NO142673B - BIOLOGICALLY DEGRADABLE PLASTIC MIXTURE WITH IMPROVED STRENGTH FEATURES, CONTAINING GRAINS OF NATURAL STARCH - Google Patents

BIOLOGICALLY DEGRADABLE PLASTIC MIXTURE WITH IMPROVED STRENGTH FEATURES, CONTAINING GRAINS OF NATURAL STARCH Download PDF

Info

Publication number
NO142673B
NO142673B NO790308A NO790308A NO142673B NO 142673 B NO142673 B NO 142673B NO 790308 A NO790308 A NO 790308A NO 790308 A NO790308 A NO 790308A NO 142673 B NO142673 B NO 142673B
Authority
NO
Norway
Prior art keywords
starch
mixture
plastic mixture
improved strength
natural starch
Prior art date
Application number
NO790308A
Other languages
Norwegian (no)
Other versions
NO142673C (en
NO790308L (en
Inventor
Gerald Joseph Louis Griffin
Original Assignee
Coloroll Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB10267/74A external-priority patent/GB1485833A/en
Publication of NO790308L publication Critical patent/NO790308L/en
Application filed by Coloroll Ltd filed Critical Coloroll Ltd
Publication of NO142673B publication Critical patent/NO142673B/en
Publication of NO142673C publication Critical patent/NO142673C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0033Additives activating the degradation of the macromolecular compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

Foreliggende oppfinnelse vedrører en biologisk nedbrytbar plastblanding, inneholdende en syntetisk polymer på basis av karbon-til-karbon-bindinger og som kombinerer de fysi-kalske og kjemiske egenskaper for den syntetiske polymer som blandingen er basert på, med biologisk nedbrytbarhet. Biologisk nedbrytbarhet er slik nedbrytning som til slutt medfører fullstendig destruksjon ved påvirkning av levende mikroorganismer, f.eks. bakterier, sopparter samt de enzymer som er mellomprodukter i deres metabolisme. Biologisk nedbrytning opptrer således i slike miljøer hvor .slike mikroorganismer forekommer. Vanligvis opptrer biologisk nedbrytning i gjenstander som er i kontakt med jord, The present invention relates to a biodegradable plastic mixture, containing a synthetic polymer based on carbon-to-carbon bonds and which combines the physical and chemical properties of the synthetic polymer on which the mixture is based, with biodegradability. Biological degradability is such degradation that ultimately leads to complete destruction by the influence of living microorganisms, e.g. bacteria, fungal species as well as the enzymes that are intermediate products in their metabolism. Biological degradation thus occurs in such environments where such microorganisms occur. Biodegradation usually occurs in objects that are in contact with soil,

og som er helt eller delvis nedgravd. Oppfinnelsen vedrører således en biologisk nedbrytbar plastblanding med forbedrede styrkeegenskaper, inneholdende en syntetisk polymer på basis av karbon-karbon-bindinger og 5 - 92 %, basert på den totale vekt av blandingen, av korn basert på naturlig stivelse, og det særegne ved plastblandingen i henhold til oppfinnelsen er at stivelseskornene er overflatebehandlet med en organisk forbindelse som reagerer med hydroksylgrupper i overflaten under hydrofobering av denne, idet blandingen fortrinnsvis også inneholder 0,5 - 5,5 %, basert på den totale vekt av blandingen, av en umettet fettsyre eller et derivat av denne. and which is completely or partially buried. The invention thus relates to a biodegradable plastic mixture with improved strength properties, containing a synthetic polymer based on carbon-carbon bonds and 5 - 92%, based on the total weight of the mixture, of grains based on natural starch, and the peculiarity of the plastic mixture in according to the invention is that the starch grains are surface-treated with an organic compound that reacts with hydroxyl groups in the surface while hydrophobing it, the mixture preferably also containing 0.5 - 5.5%, based on the total weight of the mixture, of an unsaturated fatty acid or a derivative of this.

Disse og andre trekk ved oppfinnelsen fremgår av patentkravene. These and other features of the invention appear in the patent claims.

Forbindelsen som reagerer med hydroksylgrupper for dannelse The compound that reacts with hydroxyl groups to form

av en eter eller en ester er fortrinnsvis enten et silikon eller et isocyanat. of an ether or an ester is preferably either a silicone or an isocyanate.

Den fortrinnsvis tilstedeværende, umettede fettsyre (eller dens derivat) vil ved kontakt med et overgangsmetallsalt "selvoksyderes" og danne et peroksyd eller et hydroperoksyd. Det er redegjort nærmere for dette i utlegningsskrift nr. 141.610. The preferably present unsaturated fatty acid (or its derivative) will "self-oxidize" on contact with a transition metal salt and form a peroxide or a hydroperoxide. This is explained in more detail in explanatory document no. 141,610.

Fra det nevnte utlegningsskrift er det riktignok kjent blandinger av de nevnte karbon-til-karbon-bindingspolymerer og kom av naturlig stivelse, og disse materialer nedbrytes tilfredsstillende på offentlige avfallsplasser. Det angis her at stivelsesinnholdet kan være 15 vekt% og også høyere "under visse forhold". Overflatebehandling av stivelseskornene er imidlertid ikke åpenbaret. Admittedly, mixtures of the aforementioned carbon-to-carbon bond polymers and derived from natural starch are known from the aforementioned specification, and these materials decompose satisfactorily at public waste sites. It is stated here that the starch content can be 15% by weight and also higher "under certain conditions". However, surface treatment of the starch granules is not obvious.

Silikoners eller isocyanaters reaksjon med hydroksylgrupper på stivelseskornenes overflate nedsetter dennes hydrofile egenskaper og øker styrken i bindingen mellom stivelsen og polymeren. Det har vist seg at spesielt blandinger som inneholder stivelse med silikonbehandlet overflate, har meget tilfredsstillende styrkeegenskaper. The reaction of silicones or isocyanates with hydroxyl groups on the surface of the starch grains reduces its hydrophilic properties and increases the strength of the bond between the starch and the polymer. It has been shown that especially mixtures containing starch with a silicone-treated surface have very satisfactory strength properties.

Det er i og for seg kjent å gjøre fyllstoffer "organofile" It is known per se to make fillers "organophilic"

(istedenfor hydrofile), se f.eks. US-patent nr. 3.084.117. Det er også kjent at silaner, som brukes som koblingsmidler for glass og andre hydrofile fyllstoffer, reagerer med OH-grupper i fyllstoffenes overflate, se Irving Skeist (ed): "Reviews in Polymer Technology", bind 1 (1972), s.7. (instead of hydrophilic), see e.g. US Patent No. 3,084,117. It is also known that silanes, which are used as coupling agents for glass and other hydrophilic fillers, react with OH groups in the surface of the fillers, see Irving Skeist (ed): "Reviews in Polymer Technology", vol. 1 (1972), p.7 .

Følgende eksempler illustrerer oppfinnelsen ytterligere. The following examples further illustrate the invention.

EKSEMPEL 1 EXAMPLE 1

1200 g maisstivelse med 12 % fuktighetsinnhold suspenderes i 4 1 vann under kontinuerlig omrøring, og til den således erholdte suspensjon tilsettes 43,2 g av et 49 vektss natrium-alkylsilikonat. pH verdien i stivelsessuspensjonen innstilles deretter til 8,5 ved tilsetning av fortynnet syre, og suspensjonen tørkes i et lite forstøvningstørkeanlegg med vanlig konstruksjon, som arbeidet med en luftinnløpstemperatur på 190°C og en luftutløpstemperatur på 60 - 70°C. Det pulver-formede produkt ble holdt i sirkulasjon i en varmluftsovn ved 80°C inntil fuktighetsinnholdet hadde sunket til 1 % eller mindre. 200 g av den behandlede stivelse, som på forhånd var tørket til et fuktighetsinnhold på 0,5 %, ble blandet i en trommelblandeinnretning med 39 g etyloleat (fremstilt av teknisk ren oleinsyre med et jodtall mellom 75 og 84 og en densitet mellom 0,869 og 0,874) og 1 g oleinsyre (med et 1200 g of maize starch with a moisture content of 12% is suspended in 4 l of water with continuous stirring, and to the thus obtained suspension is added 43.2 g of a 49 tbs sodium alkyl siliconate. The pH value in the starch suspension is then adjusted to 8.5 by the addition of dilute acid, and the suspension is dried in a small spray drying plant of ordinary construction, which operates with an air inlet temperature of 190°C and an air outlet temperature of 60 - 70°C. The powdered product was kept in circulation in a hot air oven at 80°C until the moisture content had dropped to 1% or less. 200 g of the treated starch, which had previously been dried to a moisture content of 0.5%, was mixed in a drum mixer with 39 g of ethyl oleate (produced from technically pure oleic acid with an iodine number between 75 and 84 and a density between 0.869 and 0.874 ) and 1 g of oleic acid (with et

jodtall mellom 85 og 90 og en densitet på ca. 0,891) sammen med 160 g LD-polyetyler)f ilm som var ekstrudert og hadde en densitet på 0,920 og en smelteindeks på 2. Den erholdte blanding ble blandet under varmetilførsel på en to-valsemølle som ved jevn hastighet arbeidet ved 140°C. Blandingen tok 10 minutter, og ved slutten av denne tidsperiode ble det uttatt en jevn, kremaktig hvit masse ved uttrekning fra valsemøllen som et bånd med tykkelse ca. 3 mm som ble avkjølt og kuttet opp til biter i en skjæremaskin. Denne blanding ble deretter anvendt som en utgangsblanding (masterbatch) til blanding med LD-polyeten med en densitet på 0,916 og en smelteindeks på 1, i slike mengder at man fikk et stivelsesinnhold på 9 % i det endelige produkt. iodine number between 85 and 90 and a density of approx. 0.891) together with 160 g of LD-polyethylene) film which had been extruded and had a density of 0.920 and a melt index of 2. The resulting mixture was mixed under heat input on a two-roll mill operating at constant speed at 140°C. Mixing took 10 minutes, and at the end of this time a smooth, creamy white mass was obtained by extraction from the roller mill as a ribbon with a thickness of approx. 3 mm which was cooled and cut into pieces in a cutting machine. This mixture was then used as a starting mixture (masterbatch) for mixing with LD polyethylene with a density of 0.916 and a melt index of 1, in such quantities that a starch content of 9% was obtained in the final product.

Blandingen av utgangsblandingen og ufyllt polymer ble tilført til en 45 mm enkeltskrue-ekstruderingspresse med et skrue-kompresjonsforhold på 2,5 : 1 og et forhold L : D på 20 : 1 og ble omdannet til en blåsefilm under anvendelse av en vanlig dyse og blåse-utrustning med en endelig dysetemperatur på 175°C. Det erholdte produkt utgjorde en gjennomsiktig og bøyelig film.' Filmen inneholdt altså 9 vekts; stivelse i en polymer med en smelteindeks på 2 og en densitet på 0,918 g/cm^ og viste en strekkfasthet på 15,2 MN/m og en "fallende pil"-slagstyrke på 80 g (ved en filmtykkelse på 50 mikrometer). The mixture of the starting compound and unfilled polymer was fed to a 45 mm single screw extruder with a screw compression ratio of 2.5:1 and an L:D ratio of 20:1 and was converted into a blown film using a conventional die and blower - equipment with a final nozzle temperature of 175°C. The product obtained constituted a transparent and flexible film.' The film thus contained 9 weights; starch in a polymer with a melt index of 2 and a density of 0.918 g/cm^ and showed a tensile strength of 15.2 MN/m and a "falling arrow" impact strength of 80 g (at a film thickness of 50 micrometers).

Når en film som inneholdt 9 vekt% ubehandlet stivelse, ble undersøkt under tilsvarende betingelser, viste det seg at strekkfastheten var 14,4 MN/m 2og slagf astheten, målt ved metoden med "fallende pil", utgjorde 70 g. Økningen av strekkfastheten kan påvises i blandinger av plast og silikonbehandlet stivelse, uavhengig av om den selvoksyderende substans er tilstede. When a film containing 9% by weight of untreated starch was tested under similar conditions, the tensile strength was found to be 14.4 MN/m 2 and the impact strength, measured by the "falling arrow" method, was 70 g. The increase in tensile strength can is detected in mixtures of plastic and silicone-treated starch, regardless of whether the self-oxidizing substance is present.

Når man arbeider med blandinger inneholdende mer enn 50 % stivelse, finnes det at den foretrukne fremstillingsmetode er ved kalandrering, selv om press-støping er like effektivt (men toregår sakte). When working with mixtures containing more than 50% starch, it is found that the preferred method of manufacture is by calendering, although compression molding is equally effective (but dries slowly).

EKSEMPEL 2 - Fremstilling av kalandrert myknet PVC- folie. EXAMPLE 2 - Production of calendered softened PVC foil.

Normal "perleformet" hvetestivelsé inneholdende 13 % vann ble blandet i en omrørt åpen beholder med 0,5 % hydrogen-poly-dimetylsiloksan. Temperaturen i stivelsen ble hevet gradvis ved hjelp av en oppvarmingskappe til 150°C i løpet av omtrent 6 timer og holdt ved denne temperatur i et ytterligere tids-rom på omtrent 6 timer. Den resulterende stivelse var et fint pulver, inneholdende mindre enn 0,5 % fuktighet, og den fremviste hydrofobe egenskaper i den grad at den fløt på overflaten av destillert vann, selv etter kraftig omrøring. Denne stivelse ble anvendt for den følgende blanding: Normal "beaded" wheat starch jelly containing 13% water was mixed in a stirred open container with 0.5% hydrogen polydimethylsiloxane. The temperature in the starch was raised gradually by means of a heating jacket to 150°C in the course of approximately 6 hours and held at this temperature for a further period of approximately 6 hours. The resulting starch was a fine powder, containing less than 0.5% moisture, and exhibited hydrophobic properties to the extent that it floated on the surface of distilled water, even after vigorous stirring. This starch was used for the following mixture:

Bestanddelene ble forhåndsblandet i en blandebeholder med spiralblad ved romtemperatur, etterfulgt av behandling på The ingredients were pre-mixed in a mixing container with a spiral blade at room temperature, followed by treatment on

en laboratorie-tovalsemølle med samme valsehastighet, opp- a laboratory twin-roll mill with the same rolling speed, up-

varmet ved hjelp av trykkdamp (6,3 kg/cm 2). Materialet ble overført varmt til en laboratoriekalander med 3 pressvalser (300 mm brede), hvorfra produktet kom ut som en sterk smidig gjennomskinnelig film med tykkelse 100 mikrometer. heated using pressurized steam (6.3 kg/cm 2 ). The material was transferred hot to a laboratory calender with 3 press rolls (300 mm wide), from which the product emerged as a strong flexible translucent film with a thickness of 100 micrometers.

Den tilsiktede anvendelse for materialet er som underlagsfilm, The intended use for the material is as a substrate film,

og prøvestrimler anordnet på overflaten av fuktig jordsmonn i skåler i et uoppvarmet drivhus i Syd-England viste en stadig fremadstridende forandring av utseende i form av krymping og sprøhet, med utvikling av overflate-soppvekst etter om- and test strips arranged on the surface of moist soil in dishes in an unheated greenhouse in southern England showed a progressive change in appearance in the form of shrinkage and brittleness, with the development of surface fungal growth after re-

trent 2 måneder. trained 2 months.

Et ytterligere eksempel viser'at man kan tøye disse blandinger forbi det kritiske nivå som opptrer ved omtrent 60 vekt% stivelsesfylling, hvor blandingen blir porøs på grunn av at mengden av tilstedeværende polymer ikke lenger er tilstrekkelig til å fylle alle mellomrom mellom stivelseskornene. A further example shows that one can stretch these mixtures past the critical level that occurs at about 60% by weight of starch filling, where the mixture becomes porous due to the amount of polymer present no longer being sufficient to fill all spaces between the starch grains.

Bestanddelene ble forhåndsblandet i en blandeinnretning med spiralblad ved bearbeiding på en tovalsemølle oppvarmet med damp ved 6,3 kg/cm 2 og tilslutt tatt av fra møllen som et glatt bånd med tykkelse omtrent 3 mm. Båndet ble termoformet (etter fornyet oppvarming til 150°C) til grunne skåler som var meget sterke og hadde et matt hvitt utseende og en vann-avstøtende overflate. Den tilsiktede anvendelse er som kjøttemballasjeskåler, på grunn av at porøsiteten av.blandingen tillater lett adgang for atmosfærisk oksygen gjennom selve skålen til kontaktoverflaten til det ferske kjøtt som var anbrakt i skålen, slik at utvikling av misfarging som vanligvis opptrer i ferskt kjøtt, pakket på ikke-permeable polystyrenskåler, ble forsinket. Videre hindrer den hydrofobe natur av skålene absorpsjon av blod fra kjøttet inn i skålens indre, noe som ville bevirke skjemmende flekkdannelse. The ingredients were pre-mixed in a spiral blade mixer by processing on a two-roll mill heated with steam at 6.3 kg/cm 2 and finally removed from the mill as a smooth ribbon approximately 3 mm thick. The tape was thermoformed (after reheating to 150°C) into shallow bowls which were very strong and had a matt white appearance and a water-repellent surface. The intended use is as meat packaging bowls, because the porosity of the mixture allows easy access of atmospheric oxygen through the bowl itself to the contact surface of the fresh meat placed in the bowl, so that the development of discoloration which usually occurs in fresh meat, packed on non-permeable polystyrene bowls, was delayed. Furthermore, the hydrophobic nature of the bowls prevents absorption of blood from the meat into the interior of the bowl, which would cause unsightly staining.

En ytterligere mulig anvendelse av slike blandinger med høyt stivelsesinnhold er ved termoforming eller press-støping av nedbrytbare plantebeholdere, på grunn av at disse porøse beholdere desintegrerer ganske hurtig i fuktig ikke-sterilt jordsmonn. Den biologiske svelling og oppløseliggjøring av stivelsen bryter nemlig opp de tynne membraner av polymer som forbinder stivelseskornene. A further possible application of such high starch mixtures is in the thermoforming or compression molding of degradable plant containers, due to the fact that these porous containers disintegrate quite quickly in moist non-sterile soil. The biological swelling and solubilization of the starch breaks up the thin polymer membranes that connect the starch grains.

EKSEMPEL 4 EXAMPLE 4

En suspensjon av maisstivelse ble fremstilt i av-ionisert vann, slik at 1200 g stivelse var suspendert i hver 4 liter vann, og suspensjonen ble omrørt mens 43,2 g av et natrium-silikonat-preparat, på forhånd fortynnet til 100 g med av-ionisert vann, ble tilsatt. pH i systemt ble derpå innstilt til pH 8 ved sakte tilsetning av fortynnet eddiksyre. Suspensjonen ble så blandet med emulgert vinylidenklorid/vinyl-acetat-kopolymer i tilstrekkelig mengde til å frembringe en harpikskonsentrasjon på 10 %, beregnet på tørr vekt av stivelse. Suspensjonen ble så ledet inn i et lite forstøv-ningstørkeanlegg med forstøvnings-lufttrykk 4 kp/cm 2og en elektrisk effekt-tilførsel til luftstrømmen på 3 kw. Dette frembrakte en innløpslufttemperatur på 17 0°C og en utløps-temperatur mellom 70 og 80°C. Under disse betingelser kunne et tørt pulver, inneholdende omtrent 90 vekt% stivelse, bli press-støpt ved omtrent 10 MN/m<2> og 150°C til å gi ganske sterke, hårde, hvite porøse produkter. A suspension of corn starch was prepared in de-ionized water, so that 1200 g of starch were suspended in each 4 liters of water, and the suspension was stirred while 43.2 g of a sodium siliconate preparation, previously diluted to 100 g with a -ionized water, was added. The pH in the system was then adjusted to pH 8 by slowly adding dilute acetic acid. The suspension was then mixed with emulsified vinylidene chloride/vinyl acetate copolymer in an amount sufficient to produce a resin concentration of 10% based on dry weight of starch. The suspension was then led into a small atomization drying plant with an atomization air pressure of 4 kp/cm 2 and an electrical power supply to the air stream of 3 kw. This produced an inlet air temperature of 170°C and an outlet temperature between 70 and 80°C. Under these conditions, a dry powder containing about 90 wt% starch could be compression molded at about 10 MN/m<2> and 150°C to give fairly strong, hard, white porous products.

EKSEMPEL 5 EXAMPLE 5

Eksempel på blanding omfattende plast og stivelse som er overflatebehandlet ved reaksjon med et isocyanat. Example of a mixture comprising plastic and starch which has been surface-treated by reaction with an isocyanate.

Blandingen ble knadd ved 140°C på en tovalsemølle, granulert og ekstruderingsblåst til en film med nominell tykkelse 50 mikrometer. The mixture was kneaded at 140°C on a two roll mill, granulated and extrusion blown to a film of nominal thickness 50 micrometers.

Sammenliqninqseksempler: Comparison examples:

PATENTKRAV PATENT CLAIMS

1. Biologisk nedbrytbar plastblanding med forbedrede styrkeegenskaper, inneholdende en syntetisk polymer på basis av karbon-karbon-bindinger og 5 - 92 %, basert på den totale vekt av blandingen, av korn basert på naturlig stivelse, karakterisert ved at stivelseskornene er overflatebehandlet med en organisk forbindelse som reagerer med hydroksylgrupper i overflaten under hydrofobering av denne, idet blandingen fortrinnsvis også inneholder 0,5 - 5,5 %, basert på den totale vekt av blandingen, av en umettet fettsyre eller et derivat av denne. 2. Plastblanding som angitt i krav 1, karakterisert ved at forbindelsen er et silikon. 3. Plastblanding som angitt i krav 1, 1. Biodegradable plastic mixture with improved strength properties, containing a synthetic polymer based on carbon-carbon bonds and 5 - 92%, based on the total weight of the mixture, of grains based on natural starch, characterized in that the starch grains are surface-treated with a organic compound which reacts with hydroxyl groups in the surface during hydrophobization thereof, the mixture preferably also containing 0.5 - 5.5%, based on the total weight of the mixture, of an unsaturated fatty acid or a derivative thereof. 2. Plastic mixture as stated in claim 1, characterized in that the compound is a silicone. 3. Plastic mixture as specified in claim 1,

karakterisert ved at forbindelsen er et isocyanat. characterized in that the compound is an isocyanate.

NO790308A 1973-11-28 1979-01-31 BIOLOGICALLY DEGRADABLE PLASTIC MIXTURE WITH IMPROVED STRENGTH FEATURES, CONTAINING GRAINS OF NATURAL STARCH NO142673C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB10267/74A GB1485833A (en) 1973-11-28 1973-11-28 Synthetic-resin-based compositions
GB1026774 1974-03-07

Publications (3)

Publication Number Publication Date
NO790308L NO790308L (en) 1975-05-29
NO142673B true NO142673B (en) 1980-06-16
NO142673C NO142673C (en) 1980-09-24

Family

ID=26247409

Family Applications (2)

Application Number Title Priority Date Filing Date
NO744254A NO141610C (en) 1973-11-28 1974-11-26 BIODEGRADABLE THERMOPLASTIC, CONTAINING GRAINS OF NATURAL STARCH
NO790308A NO142673C (en) 1973-11-28 1979-01-31 BIOLOGICALLY DEGRADABLE PLASTIC MIXTURE WITH IMPROVED STRENGTH FEATURES, CONTAINING GRAINS OF NATURAL STARCH

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO744254A NO141610C (en) 1973-11-28 1974-11-26 BIODEGRADABLE THERMOPLASTIC, CONTAINING GRAINS OF NATURAL STARCH

Country Status (15)

Country Link
JP (1) JPS5242187B2 (en)
BE (1) BE822520A (en)
BR (1) BR7409921A (en)
CA (1) CA1031088A (en)
CH (1) CH598320A5 (en)
DE (2) DE2462802C2 (en)
DK (1) DK145546C (en)
ES (1) ES432731A1 (en)
FI (1) FI62853C (en)
FR (1) FR2252385A1 (en)
IE (1) IE40266B1 (en)
IT (1) IT1024922B (en)
NL (1) NL172075C (en)
NO (2) NO141610C (en)
SE (1) SE404931B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA747389B (en) * 1973-11-28 1975-12-31 Coloroll Ltd Improvements in synthetic-resin-based compositions
DE3000516A1 (en) * 1980-01-09 1981-07-16 Roland Dipl.-Kfm. 7022 Leinfelden-Echterdingen Belz COMPOSITE FILM, ESPECIALLY TOILET SEAT PAD, AND METHOD AND DEVICE FOR THEIR PRODUCTION
BE1002431A4 (en) * 1987-07-07 1991-02-05 Lilaran & Sons Uk Ltd B In the air biodegradable ethylene polymers.
JPS6450085U (en) * 1987-09-22 1989-03-28
JPH0535289Y2 (en) * 1987-12-01 1993-09-08
FR2632314B1 (en) * 1988-06-03 1992-03-27 Norsolor Sa POLYOLEFINIC COMPOSITIONS FOR PHOTOBIODEGRADABLE FILMS
JP2900402B2 (en) * 1989-05-26 1999-06-02 エヌオーケー株式会社 Biodegradable rubber composition
FI90558C (en) * 1990-05-11 1994-02-25 Sitra Foundation Biodegradable cover film and method of making the same
US5378738A (en) * 1991-10-31 1995-01-03 Kabushiki Kaisha Kobe Seiko Sho Biodegradable plastic
WO1993009184A1 (en) * 1991-10-31 1993-05-13 Kabushiki Kaisha Kobe Seiko Sho Biodegradable plastic
EP0704495A3 (en) 1994-09-28 1997-01-15 Japan Maize Prod Biodegradable compositions
DE29619016U1 (en) * 1996-11-01 1998-03-12 Müller, Wolf-Rüdiger, 70563 Stuttgart Biodegradable plastic product
DE19906295A1 (en) * 1999-02-15 2001-03-08 Kerstin Kuhn Biologically degradable water resistant plastics material useful for production of casein and chitosan films contains a water resistant completely degradable (hydrophobizing) agent
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
US10752759B2 (en) 2015-06-30 2020-08-25 BiologiQ, Inc. Methods for forming blended films including renewable carbohydrate-based polymeric materials with high blow up ratios and/or narrow die gaps for increased strength
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US20170002184A1 (en) * 2015-06-30 2017-01-05 BiologiQ, Inc. Articles Formed with Biodegradable Materials and Strength Characteristics of Same
US10920044B2 (en) 2015-06-30 2021-02-16 BiologiQ, Inc. Carbohydrate-based plastic materials with reduced odor
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US11674014B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
US11674018B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
US11149144B2 (en) 2015-06-30 2021-10-19 BiologiQ, Inc. Marine biodegradable plastics comprising a blend of polyester and a carbohydrate-based polymeric material
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
US11359088B2 (en) 2015-06-30 2022-06-14 BiologiQ, Inc. Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material
US10995201B2 (en) 2015-06-30 2021-05-04 BiologiQ, Inc. Articles formed with biodegradable materials and strength characteristics of the same
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11111355B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Addition of biodegradability lending additives to plastic materials
US10919203B2 (en) 2015-06-30 2021-02-16 BiologiQ, Inc. Articles formed with biodegradable materials and biodegradability characteristics thereof
JP2021523957A (en) * 2018-04-23 2021-09-09 バイオロジック インコーポレイテッドBiologiq,Inc. Addition of additives that impart biodegradability to plastic materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791912A (en) * 1971-11-24 1973-05-24 Ici Ltd COMPOSITIONS OF PLASTIC MATERIAL
ZA732749B (en) * 1972-05-18 1974-11-27 Coloroll Ltd Improvements in synthetic resin sheet material

Also Published As

Publication number Publication date
FR2252385B1 (en) 1980-06-13
FI344074A (en) 1975-05-29
NL172075C (en) 1983-07-01
BR7409921A (en) 1976-05-25
IE40266B1 (en) 1979-04-25
NO142673C (en) 1980-09-24
JPS5086543A (en) 1975-07-11
DK145546B (en) 1982-12-06
DK617374A (en) 1975-07-28
NO744254L (en) 1975-06-23
DK145546C (en) 1983-05-02
DE2455732C2 (en) 1981-11-12
ES432731A1 (en) 1976-12-01
DE2455732A1 (en) 1975-06-05
FI62853C (en) 1983-03-10
FR2252385A1 (en) 1975-06-20
NL7415548A (en) 1975-05-30
BE822520A (en) 1975-03-14
JPS5242187B2 (en) 1977-10-22
IT1024922B (en) 1978-07-20
NL172075B (en) 1983-02-01
SE404931B (en) 1978-11-06
NO141610B (en) 1980-01-02
NO790308L (en) 1975-05-29
SE7414877L (en) 1975-05-29
CH598320A5 (en) 1978-04-28
NO141610C (en) 1980-04-09
IE40266L (en) 1975-05-28
DE2462802C2 (en) 1982-03-18
CA1031088A (en) 1978-05-09
FI62853B (en) 1982-11-30
AU7565174A (en) 1976-05-27

Similar Documents

Publication Publication Date Title
NO142673B (en) BIOLOGICALLY DEGRADABLE PLASTIC MIXTURE WITH IMPROVED STRENGTH FEATURES, CONTAINING GRAINS OF NATURAL STARCH
US4125495A (en) Synthetic/resin based compositions
US4021388A (en) Synthetic resin sheet material
Tabasum et al. A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling
US6323265B1 (en) Thermoplastic mixture containing 1,4-α-D-polyglucane, method for making the same and use thereof
RU2056443C1 (en) Compositions, method for processing composition and method for production of its melt
US5360830A (en) Expanded articles of biodegradable plastic materials
RU2073037C1 (en) Extruded biodegradable polymeric composition and process for preparation thereof
JPH0356543A (en) Polymer-based blend composition containing modified starch
JPH0374446A (en) Polymer-base blend composition containing modified starch
JPH0725944B2 (en) Polymer-based blend composition containing modified starch
KR101875603B1 (en) Resin composition for biodegradable agricultural mulching film having the function of soil conditioning and fertilizing and the biodegradable agricultural mulching film using the same
IE66344B1 (en) Polymer base bland compositions containing destructurized starch
Myllymäki et al. Mechanical and permeability properties of biodegradable extruded starch/polycaprolactone films
EP2493975B1 (en) Starch-based biodegradable polymer; method of manufacture and articles thereof
CZ31495A3 (en) Expanded products from biologically degradable plastic material and process for preparing thereof
CA2019085A1 (en) Polymer base blend compositions containing destructurized starch
JP2001502363A (en) Biodegradable polyester and natural polymer composition and film thereof
KR20140106882A (en) Biodegradable Resin Composition and Biodegradable Mulching Film Using of the Same
JP2001509526A (en) Thermoplastic blends based on biopolymers for producing shaped biodegradable articles
CA2295619A1 (en) Compositions containing starch and/or modified starch and plasticisers
JPH02281050A (en) Novel water absorbing complex material and its production
CN109988400B (en) Environment-friendly degradable packaging composite film and preparation method thereof
Willett Starch in polymer compositions
JP2001509525A (en) Starch-based thermoplastic mixture for producing biodegradable molded articles