm roughly correspond to the LMT values of 15 µm resp. 3 0^um.^ The NNMT value of approx. 30^um NNMT is equivalent to about lOOyum LMT. Where not otherwise specifically stated, NNMT values are preferably used.

Som kjent har titankarbid egenskaper som passer As is well known, titanium carbide has suitable properties

bra der det kreves hårdhet og slitestyrke. Tidligere har man vanligvis benyttet pulvermetallurgiske metoder for fremstilling av gjenstander av titankarbidholdige legeringer. En årsak til dette er at det er vanskelig å unngå at titankarbidkornene blir altfor store eller at de danner store dendritiske. aggregater eller strøk. Ettersom det neppe er praktisk mulig å benytte noen annen metode enn støping for fremstilling av maleelementer av den her aktuelle type, må de problemer som henger sammen med titan- good where hardness and durability are required. In the past, powder metallurgical methods have usually been used for the production of objects from alloys containing titanium carbide. One reason for this is that it is difficult to avoid that the titanium carbide grains become too large or that they form large dendritic cells. aggregates or coats. As it is hardly practically possible to use any method other than casting for the production of paint elements of the type in question here, the problems associated with titanium

karbid i forbindelse med smeltemetallurgiske metoder tas med som en viktig faktor. carbide in connection with smelting metallurgical methods is taken into account as an important factor.

Ved fremstilling av maleelementer ifølge oppfinnelsen kan de nevnte problemer unngås ved at man først fremstiller en smelte som er vesentlig fri for titan, men har et karboninnhold som tilsvarer det ønskede totale karboninnhold på de ferdige maleelementene, og deretter umiddelbart før støpingen sammenfører denne smelte med titan og øvrige legeringskomponenter. Fortrinnsvis til-settes titan som ferrotitan til smeiten (som da inneholder alle de øvrige viktige legeringskomponentene) i den øse eller annen beholder fra hvilken den smeltede legering tappes i støpeform. Titan forenes meget raskt med en del av karbonet og danner titankarbid, og ved at titanet til-settes på et sent stadium er den tid som står igjen inntil metallet i støpeform har stivnet ikke tilstrekkelig for å tillate titankarbidkornene i å vokse altfor meget eller å danne ikke ønskede aggregater. Maleelementer av den aktuelle art er ganske tynne, og det smeltede metall i støpeformen-stivner derfor raskt. When producing grinding elements according to the invention, the aforementioned problems can be avoided by first producing a melt that is substantially free of titanium, but has a carbon content that corresponds to the desired total carbon content of the finished grinding elements, and then immediately before casting, this melt is combined with titanium and other alloy components. Titanium is preferably added as ferrotitanium to the melt (which then contains all the other important alloy components) in the ladle or other container from which the molten alloy is drawn in casting form. Titanium combines very quickly with part of the carbon to form titanium carbide, and as the titanium is added at a late stage, the time remaining until the metal in cast form has solidified is not sufficient to allow the titanium carbide grains to grow too much or to form not desired aggregates. Grinding elements of the type in question are quite thin, and the molten metal in the mold therefore solidifies quickly.

Ved praktiske prøver av maleskivesegmenter ifølge oppfinnelsen har det vist seg at disse gir masse av høy og jevn kvalitet i lange perioder uten omsliping av kammene. F.eks. har malesegmentplater utført i overensstemmelse med oppfinnelsen (omtrent sammensetning: C 1,6%, Si 0,65%, In practical tests of grinding wheel segments according to the invention, it has been shown that these provide pulp of high and uniform quality for long periods without regrinding the combs. E.g. has grinding segment plates made in accordance with the invention (approximate composition: C 1.6%, Si 0.65%,

Mn 0,45%, P 0,030% S 0,02%, Cr 17,0%, Ni 1,60%, Mo 0,70%, Mn 0.45%, P 0.030% S 0.02%, Cr 17.0%, Ni 1.60%, Mo 0.70%,

Ti 2,3% resten hovedsaklig Fe) blitt benyttet for massefremstilling under perioder på 1600-1900 timer uten omsliping. Konvensjonelle malesegmentplater med omtrent samme sammensetning, som hadde vært benyttet under identiske like eller lignende forhold, har krevet omsliping med intervaller på gjennomsnittlig 600 timer. Forutsatt at begge typene av malesegmenter kan slipes om like mange ganger innen de må kasseres, har således malesegmentplater ifølge oppfinnelsen oppvist en nyttig levetid på ca. tre ganger den nyttige levetid for de titanfrie malesegmentplatene. Ti 2.3% the rest mainly Fe) has been used for pulp production during periods of 1600-1900 hours without regrinding. Conventional grinding segment plates of approximately the same composition, which had been used under identical or similar conditions, have required regrinding at intervals of an average of 600 hours. Assuming that both types of grinding segments can be reground the same number of times before they have to be discarded, grinding segment plates according to the invention have thus shown a useful life of approx. three times the useful life of the titanium-free grinding segment plates.

Foruten fordelene med en meget vesentlig økt levetid og en jevn massekvalitet, har malesegmentplater ifølge oppfinnelsen vist seg å minske skivekvernenes spesifikke energiforbruk i meget stor grad. I skivekverner med konvensjonelle malesegmentplater blir kammenes arbeidsflater etterhvert polert av massen, noe som medfører et gradvis økende spesifikt energiforbruk inntil kammene slipes om. I malesegmentplater ifølge oppfinnelsen med-fører titankarbidkornene derimot en stadig selvskjerping av arbeidsflatene, og som en følge av denne selvskjerping forblir det spesifikke energiforbruk i det vesentlige kon-stant, og på et lavt nivå under hele den nyttige levetiden for malesegmentplatene. Besides the advantages of a very significantly increased service life and a uniform mass quality, grinding segment plates according to the invention have been shown to reduce the disc grinders' specific energy consumption to a very large extent. In disc grinders with conventional grinding segment plates, the working surfaces of the combs are eventually polished by the mass, which results in a gradually increasing specific energy consumption until the combs are reground. In grinding segment plates according to the invention, on the other hand, the titanium carbide grains lead to a constant self-sharpening of the working surfaces, and as a result of this self-sharpening, the specific energy consumption remains essentially constant, and at a low level during the entire useful life of the grinding segment plates.

Eksempler på hensiktsmessige legeringssammen-setninger for malesegmentplater og andre maleelementer ifølge oppfinnelsen gis" nedenfor i tabell I. For noen legeringskomponenter er det angitt to prosentområder, idet det minste område er det foretrukne område. Alle siffer-verdier er angitt i vektprosent. Examples of suitable alloy compositions for grinding segment plates and other grinding elements according to the invention are given below in Table I. For some alloy components, two percentage ranges are indicated, with the smallest range being the preferred range. All numerical values are given in percent by weight.

Som det fremgår av tabell I ligger de foretrukne innhold alltid mellom 2\ og ca. 4 vektprosent. Det mest hensiktsmessige titaninnhold er normalt fra 2\ - Z\, vektprosent. Om titaninnholdet er altfor høyt kan det være vanskelig å unngå opphopninger eller strøk av titankarbidkorn og av disse forårsak-ede bruddanvisninger. Dessuten blir maleelementenes selvskjerp-ning nedsatt ved høye titaninnhold, over 5 prosent. Årsaken til dette er at middelavstanden mellom titankarbidkornene da blir altfor liten i forhold til massefibrenes diameter. Diameteren på fibrene i de typer av fibermateriale for hvilke maleelementene av den aktuelle art normalt benyttes for, er ca. 30^um (denne verdi er en grov normalverdi), og med hensyn til dette bør middelavstanden mellom titankarbidkornene være minst tre 3^,um og helst ikke mindre enn lO^um. As can be seen from table I, the preferred content is always between 2\ and approx. 4 percent by weight. The most appropriate titanium content is normally from 2% to Z% by weight. If the titanium content is far too high, it can be difficult to avoid accumulations or layers of titanium carbide grains and fracture indications caused by these. In addition, the self-sharpening of the grinding elements is reduced at high titanium contents, above 5 per cent. The reason for this is that the mean distance between the titanium carbide grains then becomes far too small in relation to the diameter of the pulp fibres. The diameter of the fibers in the types of fiber material for which the grinding elements of the type in question are normally used is approx. 30 µm (this value is a rough normal value), and with regard to this, the average distance between the titanium carbide grains should be at least three 3 µm and preferably not less than 10 µm.

Selvskjerpingen avtar imidlertid også dersom gjennomsnittsavstanden mellom titankarbidkornene er altfor stor, f.eks. mer enn 30^um, og aV denne årsak kan et titaninnhold under ca. 1.0 og i visse tilfelle under ca. 1.5 vektprosent ikke for-ventes å gi tilstrekkelig selvskjerping. However, self-sharpening also decreases if the average distance between the titanium carbide grains is far too large, e.g. more than 30 µm, and for this reason a titanium content below approx. 1.0 and in certain cases below approx. 1.5 percent by weight is not expected to provide sufficient self-sharpening.

Malmsegmentplater fremstilt på den ovenfor beskrevne måte av legeringer med de i tabell I angitte, sammenset-ningene har foruten andre ønskelige egenskaper også vist seg å ha en evne til å motstå polering, som uttrykt i en flatejevnhets-størrelse som her benevnes middelflate middelflateayvikelse (definisjon gis lengre nede i beskrivelsen) er fra to til fire ganger større enn for malesegmentflater fremstilt av det bruk-hare materiale (legert støpejern). Ore segment plates produced in the above-described manner from alloys with the compositions indicated in Table I have, in addition to other desirable properties, also been shown to have an ability to resist polishing, as expressed in a surface smoothness quantity which is here referred to as mean surface mean surface deviation (definition given further down in the description) is from two to four times greater than for grinding segment surfaces made from the used material (alloyed cast iron).

Oppfinnelsen skal i det følgende forklares nærmere under henvisning til den skjematiske tegningen. Figur 1 viser en malesegmentplate av kjent konstruksjon. Figur 2 viser en del av et snitt etter bue-linjen II-II i figur 1. Figur 3 er et diagram som tjener til anskue-liggjørelse av definisjonen av en viktig, egenskap på malesegmentplater og andre maleelementer, Figur 4 viser skjematisk en fremgangsmåte til fremstilling av malesegmenter ifølge oppfinnelsen. In the following, the invention will be explained in more detail with reference to the schematic drawing. Figure 1 shows a milling segment plate of known construction. Figure 2 shows part of a section along the arc line II-II in Figure 1. Figure 3 is a diagram that serves to illustrate the definition of an important characteristic of grinding segment plates and other grinding elements, Figure 4 schematically shows a method for production of grinding segments according to the invention.

I figur 1 vises fremsiden eller arbeidsflaten på et maleelement i form av en malesegmentplate 10 for en skivekvern for papir- eller boardmasse. Malesegmentplaten 10 er av kjent konstruksjon og har åpninger eller andre midler (ikke vist) for fastsettelse av platen på en sirkulær bæreskive, på hvilken flere lignende malesegmentplater sammen danner en malering. Skivekvernen ha.r to slike koaksiale maleringer, hvis mothverandre vendende sider ligger tett inntil hverandre for å danne en trang malespalte. Når skivekvernen er i drift bearbeides fibermaterialet av de i forhold til hverandre roterende maleringene idet materialet strømmer radielt utover gjennom malespalten. Figure 1 shows the front or working surface of a grinding element in the form of a grinding segment plate 10 for a disc grinder for paper or board pulp. The grinding segment plate 10 is of known construction and has openings or other means (not shown) for fixing the plate on a circular carrier disc, on which several similar grinding segment plates together form a grinding ring. The disc grinder has two such coaxial grinding rings, the opposite sides of which lie close to each other to form a narrow grinding gap. When the disc grinder is in operation, the fiber material is processed by the grinding rings rotating in relation to each other, as the material flows radially outwards through the grinding gap.

Som det fremgår av figur 1 og 2 har malesegmentplaten 10 en plan bæreskive 11 som på sin ene side (fremsiden) oppviser flere vesentlige radielle kammer eller åser 12 og tvers mellom disse forløpende, korte broer 13. Kammene og bryggene er gjort i et stykke med bæreskiven. Når skivekværnen er i drift, kan kammene samvirke med kammene på den motstående maleringens segmentplater for å bearbeide fibermaterialet. As can be seen from figures 1 and 2, the milling segment plate 10 has a planar carrier disc 11 which on one side (the front side) exhibits several substantial radial ridges or ridges 12 and transversely between these continuous, short bridges 13. The ridges and piers are made in one piece with the carrier disk. When the disc mill is in operation, the combs can interact with the combs of the opposite mill's segment plates to process the fiber material.

Det skal fremholdes at malesegmentplatens 10 tverrsnitt er forholdsvis tynn over hele platen. Ved støpingen av malesegmentplaten stivner derfor det smeltede metallet temmelig raskt over hele tverrsnittet. It should be emphasized that the cross-section of the grinding segment plate 10 is relatively thin over the entire plate. During the casting of the milling segment plate, the molten metal therefore solidifies rather quickly over the entire cross-section.

I de senere år har det vært vanlig å gjøre kammene på malesegmentplatene for skivekverner temmelig smale, f.eks. 2-3 mm, for å motvirke de ulemper som oppstår ved at kammene poleres av det malte fibermateriale. På grunn av selvskjerpingen på malesegmentplatene ifølge foreliggende oppfinnel-se behøver kammene ikke gjøres så smale som tidligere, men kan ha en bredde på f.eks. 3-5 mm. Dette innebærer en fordel, In recent years, it has been common to make the combs on the grinding segment plates for disc grinders rather narrow, e.g. 2-3 mm, to counter the disadvantages that arise from the combs being polished by the ground fiber material. Due to the self-sharpening of the grinding segment plates according to the present invention, the combs do not need to be made as narrow as before, but can have a width of e.g. 3-5 mm. This implies an advantage,

da bredere kammer letter støpingen. as wider chambers facilitate casting.

Figur 3 viser en flatejevnhetsstørrelse, her benevnt som "middelflateavvikelse", som er av betydning for kvali-teten på det ferdigmalte materiale. Figuren viser en idealisert profilkurve 14 for fremsiden eller arbeidsflaten på en av kammene 12. Profilkurvens 14 middellinje 0 ér en rett linje, beliggende slik at flaten mellom linjen og de ovenfor denne beliggende avsnitt av profilkurven er lik flaten mellom linjen og de nedenfor linjene beliggende avsnitt av profilkurven. De avsnitt av profilkurven som ligger nddenfor middellinjen 0 er speilvendt omkring middellinjen, som vist med prikkede linjer ved 14', og for definisjonen av middelflateavvikelsen Ra_ .anvendes bare de ovenfor middellinjen liggende avsnitt og de speilvendte avsnitt, således den "likerettede" sluttprofilkurve. Figure 3 shows a surface evenness quantity, here referred to as "mean surface deviation", which is of importance for the quality of the finished painted material. The figure shows an idealized profile curve 14 for the front side or the working surface of one of the combs 12. The center line 0 of the profile curve 14 is a straight line, located so that the area between the line and the sections of the profile curve located above this is equal to the area between the line and the sections located below the lines of the profile curve. The sections of the profile curve that lie below the center line 0 are mirrored around the center line, as shown with dotted lines at 14', and for the definition of the mean surface deviation Ra_, only the sections above the center line and the mirrored sections are used, thus the "rectified" final profile curve.

Middelflateavvikelsen R_ er definert her som The mean surface deviation R_ is defined here as

cl avstanden mellom middellinjen 0 pg en annen rett linje R som er parallell med middellinjen 0 og beliggende slik at flaten mellom denne andre linje er og det ovenfor denne beliggende avsnitt av den "likerettede" profilkurve er lik flaten mellom linjen R og de under denne beliggende avsnitt av den "likerettede" profilkurven (disse to flater er markert med horisontale skraveringer i figur 3) . Den andre linjen R kan således betraktes som middellinjen på den "likerettede" profilkurve. cl the distance between the center line 0 pg another straight line R which is parallel to the center line 0 and situated so that the surface between this second line and the section of the "rectified" profile curve located above this is equal to the surface between the line R and those located below it section of the "rectified" profile curve (these two surfaces are marked with horizontal hatching in figure 3). The second line R can thus be regarded as the middle line of the "rectified" profile curve.

Figur 4 viser skjematisk hovedmomentene i en metode for fremstilling av malesegmentplater 10 eller andre elementer ifølge oppfinnelsen. En øse 20 inneholder en smelte 21 som er tappet fra en kupolovn 22. Bortsett fra titanet og en liten mengde jern stemmer smeltens 21 sammensetning overens med sammensetningen på det ferdige maleelementet, dvs. den stemmer overens med sammensetningen på den grunnmasse (matrise, kontinu-erlig fase) i hvilken titankarbidkornene er innleiret i det ferdige maleelement. Titan i form.av granulerte ferrotitan (70% titan og 30% jern) tilføres fra en beholder 23 til smeiten 21 Figure 4 schematically shows the main moments in a method for producing grinding segment plates 10 or other elements according to the invention. A ladle 20 contains a melt 21 drawn from a cupola furnace 22. Apart from the titanium and a small amount of iron, the composition of the melt 21 corresponds to the composition of the finished grinding element, i.e. it corresponds to the composition of the base mass (matrix, continuous honest phase) in which the titanium carbide grains are embedded in the finished grinding element. Titanium in the form of granulated ferrotitanium (70% titanium and 30% iron) is supplied from a container 23 to the smelter 21

i en mengde som tilsvarer det ønskede titaninnhold i det ferdige maleelement. I det minste en del av ferrotitanen kan også til-settes i ovnen umiddelbart før tappingen. in an amount that corresponds to the desired titanium content in the finished painting element. At least part of the ferrotitanium can also be added to the furnace immediately before bottling.

Umiddelbart etter at ferrotitanet er tilsatt til smeiten 21 og godt blandet med denne, tappes metallet i en skallform 24 gjennom øsens 20 bunn. Den maksimale tid som kan tillates å medgå fra det øyeblikk da titanet og den karbonholdige smeiten 21 sammenføres og inntil metallet har stivnet i formen 24 kan variere etter omstendighetene i hvert enkelt tilfelle. Tiden bør imidlertid være så kort som mulig og ihvertfall helst maksimalt 30 minutter. I mange tilfelle er det i virkeligheten nødvendig å gjøre denne tid vesentlig kortere, og som en generell maksimumstid kan man regne ca. 15 min. Etterat det støpte maleelement er tatt ut av formen underkastes det en varmebehandling Immediately after the ferrotitanium has been added to the melt 21 and well mixed with it, the metal is tapped in a shell mold 24 through the bottom of the ladle 20. The maximum time that can be allowed to elapse from the moment when the titanium and the carbonaceous forge 21 are brought together and until the metal has solidified in the mold 24 can vary according to the circumstances of each individual case. However, the time should be as short as possible and preferably no more than 30 minutes. In many cases, it is actually necessary to make this time significantly shorter, and as a general maximum time you can calculate approx. 15 min. After the cast paint element has been removed from the mold, it is subjected to a heat treatment

på vanlig måte. in a regular way.

Den nedenstående tabell 2 gir fire eksempler på legeringer for malesegmentplater ifølge oppfinnelsen, og angir hårdheten og middelflateavvikelsen R a. for malesegmentplater fremstilt av disse legeringer. For sammenligningsskyld opptar tabellen også tilsvarende data for malesegmentplater fremstilt av en sammenligningslegering av en type som ofte anvendes for malesegmentplater. Sifferverdien på sammensetningen angir vektprosent. Foruten de legeringskomponenter for hvilke innholdet er angitt i tabellen, inneholder legeringene jern som basismetall og en eller flere av de øvrige i tabell 1 angitte legeringskomponenter, og da i de mengder som angis i den tabellen. Table 2 below gives four examples of alloys for grinding segment plates according to the invention, and indicates the hardness and the mean surface deviation R a. for grinding segment plates produced from these alloys. For the sake of comparison, the table also includes corresponding data for grinding segment plates produced from a comparison alloy of a type that is often used for grinding segment plates. The numerical value on the composition indicates the percentage by weight. In addition to the alloy components for which the content is indicated in the table, the alloys contain iron as base metal and one or more of the other alloy components indicated in table 1, and then in the quantities indicated in that table.

Malesegmentplatene ble fremstilt på den ovenfor beskrevne måte, allikevel med den modifikasjon at en del av den totale mengde av ferrotitan ble tilsatt til det smeltede grunnmassemetall allerede i smelteovnen, mens resten av ferrotitanet ble tilsatt mens det smeltede metallet ble tappet i øsen. The grinding segment plates were produced in the manner described above, albeit with the modification that part of the total amount of ferrotitanium was added to the molten base metal already in the melting furnace, while the rest of the ferrotitanium was added while the molten metal was being poured into the ladle.

Den første og den siste malesegmentplaten i hver serie ble prøvet med hensyn til titankarbidkornenes størrelse og. fordeling og med hensyn til middelflateavvikelsen. Prøven av størrelsen og fordelingen av titankarbidkornene viste at den maksimale middelstørrelsen var ca. 5^um i de fleste tilfeller, idet en stor majoritet av kornene var større enn ca. 1.5 ^um. Fordelingen var vesentlig jevn over hele platetverrsnittet, selv-om i visse tilfelle kornene i kammene var noe mindre enn kornene i bæreskiven. Forholdsvis få korn, ca. 0.5% av det totale antallet, hadde en størrelse over 10^,um. Middelavstanden mellom hosliggende titankarbidkorn varierte mellom ca. lO^um og ca. 16^,um. The first and last grinding segment plates in each series were tested for titanium carbide grain size and. distribution and with regard to the mean surface deviation. The test of the size and distribution of the titanium carbide grains showed that the maximum mean size was approx. 5^um in most cases, as a large majority of the grains were larger than approx. 1.5 µm. The distribution was substantially uniform over the entire plate cross-section, although in certain cases the grains in the combs were somewhat smaller than the grains in the carrier disc. Relatively few grains, approx. 0.5% of the total number had a size above 10 µm. The mean distance between adjacent titanium carbide grains varied between approx. lO^um and approx. 16^, approx.

Malesegmentplater fremstilt av legering E i tabell 2 er blitt anvendt ved massefremstilling og gitt de fordel-aktige resultatene som angitt i beskrivelsens innledning. Grinding segment plates produced from alloy E in table 2 have been used in mass production and given the advantageous results as indicated in the introduction of the description.

Claims (2)

1. Maleelement for apparater for maling av fiber-materialer,særlig apparater for defibrering av tre eller bearbeidelse av cellulosefibermasse, hvilket maleelement er fremstilt ved støping av en stållegering og inneholder titan i form av titankarbidkorn i en grunnmasse av stål, hvilke titankarbidkorn er vesentlig likeformig fordelt i maleelementet og har en største gjennomsnittelig størrelse på ca. 10^,um, karakterisert ved at minst 95% av det totale antallet titankarbidkorn har en størrelse under lO^um, at middelavstanden mellom nærliggende titankarbidkorn er 3-30yum, fortrinnsvis 10-30^,um, og at legeringen foruten 1,5 - 3,5 vekt% titan inneholder 0,5 - 1,8 vekt% karbon, maksimalt 2,0 vekt% silisium> maksimalt 2,0 vekt% mangan, maksimalt 0,03 vekt% fosfor, maksimalt 0,03 vekt% svovel, 14-20 vekt% krom, maksimalt 3,0 vekt% nikkel, maksimalt 2,0 vekt% molybden, idet resten i det vesentlige utgjøres av jern.1. Grinding element for devices for painting fiber materials, in particular devices for defibrating wood or processing cellulose fiber pulp, which grinding element is produced by casting a steel alloy and contains titanium in the form of titanium carbide grains in a base mass of steel, which titanium carbide grains are substantially uniform distributed in the grinding element and has a largest average size of approx. 10^,um, characterized in that at least 95% of the total number of titanium carbide grains have a size below 10^um, that the average distance between adjacent titanium carbide grains is 3-30um, preferably 10-30^,um, and that the alloy, in addition to 1.5 - 3.5 wt% titanium contains 0.5 - 1.8 wt% carbon, maximum 2.0 wt% silicon> maximum 2.0 wt% manganese, maximum 0.03 wt% phosphorus, maximum 0.03 wt% sulfur, 14-20% by weight chromium, a maximum of 3.0% by weight nickel, a maximum of 2.0% by weight molybdenum, the rest essentially being made up of iron. 2. Maleelement ifølge krav 1, karakterisert ved at legeringen inneholder 0,6 - 1,6 vekt% karbon, 0,3 - 1,0 vekt% silisium, 0,2 - 1,0 vekt% mangan, 16-18 vekt% krom, 1,0 - 2,0 vekt% nikkel, 0,5 - 1,0 vekt% molybden.2. Grinding element according to claim 1, characterized in that the alloy contains 0.6 - 1.6 wt% carbon, 0.3 - 1.0 wt% silicon, 0.2 - 1.0 wt% manganese, 16-18 wt% chromium, 1.0 - 2.0 wt% nickel, 0.5 - 1.0 wt% molybdenum.
NO761235A 1975-04-09 1976-04-09 PAINTING ELEMENT FOR PAINTING APPLIANCES. NO144974C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7504056A SE402019B (en) 1975-04-09 1975-04-09 GRINDING SHEET FOR DISC MILLS AND KIT FOR MAKING THE GRINDING SHEET
SE7509957A SE407951B (en) 1975-09-08 1975-09-08 MALSKIVA

Publications (3)

Publication Number Publication Date
NO761235L NO761235L (en) 1976-10-12
NO144974B true NO144974B (en) 1981-09-07
NO144974C NO144974C (en) 1981-12-16

Family

ID=26656602

Family Applications (1)

Application Number Title Priority Date Filing Date
NO761235A NO144974C (en) 1975-04-09 1976-04-09 PAINTING ELEMENT FOR PAINTING APPLIANCES.

Country Status (12)

Country Link
US (1) US4023739A (en)
JP (1) JPS5939496B2 (en)
AT (1) AT352520B (en)
AU (1) AU1283776A (en)
CA (1) CA1057087A (en)
DE (1) DE2614646A1 (en)
FI (1) FI60737C (en)
FR (1) FR2330774A1 (en)
GB (1) GB1541058A (en)
IT (1) IT1063041B (en)
NO (1) NO144974C (en)
NZ (1) NZ180519A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372495A (en) * 1980-04-28 1983-02-08 The Research Foundation Of State University Of New York Process and apparatus for comminuting using abrasive discs in a disc refiner
SE426294B (en) * 1982-02-03 1982-12-27 Sca Development Ab target segments
BR8402044A (en) * 1984-04-27 1985-12-03 Inox Ind E Comercio De Ago Ltd PERFECTING DISCS FOR PAPER AND SIMILAR PULP REFINERS
SE8403543D0 (en) * 1984-07-04 1984-07-04 Sca Development Ab SEE WHILE PREPARING MOLD SEGMENTS
US4966651A (en) * 1988-01-14 1990-10-30 P.H. Glatfelter Company Method of paper making using an abrasive refiner for refining bleached thermochemical hardwood pulp
US4951888A (en) * 1989-08-24 1990-08-28 Sprout-Bauer, Inc. Refining element and method of manufacturing same
KR920019961A (en) * 1991-04-26 1992-11-20 기시다 도시오 High Young's modulus material and surface coating tool member using it
US5165592A (en) * 1992-03-31 1992-11-24 J & L Plate, Inc. Method of making refiner plate bars
FR2707677B1 (en) * 1993-07-13 1995-08-25 Technogenia Plate for defibering or refining paper pulp, and process for its production.
US5373995A (en) * 1993-08-25 1994-12-20 Johansson; Ola M. Vented refiner and venting process
DE19508202A1 (en) * 1995-03-08 1996-09-12 Voith Sulzer Stoffaufbereitung Grinding machine and grinding tool for grinding suspended fiber material
US5823453A (en) * 1995-11-14 1998-10-20 J & L Fiber Services, Inc. Refiner disc with curved refiner bars
US6325308B1 (en) 1999-09-28 2001-12-04 J & L Fiber Services, Inc. Refiner disc and method
US6752165B2 (en) 2000-03-08 2004-06-22 J & L Fiber Services, Inc. Refiner control method and system
US6778936B2 (en) 2000-03-08 2004-08-17 J & L Fiber Services, Inc. Consistency determining method and system
US6502774B1 (en) 2000-03-08 2003-01-07 J + L Fiber Services, Inc. Refiner disk sensor and sensor refiner disk
SE516050C2 (en) 2000-03-15 2001-11-12 Valmet Fibertech Ab Grinding elements for a grinding wheel for grinders
US6938843B2 (en) 2001-03-06 2005-09-06 J & L Fiber Services, Inc. Refiner control method and system
KR20010088596A (en) * 2001-08-09 2001-09-28 이효진 High Speed Rotating Stone Mill with the Multi-function
US7104480B2 (en) * 2004-03-23 2006-09-12 J&L Fiber Services, Inc. Refiner sensor and coupling arrangement
JP2007113138A (en) * 2005-10-20 2007-05-10 Aikawa Iron Works Co Ltd Refiner
DE102006038669A1 (en) * 2006-08-17 2008-02-28 Federal-Mogul Burscheid Gmbh Steel material, in particular for the production of piston rings
FI126206B (en) * 2011-06-23 2016-08-15 Upm Kymmene Corp Method and apparatus for fibrillating cellulosic materials
US10166546B2 (en) 2013-05-15 2019-01-01 Andritz Inc. Reduced mass plates for refiners and dispersers
RU2659085C2 (en) * 2013-08-05 2018-06-28 Шарп Кабусики Кайся Mortar and beverage manufacturing device provided therewith

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369892A (en) * 1965-08-20 1968-02-20 Chromalloy American Corp Heat-treatable nickel-containing refractory carbide tool steel
DE1558534A1 (en) * 1966-03-30 1970-04-02 Mckay Co Wear-resistant iron casting
SE369937B (en) * 1970-01-07 1974-09-23 Uddeholms Ab
US3653982A (en) * 1969-12-18 1972-04-04 Chromalloy American Corp Temper resistant chromium-containing titanium carbide tool steel
DE2042911A1 (en) * 1970-08-29 1972-03-16 Bbc Brown Boveri & Cie Age-hardening alloys - contg three or more components prodn by melting and quenching from melt
US3966423A (en) * 1973-11-06 1976-06-29 Mal M Kumar Grain refinement of titanium carbide tool steel

Also Published As

Publication number Publication date
DE2614646A1 (en) 1976-10-21
AU1283776A (en) 1977-10-13
NO761235L (en) 1976-10-12
JPS51123718A (en) 1976-10-28
AT352520B (en) 1979-09-25
FI760912A (en) 1976-10-10
US4023739A (en) 1977-05-17
CA1057087A (en) 1979-06-26
IT1063041B (en) 1985-02-11
NO144974C (en) 1981-12-16
FI60737B (en) 1981-11-30
GB1541058A (en) 1979-02-21
FI60737C (en) 1984-07-23
FR2330774A1 (en) 1977-06-03
FR2330774B1 (en) 1981-03-27
JPS5939496B2 (en) 1984-09-25
ATA248576A (en) 1979-02-15
NZ180519A (en) 1978-04-28

Similar Documents

Publication Publication Date Title
NO144974B (en) PAINTING ELEMENT FOR PAINTING APPLIANCES.
US8147980B2 (en) Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof
KR850000805B1 (en) Austenitic wear resistant steel
CN101195890A (en) High chromium abrasion-proof cast iron abrasive disc and manufacturing method thereof
CN100392138C (en) Half high speed steel composite roller and preparation process thereof
CN106498308B (en) A kind of wear-resisting heat-resisting alloy material for small material roll laser alloying
CN102851570A (en) High-carbon high-chromium refining plate casting of defibrator
CN103993239A (en) Mine wet mill liner and making method thereof
UA61168C2 (en) Casting material for indefinite rollers with sleeve part, a combined indefinite roller, and a process for producing casting material for rollers
CN103334060A (en) Graphite tool steel used for metal calendaring and manufacturing method of graphite tool steel
CN105177436B (en) A kind of high intensity, high tenacity, high-wear-resistant alloy liner plate
CA2252569C (en) Stainless steel alloy for pulp refiner plate
CN103993217A (en) Large crusher hammerhead and making method thereof
CN104120333A (en) Wear-resistant cast iron material, preparation method thereof and helical blade guard plate made from wear-resistant cast iron material
US6245289B1 (en) Stainless steel alloy for pulp refiner plate
CA3167053A1 (en) Wear resistant composite
US3410682A (en) Abrasion resistant chromiummolybdenum cast irons
CN101956124A (en) Wear-resistant high holding precision rolling rear working roller and production method thereof
CN113265580B (en) High-nitrogen high-vanadium high-chromium wear-resistant alloy and preparation method thereof
CN108914021A (en) A kind of anti-abrasive wear alloy of Fe-Cr-B-C and preparation method thereof
JPH08144009A (en) Wear resistant cast steel with high toughness
US3998623A (en) Method of producing alloys containing titanium carbide
CN111304546A (en) Super-strength wear-resistant alloy and preparation method thereof
KR100524587B1 (en) Fe-cr based alloy cast iron with excellent abrasion and impact resistance and manufacturing method thereof
CN108018490A (en) A kind of roll for diamond plate rolling